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Abstract

We derive an integral formula for the universal R-matrix for the twisted quantum

affine algebra UqðAð2Þ
2 Þ and quantum affine superalgebra Uqðcospospð1 j 2ÞÞ with Drinfeld

comultiplication.
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1. Introduction

In the works [DK,DKP] we described the universal R-matrix for quantum
nontwisted affine algebras with the so-called Drinfeld comultiplication. It was
presented up to a standard factor as a series of contour integrals of certain canonical
tensor over the system of factorizable cycles in deformed configuration spaces. The
geometric properties of the deformed configuration spaces, which first appeared in
functional realization of Borel subalgebras of quantum affine algebra [FO,E], are
crucial for this presentation.
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Using these properties, we constructed first the system of factorizable cycles

for the algebra Uqð bslsl2Þ and then extended the construction to other nontwisted

quantum affine algebras with a help of ‘current’ braid group action constructed
in [DK].
An analogous picture should take place for other types of quantum affine

superalgebras and we develop here our approach for twisted quantum affine algebra

UqðAð2Þ
2 Þ and its superpartner Uqðcospospð1 j 2ÞÞ: The algebra UqðAð2Þ

2 Þ plays the same

fundamental role for twisted quantum affine algebras as the algebra Uqð bslsl2Þ for

nontwisted algebras; its matrix elements and the deformed configuration space
should be studied separately. Then the obtained results can be used as a foundation
for further study of other twisted quantum affine algebras; such an extension of the
theory requires the construction of ‘current’ group action for all twisted quantum
affine algebras, which we plan to describe in a future publication.

The analytical properties of current operators of the algebra Uqð bslsl2Þ from one side

and of the algebras UqðAð2Þ
2 Þ and Uqðcospospð1 j 2ÞÞ from the other side, differ in a crucial

way: the poles and zeroes of the current operators of the last two algebras together
with vanishing ‘Serre conditions’ form a complicated structure of the deformed
configuration space. Also the role of the long root current, which is generated by one
of the two poles of the basic current operators, is quite delicate. All this makes the

new cases far more complicated with respect to that of Uqð bslsl2Þ:
As a first step towards our goals, we need a complete functional description of the

Borel parts of the algebras UqðAð2Þ
2 Þ and Uqðcospospð1 j 2ÞÞ; or, equivalently, the

description of the matrix elements of the products of the current operators in highest
weight representations. Such a description is presented in Section 3. In particular, we
derive a complete functional version of the Serre relations analogous to [E]. The
proofs are given in the appendix using a new identity of delta functions unknown
before. Our exposition goes in the unified ways for both algebras, and the two cases
differ essentially by a sign of the parameter qy:
This gives us a possibility to introduce the corresponding configuration spaces

and to construct the universal R-matrix as a series of integrals of canonical
tensor over the systems of factorizable cycles according to the abstract theory from
[DKP]. We find the desired systems of cycles explicitly, check directly the
factorization properties and prove the formula. The final answer, given in
Theorem 2, appears to be surprisingly simple at the first glance, at least the
integration is taken over the product of unit circles. However, even the verification,
that the integration form is nonsingular on the integration cycle is quite subtle and is
based on the vanishing properties of the integration form, coming from the Serre
relations.
At this moment, we still do not fully understand the new integral formula

presented in this paper and its implications. For instance, the role played by the
current operators for the long root is essentially unclear, and we still do not know
how to derive a reasonable differential equation or recurrence relations for the

integrals, as it was done in [DKP] for Uqð bslsl2Þ:
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2. Definitions

In this section we describe quantum affine algebras UqðAð2Þ
2 Þ and Uqðcospospð1 j 2ÞÞ in

current realization. It means, in particular, that we use their natural completions,
acting on highest weight representations. See [DKP, Section 2] for details. We
propose here the unified description these two algebras, analogous to [KLT], such

that the difference between two algebras will be only in the parity sign ð�1Þy:
The algebras UqðAð2Þ

