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SUMMARY

The equalization of pericentric heterochromatin from
distinct parental origins following fertilization is
essential for genome function and development.
The recent implication of noncoding transcripts in
this process raises questions regarding the connec-
tion between RNA and the nuclear organization
of distinct chromatin environments. Our study ad-
dresses the interrelationship between replication
and transcription of the two parental pericentric het-
erochromatin (PHC) domainsand their reorganization
during early embryonic development. We demon-
strate that the replication of PHC is dispensable for
its clustering at the late two-cell stage. In contrast,
using parthenogenetic embryos, we show that peri-
centric transcripts are essential for this reorganiza-
tion independent of the chromatin marks associated
with the PHC domains. Finally, our discovery that
only reverse pericentric transcripts are required for
both the nuclear reorganization of PHC and develop-
ment beyond the two-cell stage challenges current
views on heterochromatin organization.

INTRODUCTION

Widespread changes in the organization of chromatin occur dur-

ing cellular differentiation and genome reprogramming (Fraser

and Bickmore, 2007; Hemberger et al., 2009; Meister et al.,

2011). The most striking example of genome-wide chromatin

reorganization is observed upon fertilization. At this time two

specialized gametes, the sperm and the oocyte, fuse to form

the zygote, and the chromatin configuration of each of the

parental genomes is extensively modified in order to reestablish
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totipotency (Albert and Peters, 2009; Burton and Torres-Padilla,

2010; Feng et al., 2010; Gill et al., 2012; Seisenberger et al.,

2013). This developmental transition is of key importance. On

the one hand, the memory of parental origin, which is essential

for mechanisms of imprinting, needs to be preserved (Surani,

2001). On the other hand, the equalization of the two parental

genomes is needed for domains that behave similarly in the sub-

sequent cellular divisions. Constitutive heterochromatin (Brown,

1966) represents a paradigm for such domains and has an

important role in safeguarding nuclear architecture, genomic

stability, and proper chromosome segregation during cellular

division (Bernard et al., 2001; Festenstein et al., 1999; Maison

et al., 2010;Martı́nez-A and vanWely, 2011; Misteli, 2010; Peters

et al., 2001; Verdaasdonk and Bloom, 2011). In the mouse

genome, constitutive heterochromatin is composed of two

distinct regions, the centric and pericentric domains (Choo,

2000). Centric heterochromatin, which comprises minor satellite

repeats, is associated with a specific histone H3 variant,

CENP-A, which is important for centromere organization and

kinetochore assembly (Amor et al., 2004; Boyarchuk et al.,

2011). Pericentric heterochromatin (PHC) flanks centric hetero-

chromatin and consists of arrays of AT-rich major satellite re-

peats (up to several megabases in length). It is associated with

transcriptional repressive epigenetic marks such as H3K27me1

(Martens et al., 2005), H4K20me3 (Schotta et al., 2004), and

H3K9me2/3 (Guenatri et al., 2004; Rea et al., 2000), and is bound

by heterochromatin protein 1 (HP1) (Lachner et al., 2001; Maison

et al., 2002). In most somatic interphase cells, PHC is organized

in nuclear domains termed chromocenters, in which the major

satellite DNA from different chromosomes cluster together, while

the minor satellite repeats of each chromosome remain as sepa-

rate entities (Guenatri et al., 2004). In contrast to the situation in

somatic cells, in the zygote, paternal and maternal pericentric

DNA is spatially organized around nucleolar precursor bodies

(NPBs), forming partial rims or spherical patches (Martin et al.,

2006; Probst et al., 2007). A large-scale nuclear reorganization
thors
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leads to a somatic-like conformation only at the end of the two-

cell stage, after the transcriptional activation of the embryonic

genome (Aoki et al., 1997; Bouniol et al., 1995; Houlard et al.,

2006; Probst and Almouzni, 2008).

During early preimplantation stages, the two parental PHC

domains are associated with different histone posttranslational

modifications and chromatin proteins. Whereas the maternal

PHC is enriched in most of the typical repressive marks, the

paternal PHC is devoid of H3K9me3 and HP1 (Arney et al.,

2002; Martin et al., 2006; Santos et al., 2005; van der Heijden

et al., 2005). Instead, it is enriched in the histone variant H3.3

and in Polycomb group (PcG) proteins (Puschendorf et al.,

2008; Santenard et al., 2010). These differences are only

resolved later, after the appearance of chromocenters, at around

the four- to eight-cell stage transition (Merico et al., 2007;

Puschendorf et al., 2008). A key question thus concerns how

the distinct parental PHC domains undergo major nuclear rear-

rangements and become equalized in order to fulfill their function

as constitutive heterochromatin.