2 Þ and Uqðcospospð1 j 2ÞÞ are Z2-graded Hopf algebras, which

means that in the tensor square of the algebra the multiplication rule is defined for
the homogeneous elements a; b; c; d by

ða#bÞðc#dÞ ¼ ð�1ÞyðbÞyðcÞðac#bdÞ;

where yðxÞAZ2 denotes the grading of the element x:

Define y ¼ 1 for Uqðcospospð1 j 2ÞÞ and y ¼ 0 for UqðAð2Þ
2 Þ and denote these two

algebras as Ay; so A0 is UqðAð2Þ
2 Þ and A1 is Uqðcospospð1 j 2ÞÞ:

The algebra Ay is generated by the elements

x7
n ; nAZ; an; na0; d; k71 and central q7c

with the parity

yðx7
n Þ ¼ y; yðanÞ ¼ yðk71Þ ¼ yðq7cÞ ¼ yðdÞ ¼ 0:

These elements are gathered into generating functions

x7ðzÞ ¼
X
kAZ

x7
k z�k; K7ðzÞ ¼ k71 exp 7ðq � q�1Þ

X
n40

a7nz8n

 !
;

which satisfy the following relations on the level of formal power series:

qdaðzÞq�d ¼ aðqzÞ; for a ¼ x7;K7; ð1Þ

ðz � q72wÞðz þ q81
y wÞx7ðzÞx7ðwÞ ¼ ðq72z � wÞðq81

y z þ wÞx7ðwÞx7ðzÞ; ð2Þ

KþðzÞx7ðwÞKþðzÞ�1 ¼ gðq81
2
cw=zÞ81

x7ðwÞ; ð3Þ

K�ðzÞx7ðwÞK�ðzÞ�1 ¼ gðz=wq81
2

cÞ71
x7ðwÞ: ð4Þ

K7ðzÞK7ðwÞ ¼ K7ðwÞK7ðzÞ; ð5Þ

K�ðzÞKþðwÞK�ðzÞ�1KþðwÞ�1 ¼ gðq�cz=wÞgðqcz=wÞ1 ; ð6Þ
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xþðzÞx�ðwÞ � ð�1Þyx�ðwÞxþðzÞ

¼ 1

q � q�1 d
z

w
q�c

� �
Kþðwq

1
2

cÞ � d
z

w
qc

� �
K�ðzq

1
2

cÞ
� 	

: ð7Þ

Here qy ¼ ð�1Þyq and

gyðzÞ ¼ ð�1Þy ðzq2 � 1Þðzq�1
y þ 1Þ

ðz � q2Þðz þ q�1
y Þ ð8Þ

is treated as a formal power series over z:

The currents x7ðzÞ satisfy also the following cubic Serre relations [CP,D]:

Symz1;z2;z3ðq�3
y z71

1 � ðq�2 þ q�1
y Þz71

2 þ z71
3 Þx7ðz1Þx7ðz2Þx7ðz3Þ ¼ 0; ð9Þ

Symz1;z2;z3ðq3yz81
1 � ðq2 þ qyÞz81

2 þ z81
3 Þx7ðz1Þx7ðz2Þx7ðz3Þ ¼ 0: ð10Þ

The coalgebra structure of Ay; which we investigate here, is given by the relations:

DðqcÞ ¼ qc#qc; ð11Þ

DðxþðzÞÞ ¼ xþðzÞ#1þ K�ðzq
c1
2 Þ#xþðzqc1Þ; ð12Þ

Dðx�ðzÞÞ ¼ 1#x�ðzÞ þ x�ðzqc2Þ#Kþðzq
c2
2 Þ; ð13Þ

DðK�ðzÞÞ ¼ K�ðzq�c2
2 Þ#K�ðzq

c1
2 Þ; ð14Þ

DðKþðzÞÞ ¼ Kþðzq
c2
2 Þ#Kþðzq�c1

2 Þ; ð15Þ

where c1 ¼ c#1 and c2 ¼ 1#c:

3. Properties of correlation functions

Let V be a highest weight representation in the standard sense of the algebra Ay;
vAV ; xAV �: Analogously to the case of quantized nontwisted affine Lie algebra, we
claim that the matrix coefficient

/x; xþðz1Þ?xþðzmÞvS ð16Þ

and

/x; x�ðz1Þ?x�ðzmÞvS ð17Þ
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belong, as formal power series, to the space

C½z1; z�11 ;y; zm; z�1m 	 z2

z1
;
z3

z2
;y;

zm

zm�1


 �
 �
; ð18Þ

that is, can be presented as Taylor series over the variables z2=z1;y; zm�1=zm with

coefficients being polynomials over z1; z�11 ;y; zm; z�1m : These formal power series

converge in the region jz1jcjz2jc?cjzmj to analytical functions, which can be
analytically continued to meromorphic functions having simple poles at hyperplanes

zi ¼ q2zj ; and zi ¼ �q�1
y zj; ioj ð19Þ

for the matrix coefficients (16) and

zi ¼ q�2zj ; and zi ¼ �qyzj; ioj ð20Þ

for the matrix coefficients (17). Put

P7
x;vðz1;y; zmÞ

¼
Y
ioj

ðzi � q72zjÞðzi þ q81
y zjÞ


 �
/x; x7ðz1Þ?x7ðzmÞvS: ð21Þ

We claim, that the commutation relations (2) and Serre relations (9) and (10) imply
the following properties of the correlation functions, generalizing analogous
properties of the correlation functions of nontwisted quantum affine algebras [E].

Theorem 1. The Laurent polynomials P7
x;vðz1yzmÞ vanish on the diagonals zi ¼ zj; iaj

and on all codimension two planes

fzi ¼ �qyzjg
\

fzj ¼ �qyzkg; iaj; jak; iak: ð22Þ

The proof of Theorem 1, based on certain delta-functions identities, is given in
Appendix A.
The vanishing conditions on correlation functions, described in the Theorem 1

could be also derived from the nondegeneracy of the Hopf pairing between two Borel
subalgebras, attached to the Hopf structure (11)–(15). This is shown in Appendix B.
In the next section we work with the currents

tðzÞ ¼ ðq�1 � qÞx�ðzÞ#xþðzÞ;

tð1ÞðzÞ ¼ x�ðzÞ#KþðzÞ#xþðzÞ

and

tð2ÞðzÞ ¼ 1#x�ðzÞ#xþðzÞ:
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Property (18) implies that for any two highest weight representations V and U and
the vectors vAV#U ; xAV�#U� the matrix coefficients

/x; tðz1Þ?tðzmÞvS ð23Þ

belong to space (18), as well as the matrix coefficients

/x; tði1Þðz1Þ?tðimÞðzmÞvS; ð24Þ

where v and x are vectors and covectors in tensor product of three highest weight
representations of Ay:
Again, matrix coefficients (24) (and (23), as their particular case) converge in the

region jz1jcjz2jc?cjzmj to analytical functions. These functions admit mer-
omorphic analytical continuations, which have simple poles at hyperplanes

zi ¼ q2zj; and zi ¼ �q�1
y zj; iaj: ð25Þ

For any matrix coefficient (24) let us define Laurent polynomial Px;v;i1;y;imðz1;y; zmÞ
as follows:

Px;v;i1;y;imðz1;y; zmÞ

¼
Y
iaj

ðzi � q2zjÞðzi þ q�1
y zjÞ


 �
/x; tði1Þðz1Þ?tðimÞðzmÞS: ð26Þ

We have the following corollary of Theorem 1:

Proposition 1. The Laurent polynomials P7
x;v;i1;y;im

ðz1yzmÞ vanish on the diagonals

zi ¼ zj; iaj and have zero of second order on all codimension two planes

fzi ¼ �qyzjg
\

fzj ¼ �qyzkg; iaj; jak; iak:

The proof of Proposition 1 consists of application of Theorem 1 and relations (3)
and (4) to the matrix coefficients (24).