In a previous study, we revealed the importance of a burst of

pericentric transcription at the two-cell stage for the reorganiza-

tion of PHC into chromocenters (Probst et al., 2010). Remark-

ably, pericentric transcription from the parental genomes shows

a strand-specific spatiotemporal regulation (Probst et al., 2010).

The forward strand of major satellites is mostly transcribed from

the paternal genome, suggesting a differential transcriptional

competence of the distinct parental PHC domains. Although

this initial work underlined the crucial role of major satellite tran-

scripts in PHC organization, the relative contribution of replica-

tion and transcription to this reorganization, and how the distinct

parental PHC domains are affected remained unclear. Most

importantly, how noncoding RNAs (ncRNAs) operate in this pro-

cess remains to be determined.

In the present study we investigate, using mouse preimplanta-

tion embryos, the link between the asymmetry of paternal and

maternal PHC domains and the dynamics of their replication

and transcription. By interfering with these processes, we

demonstrate that, unlike major satellite transcription, replication

is dispensable for the acquisition of a somatic-like heterochro-

matin configuration. Using parthenogenetic embryos, we show

that major satellite RNAs are essential for the reorganization of

PHC, irrespective of their parental origin. Finally, using methods

to specifically knockdown either one of the two major satellite

transcripts, we show that only reverse RNAs are essential for

clustering of pericentric satellites into chromocenters at the

late two-cell stage. Our data point to an unsuspected role for

major satellite transcripts in PHC organization and suggest that

these transcripts operate independently of canonical double-

stranded RNAmechanisms, such as those found in fission yeast.

RESULTS

Different Impact of Replication and Transcription on
PHC Reorganization
Considering that epigenetic marks can influence replication

timing (Göndör and Ohlsson, 2009; Martin et al., 2006), we asked

whether the replication dynamics of the two parental PHC

domains could be influenced by the asymmetry in chromatin
Cell Re
marks found at the two-cell stage (Mayer et al., 2000). We

performed staged pulse labeling of mouse embryos with 5-ethy-

nyl-20-deoxyuridine (EdU, a deoxynucleotide precursor incorpo-

rated into DNA during replication; Wossidlo et al., 2010) and

estimated the duration of S phase to be 7–9 hr (Figures 1A and

S1A–S1D), as previously reported (Artus and Cohen-Tannoudji,

2008; Molls et al., 1983; Streffer et al., 1980). By comparing

the EdU patterns with DNA fluorescent in situ hybridization

(FISH) for major satellites (Figures S1C and S1D), we determined

that the replication of major satellite DNA begins at �35–37 hr

post-human chorionic gonadotropin injection (phCG, corre-

sponding to mid S phase) and is completed after 38 hr phCG

(corresponding to late S phase), long after the replication of

euchromatin. Next, to distinguish the replication dynamics of

the two parental PHC domains, we combined EdU pulse labeling

with immunodetection of Ring1B and H3K9me3, respectively

marking paternal and maternal PHC in two-cell embryos

(Puschendorf et al., 2008). In >80% of the nuclei of embryos in

mid S phase, the EdU signal within PHC domains colocalized

predominantly with the Ring1B-decorated heterochromatin

(Figures 1B and S2A). In contrast, in embryos in late S phase,

EdU showed no marked difference between the parental PHC

domains, indicating that both paternal and maternal PHC

undergo replication at this time (Figures 1B and S2A). Thus, as

previously observed in mouse zygotes (Bouniol-Baly et al.,

1997; Ferreira and Carmo-Fonseca, 1997), the heterochromatin

domains of paternal origin initiate replication duringmid S phase,

about 2–3 hr earlier than their maternal counterparts. However,

as assessed in these experiments, both paternal and maternal

PHC domains complete their replication in a similar time frame.

Given that paternal PHC is both replicated (Figure 1B; Aoki

et al., 1997; Bouniol-Baly et al., 1997) and transcribed earlier

(Figure S2B; Probst et al., 2010) than its maternal counterpart,

we asked how interfering with these processes impacts the

dynamics of PHC reorganization. Late zygotes placed inmedium

containing aphidicolin (an inhibitor of DNA replication) arrest at

the G1/S border of the two-cell stage. Moreover, reorganization

of their PHC domains at 48 hr is incomplete (Probst et al., 2010),

without a significant impact on major satellite transcription (Fig-

ures S3A and S3B). Here, we directly compared embryos

arrested by replication block with embryos arrested after knock-

down of major satellite RNA at 72 hr phCG (a time point at which

embryos should have cleaved to the four-cell stage; Figure 2A).

As expected, the lack of EdU incorporation in aphidicolin-treated

embryos confirmed an efficient replication block, whereas EdU

incorporation after knockdown of major satellite RNA demon-

strated that these embryos replicate their DNA (Figure 2B).

DNA FISH (at 72 hr or 96 hr phCG) in the latter embryos shows

that in �80% of the nuclei, a portion of the major satellites fail

to cluster into chromocenters (Figures 2B, S3C, and S3D). Sur-

prisingly, in aphidicolin-treated embryos, in contrast to the situ-

ation at 48 hr phCG (Probst et al., 2010),�70%of the nuclei have

achieved a complete reorganization of major satellites in foci

resembling chromocenters (Figure 2B). To strengthen this obser-

vation, we arrested embryos injected with locked nucleic acid

(LNA) gapmers or grown in the presence of a-amanitin (an RNA

Polymerase II inhibitor that reduces the levels of major satellite

transcripts; Figure S3E) in G1/S with aphidicolin (Figures 2A
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Figure 1. Major Satellites Are Replicated

during Mid–Late S Phase of the Two-Cell

Embryo and Show Different Parental Repli-

cation Dynamics

(A) Shortly after completion of the first cleavage,

embryos were pulsed every hour from 30 to

41 hr phCG by culturing in the presence of EdU for

1 hr. Immediately after the pulse, embryos were

collected and processed for EdU detection

together with either DNA FISH for major satellites

or immunostaining for H3K9m3 or Ring1B. The

graph represents the percentage of nuclei in which

major satellites are labeled with EdU at different

time frames within S phase of the two-cell stage.

(B) Two-cell embryos were pulsed with EdU at

different time points during S phase. Representa-

tive embryos stained for H3K9me3 (red), enriched

at the maternally derived genome and Ring1B

(green), enriched at the paternally derived

genome, followed by EdU click-iT (blue) are

depicted. DNA is counterstained with DAPI (gray).

Scale bar represents 5 mm. The graph represents

the replication timing of paternal and maternal

heterochromatin. Replicating heterochromatin

regions were assigned to maternal or paternal

domains on maximum-intensity projections by

their enrichment in H3K9me3 and Ring1B,

respectively.

See also Figures S1 and S2.
and 2C). Embryos treated with aphidicolin and injected with

control gapmers behave similarly to embryos treated only with

aphidicolin, in which the majority of nuclei show a complete reor-

ganization of major satellites into chromocenters (Figure 2C). In

contrast, embryos arrested in G1/S and either injected with

LNA gapmersMaj1/2 or treated with a-amanitin fail to reorganize

their PHC domains into chromocenters (Figure 2C). Based on

these data, we propose that, unlike transcription, replication is

not essential for the reorganization of major satellites, but rather

contributes to the appropriate timing of chromocenter formation.

Paternal and Maternal Heterochromatin Domains Are
Differentially Affected by the Knockdown of Pericentric
Transcripts
Given the parental asymmetry in epigenetic marks between PHC

domains, we wondered whether the subset of major satellites

that remain associated with NPBs upon major satellite RNA

knockdown originate fromoneparent only. To address this issue,

we collected two-cell stage embryos injected with control or

major LNA-DNA gapmers and carried out DNA FISH for major

satellites simultaneously with immunostaining for Ring1B and

H3K9me3 to distinguish between paternal and maternal ge-

nomes, respectively (Figure 3A). We confirmed that the injection

of LNA-DNA gapmers does not interfere with marks associated

with either paternal or maternal heterochromatin (Figures S4A

and S4B). Furthermore, DNA FISH on arrested embryos showed

that in approximately half of the nuclei with ring-like major satel-
1158 Cell Reports 4, 1156–1167, September 26, 2013 ª2013 The Au
lites, the satellites are predominantly localized in the Ring1B-en-

riched regions and hence are of paternal origin (Figures 3B–3D

and S4C). Most of the remaining nuclei that contain ring-like

major satellites do not show a parental asymmetry, localizing to

both maternal and paternal nuclear regions. Only �18% of the

nuclei show rings exclusively labeled with maternal-specific

marks. A distinct dynamics of reorganization of both parental

PHC domains could partly explain these differences. To assess

this, we performed DNA FISH for major satellites together with

immunostaining for H3K9me3 (Figures 3E and S4D). We found

that during late G2 phase (50 hr phCG) of control two-cell

embryos, the few remaining ring-likemajor satellites are predom-

inantly localized in regions that are not enriched forH3K9me3and

hence are of paternal origin (Figure 3E and S4D). This suggests

that paternal PHC domains complete their reorganization later

than their maternal counterparts. We thus conclude that even

though maternal domains cannot completely reorganize in

the absence of major satellite transcripts, paternal PHC

domains are more sensitive to the knockdown of these

transcripts.