4. The main result: the universal R-matrix

In this section we present an explicit expression for the universal R-matrix for the
algebra Ay: The answer will be given as a product of two factors: the first is certain
canonical infinite product over generators an; while the second is given as a series of
contour integrals analogous to [DK,DKP].
Let us remind that the universal R-matrix R for a quasitriangular Hopf algebraA

is characterized by the properties

DopðaÞ ¼ RDðaÞR�1 ð27Þ
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for any aAA and

ðD#idÞR ¼ R13R23; ðid#DÞR ¼ R13R12: ð28Þ

The universal R-matrix for quantum twisted affine algebra UqðAð2Þ
2 Þ with standard

comultiplication, defined as

Dðeai
Þ ¼ eai

#1þ k�1
i #eai

; Dðe�ai
Þ ¼ 1#e�ai

þ e�ai
#ki

on Chevalley generators, was presented in [KT1] in a form of infinite product over

the roots of A
ð2Þ
2 : The limiting twisting procedure, developed in [KT2], gives the

presentation of the universal R-matrix for coproduct (12)–(15) as

R ¼ KR; ð29Þ

where

K ¼ q�h#h
2 q

�c#d�d#c
2

� exp
X
n40

�nðq � q�1Þ2

ðqn
y � q�n

y Þðqn
y þ q�n

y þ ð�1ÞnÞ an#a�n

 !
q
�c#d�d#c

2 ; ð30Þ

and R is an ordered product of q-exponents over all real roots of A
ð2Þ
2 :

The main result of this paper is a presentation of the factor R as a series of
contour integrals.
Let us introduce the new current sðzÞ as

sðzÞ ¼ Res
z1¼�qyz

tðz1ÞtðzÞ
dz1

z1
: ð31Þ

Theorem 2. Let jqj41: Then for any n40 the contour integralI
?
I

jz1j¼?¼jznj¼1

tðz1Þ þ sðz1Þð Þ? tðznÞ þ sðznÞð Þ dz1

z1
?

dzn

zn

ð32Þ

is well defined and the factor R of the universal R-matrix can be presented as

a series

R ¼ 1

þ
X
n40

1

n!ð2piÞn

I
?
I

jz1j¼?¼jznj¼1

tðz1Þ þ sðz1Þð Þ? tðznÞ þ sðznÞð Þ dz1

z1
?

dzn

zn

: ð33Þ
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Due to the delicate structure of the singularities of the integrand series (33) is very
far from being an exponent. Also we do not have a direct way of comparing this
series with its expression in Cartan–Weyl generators in [KT1].
The classical r-matrix, to which the R-matrix (33) degenerates when q tends to 1,

can be described as follows. The Lie algebra A
ð2Þ
2 can be identified with the central

extension of the algebra of sl3 valued functions X ðtÞ on C�; satisfying the condition

X tðtÞ ¼ Xð�tÞ; where t is the automorphism of gl3 defined as Et
ij ¼ ð�1Þiþj

E%j;%i on

matrix units Eij : Here %k ¼ 4� k:

In this description the Lie algebra A
ð2Þ
2 is generated by central element c; grading

element d; Cartan element a0 ¼ E11 � E33; imaginary root vectors a2n ¼ ðE11 �
E33Þ#t2n; na0 and a2nþ1 ¼ ðE11 � 2E22 þ E33Þ#t2nþ1; and real root vectors xþ

n ¼
ðE12 þ ð�1Þn

E23Þ#tn; x�
n ¼ ðE21 þ ð�1Þn

E32Þ#tn; sþ2nþ1 ¼ E13#t2nþ1; s�2nþ1 ¼
E31#t2nþ1:
We collect the real root vectors into generating functions x7ðzÞ ¼