Major Satellite Transcripts Are Essential for Complete
Reorganization of Both Parental Heterochromatin
Domains
Given that knockdown of major satellite transcripts has a greater

impact on the capacity of paternal PHC to reorganize into chro-

mocenters, we asked whether the parental origin and/or the lack
thors



Figure 2. PHC Reorganization Requires Major Satellite Transcription, but Not Progression through Replication

(A) Zygotes were collected and divided into two groups. The first group was injected between 24 and 27 hr phCGwith LNA-DNA gapmers directed against GFP or

a combination of forward and reverse major transcripts. The second group was placed in medium supplemented with 2.5 mg/ml aphidicolin or DMSO at 30 hr

phCG. Both groups of embryos were cultivated in medium supplemented with 2 mM EdU from 30 hr phCG. Embryos were collected at �72 hr phCG and EdU

incorporation was detected together with DNA FISH. At this time point, control embryos already cleaved to four cells.

(B) Control, aphidicolin-treated, and microinjected embryos were collected at �72 hr phCG and processed for EdU revelation and DNA FISH. Panels with

respective enlargements show EdU staining (gray), as well as the predominant patterns of DNA FISH signals for minor (green) and major (red) satellites.

Arrowhead indicates ring-like major satellites; arrow indicates major satellite DNA reorganized in chromocenters. The proportion of nuclei containing ring-like

major satellites is displayed on the enlarged panels (p < 0.01 for aphidicolin versus LNAMaj1/2, Student’s t test). DNA was counterstained with DAPI (blue). Scale

bar represents 10 mm.

(C) Aphidicolin-treated, microinjected embryos under aphidicolin treatment and a-amanitin/aphidicolin-treated embryos were collected at �72 hr phCG and

processed for EdU revelation andDNA FISH. Panels with respective enlargements show EdU staining (gray), as well as DNA FISH forminor (green) andmajor (red)

satellites. The proportion of nuclei containing ring-like major satellites is displayed on the enlarged panels. Binomial tests were applied to assess the significance

of the differences observed between the treatments (all treatments compared with aphidicolin: not significant (NS) for LNA-GFP; p < 1.03 10�11 for LNAMaj1/2;

p < 1.0 3 10�06 for a-amanitin). DNA was counterstained with DAPI (blue). Scale bar represents 10 mm.

See also Figures S2 and S3.
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Figure 3. Knockdown of Major Satellite Transcripts Impacts the Reorganization of Paternal and Maternal Heterochromatin in Two-Cell

Embryos Differently

(A) Zygotes were injected between 24 and 27 hr phCG with LNA-DNA gapmers targeting either GFP or forward and reverse major satellite transcripts. Embryos

were collected at �69 hr phCG and processed for immuno-DNA FISH.

(B) Microinjected embryos were stained for Ring1B (green, specifying the paternal heterochromatin) and processed for DNA FISH revealing major satellites (red).

(C) Similarly to (B), embryos were stained for H3K9me3 (green) to reveal the maternal PHC. DNA was counterstained with DAPI (gray). Scale bar represents 5 mm.

(D) Within the population of embryos with ring-like PHC domains, we assessed the percentage of two-cell nuclei in which the rings were of either paternal

or maternal origin, based on the H3K9me3/Ring1B parental asymmetric staining. Error bars represent the SD from four independent experiments; *p < 0.05,

**p < 0.01, Student’s t test.

(E) Two-cell embryos were collected at 45 and 50 hr phCG and stained for H3K9me3 (green, specifying the maternal genome) and processed for DNA FISH

revealing major satellites (red). Arrowheads point to ring-like structures of major satellites. The percentage of nuclei containing ring-like major satellites enriched

(maternal, \) or devoid (paternal, _) of H3K9me3 is indicated on the enlarged panels. Binomial tests were applied to test the significant increase in the presence of

exclusively paternal ring structures between the two time points (paternal versus maternal: NS for 45 hr phCG, p < 1.0 3 10�12 for 50 hr phCG). DNA was

counterstained with DAPI (gray). Scale bar represents 10 mm.

See also Figure S4.
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Figure 4. Parthenotes Require Major Satellite Transcripts for

Developmental Progression and Proper Heterochromatin Consoli-

dation

(A) Oocytes were collected at 16 hr phCG and activated for�6 hr in SrCl2 in the

presence of cytochalasin B to generate diploid parthenotes. Parthenotes were

injected with LNA gapmers targeting either GFP or forward and reverse major

satellite transcripts and processed for DNA FISH at 42 hr postactivation (pa).