P
nAZ x7

n z�n

and s7ðzÞ ¼
P

nAZZ s72nþ1 z�2n�1: In these notations the r matrix, corresponding to

(33) looks as follows:

r ¼ 1

2
a0#a0 þ c#d þ d#cð Þ þ

X
n40

a2n#a�2n þ
1

3
a2n�1#a�2nþ1

� 	
þ
I

dz

z
x�ðzÞ#xþðzÞ þ s�ðzÞ#sþðzÞð Þ:

5. Proof of the Theorem 2

5.1. A reformulation

We rewrite first the statement of Theorem 1 in terms of multiple integrals over the
current tðzÞ only. In order to do this, we introduce a family of integration cycles.
Fix an integer n and denote by Un the complement in Cn to the union of

hyperplanes

H 0
k;l ¼ fzk ¼ �qyzlg; H 00

k;l ¼ fzk ¼ q2zlg; 1pkalpn;

Hi ¼ fzi ¼ 0g; 1pipn:

Let k be an integer such that 2kpn and fi1; j1; i2; j2;y; ik; jk; l1;y; ln�2kg be a
permutation of the set f1; 2;y; ng: Denote by Tfi1;j1g;fi2;j2g;y;fik ;jkg;l1;y;ln�2k

the

following torus in Cn:

Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k
¼ fzi1T� qyzj1 ; zi2T� qyzj2 ;y;

zikT� qyzjk ; jzj1 j ¼ jzj2 j ¼ ? ¼ jzjk j ¼ jzl1 j ¼ ? ¼ jzln�2k
j ¼ 1g; ð34Þ
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that is,

Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k
¼fzi1 ¼ �qyzj1 þ e1e

ifi1 ; zj1 ¼ eifj1 ;y;

zik ¼ �qyzjk þ ekeifik ; zjk ¼ eifjk ;

zl1 ¼ eifl1 ;y; zln�2k
¼ eifln�2k g; ð35Þ

where e1;y; ek are small positive real numbers, 0pfjo2p and the orientation of the
torus Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k

is given by natural order of the coordinates fj; that is, by

the top form df14df24?4dfn: The notation for the cycles Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k

is compatible with the action of the symmetric group Sn: if we keep for a
permutation sASn the same notation s for the corresponding diffeomorphism of Cn:
sðziÞ ¼ zsðiÞ; then

Tfsði1Þ;sðj1Þg;y;fsðikÞ;sðjkÞg;sðl1Þ;y;sðln�2kÞ

¼ ð�1Þsgn ssTfi1;j1g;y;fik ;jkg;l1;y;ln�2k
ð36Þ

in HnðUnÞ:Moreover, for any permutations s0ASk and s00ASn�2k the homology class
in HnðUnÞ of the cycles

Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k
and Tfis0 ð1Þ;js0ð1Þg;y;fis0 ðkÞ;js0 ðkÞg;ls00ð1Þ;y;ls00ðn�2kÞ

coincide. Thus we have n!
k!ðn�2kÞ! different cycles

Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k
in HnðUnÞ: Denote by Dk;n their total normalized sum:

Dk;n ¼ k!ðn � 2kÞ!
n!

X
sASn

Tfsð1Þ;sð2Þg;y;fsð2k�1Þ;sð2kÞg;sð2kþ1Þ;y;sðnÞ; ð37Þ

and Dn be the sum of all Dk;n over k:

Dn ¼
X

k:0p2kpn

Dk;n: ð38Þ

The nontrivial statement which we would like to prove further becomes as following

Theorem 3. Let jqj41: Then the factor R of the universal R-matrix can be presented

as a following series of correctly defined contour integrals:

R ¼ 1þ
X
n40

1

n!