(B) Table representing the developmental phenotype of parthenotes micro-

injected with LNA-DNA gapmers.

(C) Noninjected and microinjected parthenotes were processed for DNA FISH

with probes revealing major satellites (red). DNAwas counterstained with DAPI

(gray). Scale bar represents 5 mm. The percentage of parthenotes with ring-like

major satellites after knockdown of major satellite transcripts is indicated.
of somatic heterochromatin marks are responsible for the devel-

opmental arrest. We thus generated diploid parthenogenetic

embryos, in which the complete genome is contributed by the

oocyte and therefore all PHC domains are enriched in repressive

histone modifications and devoid of PcG proteins (Puschendorf

et al., 2008). In parthenotes, the expression of the forward strand

of major satellites is low, while the burst of the reverse strand

during the late two-cell stage is maintained, albeit at lower levels

(Probst et al., 2010). We isolated unfertilized oocytes, activated

them for parthenogenetic development, and knocked down

both forward and reverse major satellite transcripts by microin-

jecting LNA-DNA gapmers (Figure 4A). We collected injected

parthenotes at �42 hr postactivation (pa) to process them for

DNA-FISH. Similar to the observation in embryos, parthenotes

that received major LNA-DNA gapmers arrested at the two-cell

stage with a significantly higher frequency than control injected

parthenotes (Figure 4B). Moreover, pericentric domains in

arrested parthenotes failed to organize into chromocenters (in

�67% of the nuclei; Figure 4C). Thus, major satellite transcripts

are required for the reorganization of both paternal and maternal

PHC, irrespective of their distinctive chromatin marks.

Forward and Reverse Major Satellite Transcripts Play
Distinct Roles during Preimplantation Development
The low levels of forward major satellite RNA in parthenotes, in

which the reorganization of PHC still occurs, prompted us to

investigate the exact contribution of the forward and reverse

transcripts. To that end, we microinjected zygotes before the

onset of zygotic genome activation with LNA-DNA gapmers spe-

cifically targeting either the forward or the reverse transcripts

(Figure 5A). We confirmed the efficient strand-specific knock-

down of major satellite transcripts by both RNA FISH (Figures

5B and S5A) and quantitative RT-PCR (qRT-PCR; Figures 5C,

S5B, and S5C). Under these conditions, depleting one transcript

does not affect the levels of the complementary strand, suggest-

ing that they are independently regulated. Despite the prominent

burst of forward-strand expression observed during the two-cell

stage, embryos injected with LNA-DNA gapmers targeting the

forward transcripts did not show an increased frequency of

developmental arrest compared with control embryos (Fig-

ure 5D). In contrast, injection of LNA-DNA gapmers targeting

the reverse transcripts resulted in developmental arrest at the

two-cell stage at a high frequency (Figure 5D). These results

demonstrate a crucial role for reverse transcripts in development

progression. However, it remained possible that even though

forward transcripts are dispensable for development progres-

sion, they could be necessary for PHC clustering.We thus exam-

ined the organization of PHC in injected embryos at�69 hr phCG

by DNA FISH. Embryos injected with gapmers targeting forward

transcripts organize their major satellites in chromocenters in a

manner similar to that observed for noninjected and control

GFP-injected embryos (Figure 5E). This is in sharp contrast to

embryos depleted of reverse transcripts, in which some of the

pericentric satellites remain organized around NPBs in ring-like

structures and distinct from control counterparts at the same

stage (Figure 5E, compare with Figures 2B and S3C).

We next tested the importance of the distinct strands of major

satellite transcripts in parthenotes, which lack the burst in
Cell Reports 4, 1156–1167, September 26, 2013 ª2013 The Authors 1161



Figure 5. Knockdown of Reverse Major Satellite Transcripts Is Sufficient to Prevent Developmental Progression Past the Two-Cell Stage

(A) Zygotes were injected between 24 and 27 hr phCG with LNA-DNA gapmers directed against GFP or targeting either forward or reverse

major satellite transcripts. Embryos were collected for RNA FISH at 42 hr phCG, for RNA extraction at �44–46 hr phCG, and for immuno-DNA FISH at

�69 hr phCG.

(legend continued on next page)
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forward-strand expression. Injecting activated oocytes under

experimental conditions identical to those described above (Fig-

ure 6A) led to the same developmental phenotype (Figure 6B).

Likewise, when parthenotes were injected with strand-specific

LNA-DNA gapmers, only parthenotes with reduced levels of

reverse major transcripts failed to reorganize part of their major

satellites in chromocenters (Figure 6C). Although our results do

not exclude other roles for the forward transcripts, we conclude

that the reverse transcripts derived from major satellites play a

major role in both the clustering of PHC and developmental

progression.

DISCUSSION

Our study reveals three important features of PHC during preim-

plantation development: DNA replication is dispensable for pro-

moting PHC clustering during the two-cell stage, pericentric

transcripts are required for PHC reorganization regardless of

the chromatin marks associated with distinct parental PHC

domains, and pericentric transcripts derived only from the

reverse strand are necessary for both nuclear reorganization

and developmental progression beyond the two-cell stage.

The latter finding reveals that only one of the two complementary

major satellite transcripts contributes to the large-scale nuclear

reorganization of heterochromatin, a role that was previously

unsuspected.

Replication and Transcription Affect Heterochromatin
Organization Differently
In somatic cells, where the transcription levels of major satellites

are relatively low compared with the early embryo, PHC domains

that are organized in chromocenters replicate from mid to late S

phase (Guenatri et al., 2004; Quivy et al., 2004). This typical

behavior of a heterochromatic state contrasts with the early

replication of transcriptionally active euchromatin (Mazzotti

et al., 1990; Nakayasu and Berezney, 1989; O’Keefe et al.,

1992). In two-cell embryos, prior to chromocenter formation

and despite the strong transcriptional activity of major satellites,

a replication pattern similar to that of somatic cells is already

established. Thus, the global replication timing of PHC domains

is imposed by rules independently of their nuclear organization.

The earlier initiation of replication of paternal PHC parallels the

earlier zygotic genomic activation of the male pronucleus (Aoki

et al., 1997; Bouniol-Baly et al., 1997) and the higher levels of for-

ward major satellite transcripts produced from the paternal

genome at the two-cell stage (Probst et al., 2010). This bias in
(B) Quantification of the total intensity of the RNA FISH signals per nucleus for for

with LNA-DNA gapmers.

(C) qRT-PCR of major satellite transcripts after strand-specific reverse transcri

injected with LNA-DNA gapmers targeting either the forward or reverse major sat

embryos from three independent experiments.

(D) Table representing the developmental phenotype of embryos microinjected w

(E) Control and microinjected embryos were collected at �69 hr phCG and proce

major satellites (red) of representative embryos for each set of LNA-DNA gapmers

satellite organization in different groups of embryos. Scale bar represent 5 mm.

reverse major satellite RNA is indicated.

See also Figure S5.
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the timing of both replication and transcription at the paternal

genome may arise from the lack of most somatic repressive his-

tone modifications and reduced binding of HP1 proteins (Santos

et al., 2005). It would thus be interesting to challenge factors that

are responsible for the setting of histone marks during early

mouse development, such as ESET/Setdb1 (Cho et al., 2012),

LSD1/KDM1 (Ciccone et al., 2009; Macfarlan et al., 2012), and

KAP1 (Quenneville et al., 2011), to determine the impact on the

observed parental bias in replication and transcription. These

differences may explain why the rearrangement of paternal

PHC is more sensitive to interference with major satellite tran-

scripts. Although it is less sensitive, maternal PHC equally

requires major satellite RNAs to reorganize appropriately, as

shown by our data from parthenogenetic embryos. Thus, major

satellite transcripts are critical for both PHC domains to cluster

into chromocenters, irrespective of the parental chromatin orga-

nization and their associated marks.

Our comparison between embryos blocked with aphidicolin

and embryos microinjected with LNA-DNA gapmers targeting

major satellite transcripts emphasizes the importance of tran-

scription over replication for heterochromatin reorganization.

This suggests that large-scale nuclear reorganization can take

place even when replication is inhibited, as observed in termi-

nally differentiated nuclei transplanted into Xenopus enucleated

oocytes that do not replicate (Byrne et al., 2003). We thus

propose that in the early embryo, although replication may

contribute to large-scale nuclear reorganization of PHC in time,

it is the appropriate transcription of major satellites that is the

dominant driving force in promoting the reorganization of PHC

domains and their release from NPBs.

The Reverse Major Satellite Transcripts Are Essential
for PHC Organization
During the two-cell stage, the expression of forward and reverse

strands of major satellites is temporally and spatially regulated

(Probst et al., 2010). The increasing number of long ncRNAs

revealed in a recent study (Djebali et al., 2012) led us to recon-

sider major RNAs as potential single-stranded, long ncRNAs.