I
Dn

tðz1Þtðz2Þ?tðznÞ
dz1

2piz1
4?4

dzn

2pizn

: ð39Þ

The main Theorem 2 follows from Theorem 3 due to the description of the
contours (37), (38) and the symmetry of the integrands in (39).
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5.2. Factorizable cycles

The proof of Theorem 3 is strongly based on the results of [DKP]. In that paper we
reformulated the properties of the universal R-matrix of the quantum affine algebra

according to the properties of the integration cycles of the factor R: The
reformulation is valid for quantum twisted affine algebras and superalgebras as well.

In the case of UqðAð2Þ
2 Þ and Uqðcospospð1 j 2ÞÞ it looks as follows. Let I ¼ fk1;y; kng;

n ¼ jI j be an ordered finite set of integers. Let XI be the following stratified space. As
a total space, XI is isomorphic to Cn with coordinates zk; kAI : The closures of the
strata are given by the intersections of hyperplanes

H 0
k;l ¼ fzk ¼ �qyzlg; H 00

k;l ¼ fzk ¼ q2zlg; k; lAI ; kal; Hi ¼ fzi ¼ 0g; iAI :

By UI we denote an open stratum: the complement to the union of hyperplanes. A

holomorphic top form oAOjI jðUI Þ is called admissible, oAOI ; if it has a form

o ¼ Pðzk1 ;y; zkn
ÞQ

lam ðzkl
þ qyzkm

Þðzkl
� q2zkm

Þ

 � dzk1

zk1

4
dzk2

zk2

4?4
dzkn

zkn

; ð40Þ

where Pðzk1 ;y; zkn
Þ is a Laurent polynomial over zki

; satisfying the vanishing

conditions (41), (42):

Pðzk1 ;y; zkn
Þ ¼ 0 if zki

¼ zkj
; ð41Þ

and Pðzk1 ;y; zkn
Þ has zero of the second order on any Serre stratum

fzki
¼ �qyzkj

g
\

fzkj
¼ �qyzkl

g; iaj; jal; ial: ð42Þ

Introduce also the subspace

OI1;I2COI

for any decomposition of I ¼ I1
‘

I2 into disjoint union of its ordered subsets I1 and

I2 (the order in I is as follows: first we count the elements of I1 in their given order,

then the elements of I2 in their order): an admissible form o belongs to OI1;I2 ; if it

has no singularities at hyperplanes zk ¼ �qyzl and zk ¼ q�2zl for any kAI1 and lAI2:
Suppose that for any I we have chosen an antisymmetric cycle DIAHnðUIÞ; where

n ¼ jI j: The symmetricity condition means that for any bijection s: I-sðIÞ of
ordered sets (which induces the diffeomorphism s: XI-XsðIÞÞ and for any admissible
form oAOsðIÞ there is an equalityI

DsðIÞ

o ¼
I
DI

s�ðoÞ: ð43Þ
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The system fDIg of antisymmetric cycles is called factorizable if for any ordered

finite set I and for any its ordered decomposition I ¼ I1
‘

I2 the following equality
holds for any admissible form oAOI1;I2 :I

DI

o ¼
I

D
I1
rD

I2

o; ð44Þ

where DI1rDI2 means the set-theoretical product ZDI1 � DI2 of dilated cycle ZDI1

and DI2 with a sufficiently small Z40:

The translation of the Theorem 1 from [DKP] to the case of UqðAð2Þ
2 Þ and

Uqðcospospð1 j 2ÞÞ says

Proposition 2. For any factorizable system of antisymmetric cycles fDIg with initial

condition Dk ¼ fjzkj ¼ 1g the tensor

KR;

where

R ¼ 1þ
X
n40

1

n!

I
Df1;2;y;ng

tðz1Þtðz2Þ?tðznÞ
dz1

2piz1
?

dzn

2pizn

ð45Þ

satisfy properties (27) and (28) of the universal R-matrix.