Indeed, our data suggest that the regulation of the transcriptional

dynamics of each strand is likely independent, as depleting one

transcript does not affect the levels of the complementary

strand. In this respect, the recent identification of several

transcription-factor-binding sites in PHC and their importance

in regulating expression of forward and reverse transcripts in

somatic cells (Bulut-Karslioglu et al., 2012) is particularly inter-

esting. It will be important to further explore how these
ward and reverse major satellite transcripts in two-cell embryos microinjected

ption. Mean of the expression levels of transcripts ± SD in two-cell embryos

ellite RNAs compared with LNA-DNA gapmers targeting GFP and noninjected

ith strand-specific LNA-DNA gapmers.

ssed for DNA FISH. Panels with respective enlargements show DNA FISH for

injected. DNA was counterstained with DAPI (gray). Close-ups illustrate major

The percentage of embryos with ring-like major satellites after knockdown of
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Figure 6. Parthenotes Require Reverse Major Satellite Transcripts

for Proper Developmental Progression and Heterochromatin Orga-

nization at the Two-Cell Stage
(A) Oocytes were collected at 16 hr phCG and activated for�6 hr in SrCl2 in the

presence of cytochalasin B to generate diploid parthenotes. After activation,

parthenotes were injected with strand-specific LNA-DNA gapmers targeting

either GFP or forward or reverse major satellite transcripts. At 42 hr pa, the

parthenogenetic embryos were processed for DNA FISH.

(B) Table representing the developmental phenotype of parthenotes micro-

injected with strand-specific LNA-DNA gapmers.

(C) Parthenotes microinjected with LNA-DNA gapmers targeting GFP or for-

ward or reverse major satellite transcripts were processed for DNA FISH with

1164 Cell Reports 4, 1156–1167, September 26, 2013 ª2013 The Au
transcription factors contribute to the regulation of the distinct

and independent transcriptional dynamics of the two strands in

two-cell embryos.

In this study, we demonstrate that only the reverse strand of

major satellite transcripts is required for PHC reorganization

and developmental progression at the two-cell stage. We pro-

pose that the different classes of transcripts arising from major

satellites play distinct roles in PHC organization. Given the prom-

inent peak of forward major satellite RNAs from the paternal

genome during the two-cell stage (Probst et al., 2010) and their

specific interaction, in the context of heterochromatin formation,

with sumoylated-HP1 proteins (Maison et al., 2011), we propose

that these transcripts have other, as yet unrevealed, functions

during development. While we have focused on early events dur-

ing embryonic development, a broader role for both forward and

reverse transcripts should be evaluated in different cellular con-

texts in later developmental stages, such as primordial germ

cells, somatic and stem cells undergoing major cellular reprog-

ramming, and tissues under cellular stress (e.g., DNA damage).

The pressing importance of these issues is emphasized by

reports of several human and mouse cancers in which hetero-

chromatin is globally altered and silenced repeats become

aberrantly expressed (Eymery et al., 2009; Ting et al., 2011;

Zhu et al., 2011).

Initially, the functional nature of major satellite transcripts was

connected with double-stranded RNA and the small interfering

RNA machinery based on work in Schizosaccharomyces

pombe (White and Allshire, 2008) and more recent work in

mouse embryos (Santenard et al., 2010). Although we cannot

exclude the possibility that hybrid species exist in a transient

manner, they do not seem to be critical for the clustering of

PHC. Based on our data, we hypothesize that the appropriate

expression of reverse RNA (at the G2-M stage) is critically

needed to ensure the proper reorganization of PHC of both

parental genomes into chromocenters and allow entry into

mitosis. Among the emerging roles for long ncRNAs in genomic

regulation (Rinn and Chang, 2012), reverse major satellite tran-

scripts could represent a class of ncRNAs with a structural role

in PHC organization. It is tempting to consider that reverse tran-

scripts may help to set up a scaffold/platform that acts as a

recruitment/stabilization hub for different RNAs or proteins,

such as Polycomb repressive complex 1 (PRC1) complexes

that accumulate at the paternal pericentric domains in the

zygote (Puschendorf et al., 2008) or HP1 proteins that are en-

riched on the maternal PHC (Santos et al., 2005). The recent

finding that the destabilization of Xist RNA with LNA gapmers

led to its quick release from the inactive X chromosome and

consequent displacement of the PRC2 complex (Sarma et al.,

2010) is in line with this view. Future work focusing on both

the structure of major satellite transcripts and the molecular

characterization of ribonucleoprotein complexes associated

with forward and reverse transcripts will help elucidate the

mode of action of pericentric ncRNAs.
probes targeting major satellites (red). DNA was counterstained with DAPI

(gray). Scale bar represents 10 mm. The percentage of parthenotes with ring-

like major satellites after the strand-specific knockdown of major satellite

transcripts is indicated.

thors



EXPERIMENTAL PROCEDURES

Collection and Culture of Mouse Oocytes and Embryos

Animals were used in accordance with the International Guiding Principles for

Biomedical Research Involving Animals, as promulgated by the Society for the

Study of Reproduction and the European Convention on Animal Experimenta-

tion. Female B6D2F1mice (6–10weeks old; Charles River) were superovulated

by administration of 7.5 IU of pregnant mare’s serum gonadotropin (PMSG),

followed 46–48 hr later by injection of 7.5 IU hCG. Zygotes were collected

from the ampullae of oviducts �17 hr after injection of hCG. Embryos were

further cultivated in microdrops of M16 medium (Sigma) under mineral oil

(Sigma) at 37�C under 5% CO2. To block replication, we supplemented M16

mediumwith 2.5 mg/mL aphidicolin (Sigma). To block transcription, we supple-

mented M16 medium with 10 mg/mL a-amanitin (Sigma). For the generation of

diploid parthenotes, we isolatedMII oocytes 16 hr phCG and activated them in

M16 containing 2mMEGTA supplementedwith 5mMSrCl2 and 5 mg/mL cyto-

chalasin B for 6 hr.

Microinjection of Mouse Embryos

We injected �10 pl of LNA-DNA gapmers (5, 10, and 20 mM) diluted in 6 mM

HEPES pH 7.5, 60 mM KCl, 0.2 mM MgCl2 into the cytoplasm of mouse

zygotes between 20 and 24 hr phCG using an Eppendorf Micromanipulator

on a Nikon inverted microscope. We monitored the development of the

embryos at regular intervals.

Antibodies and LNA Oligonucleotide Probes

For immunofluorescence staining, we used anti-H3K9me3 (1:200; Upstate and

Active Motif) and anti-Ring1B (1:200; MBL) antibodies in combination with

highly cross-absorbed Alexa 488-, 594-, or 647-coupled secondary antibodies

(Molecular Probes). We obtained fluorescently labeled LNA oligonucleotide

probes and LNA-DNA gapmers from Exiqon.

Immunofluorescence Staining, RNA FISH, DNA FISH, and EdU

Labeling

We prepared embryos for immunofluorescence, RNA FISH, and DNA FISH as

previously described (Okamoto et al., 2004; Probst et al., 2010). For the S

phase profiling of two-cell embryos, we started collecting embryos at �30 hr

phCG (when the majority of embryos proceeded through the first mitosis)

and at regular 1 hr intervals until completion of S phase. Each group of

embryos was placed into M16 medium containing 50 mM EdU (Invitrogen).

After 1 hr, EdU detection was performedwith a Click-iT Imaging Kit (Invitrogen)

according to the instructions of the manufacturer except that detection was

prolonged to 1 hr. When combined with EdU labeling, DNA FISH and immuno-

fluorescence were carried out before and after EdU revelation, respectively.

Microscope Analysis and Image Processing

Weacquired bright-field images of embryos with a LeicaMZ FLIII stereomicro-

scope, and fluorescent images with a Deltavision RTmicroscope (Applied Pre-

cision; 403/1.35 NA, 633/1.4 NA, and 1003/1.4 NA objectives). A z series of

�60–70 slices (0.2 mm z step) were acquired and deconvolved using SoftWorx

software (enhanced ratio, 20 iterations; Applied Precision). ImageJ was used

for further image processing. The total fluorescence of forward and reverse

RNA was quantified with the use of the 3D Object Counter (Bolte and Corde-

lières, 2006). Images were corrected for chromatic shift in z (minus two planes)

and the same threshold was used to quantify the difference in intensity levels

among the different groups of microinjected embryos. For quantification of the

EdU intensity ratio in nuclei, we used the 3D-FIED macro (Cantaloube et al.,

2012). Unless stated otherwise, maximum-intensity projections are shown.

RNA Preparation and RT-PCR Analysis

We used Trizol (Invitrogen) to extract RNA from embryos. Briefly, we collected

RNA from at least 10 embryos by resuspending them in Trizol (Invitrogen) in the

presence of 0.5 pg of an exogenous standard. The extracted RNA was exten-

sively DNase treated with Turbo DNase (Ambion) and reverse transcribed

(Superscript III; Invitrogen) with strand-specific primers (Lehnertz et al.,

2003). We measured the levels of major satellite transcripts by real-time

PCR using Power SYBR Green (Applied Biosystems) in a 7500 Fast Real-
Cell Re
Time PCR system (AppliedBiosystems). qPCRwas based on a previous report

(Terranova et al., 2005).

Sequence of Probes, LNA-DNA Gapmers, and Primers

The sequences of the probes, gapmers, and primers used in this work are pro-

vided in Table S1.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and one table and can be found
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