Indeed, repeating the arguments of [DKP], we can prove, that if the factorization
property (44) holds for any form o ¼ gðzÞdz14?4dzn; where gðzÞ is an arbitrary

matrix coefficient (24), then the factor R of the universal R-matrix coincides with the
canonical integral (45) over the corresponding system D of symmetric cycles. Due to
Proposition 1 any such form is admissible and it is enough to check the factorization
property for all admissible forms.

5.3. The cycles Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k
and their deformations

Before the proof of Theorem 3 we would like to verify that the integrals of
admissible forms over the cycles Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k

are correctly defined and do

not depend of certain perturbations of the cycles. In particular, this implies the first
statement of the Theorem 2: the integrand in (32) has no singularity at the
integration contour jz1j ¼ ? ¼ jznj ¼ 1:
We attach to any cycle Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k

the following diagram to illustrate

our arguments:
In Fig. 1 the vertical position represents the absolute value of the variables, so the

points on the same horizontal line have the same absolute value, and the higher the
vertical position is, the bigger absolute value the point has.
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The cycle Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k
is a product of one- and two-dimensional tori.

Each thick point on the lower horizontal line represents the circle jzjj ¼ 1: Fig. 2

represents the two-dimensional torus jzjk j ¼ 1; jzik þ qyzjk j ¼ e; where e is a small

positive number. The vertical line, connecting the point zik and zjk on the diagrams

shows that an admissible form o has a singularity along the hyperplane zik ¼ �qyzjk

and this singularity is enclosed in the integration contour.
This implies that the only singularities of the admissible form, which can cross the

contour Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k
; are zia ¼ �qyzlb ; a ¼ 1;y; k; b ¼ 1;y; n � 2k; or

zia ¼ �qyzjb ; a ¼ 1;y; k; b ¼ 1;y; k; aab: By dimensional reasons we can deform

the torus Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k
such that it does not intersect the hyperplane hðzÞ ¼

0 of singularity of the form, but the resulting integral will not depend on the
deformation, if the corresponding residue at the hyperplane h ¼ 0 vanishes.
Consider first the case, when the contour crosses the singularity zia ¼ �qyzlb : Since

the torus Tfi1;j1g;y;fik ;jkg;l1;y;ln�2k
decomposes into a product of one- and two-

dimensional tori, it is sufficient to prove the vanishing of the double residue

Res
zia¼�qyzlb

Res
zia¼�qyzja

o ¼ 0: ð46Þ

The double residue (46) is equal to zero since any admissible form o vanishes on the
diagonal zlb ¼ zja ; that is, the form o can be written as

o ¼ zlb � zja

ðzia þ qyzjaÞðzia þ qyzlbÞ
o0;

where o0 does not have the singularities on the hyperplanes zia ¼ �qyzja and zia ¼
�qyzlb :

This case is depicted in the diagram of Fig. 3. Again, the horizontal position
denotes the absolute values of coordinates, thick lines denote the possible simple
poles, which are zia ¼ �qyzlb and zia ¼ �qyzja ; and the crossed line denotes a zero

zlb ¼ zja : The diagram demonstrates that finally we have only a first order pole, thus

the second order residue is zero.
In the second case, there are two hyperplanes, zia ¼ �qyzjb and zib ¼ �qyzja ; where

the integrand could have poles. So, we have to show that the integral over the torus,
which can be obtained from torus (34) by a replacing of the condition jzjb j ¼ 1 with

zjbT� q�1
y zja ; that is jzjb þ q�1

y zja j ¼ e; vanishes. Again, for this it is sufficient to
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show that the triple residue

Res
zia¼�qyzja

Res
zib

¼�qyzjb

Res
zia¼�qyzjb

o ¼ 0 ð47Þ

vanishes. This is true, since o has now zero of second order on the intersection of
hyperplanes, defining the triple residue, while the order of the pole on this
intersection is four, that is,

o ¼ ðzia � zibÞðzja � zjbÞ
ðzia þ qyzjaÞðzia þ qyzjbÞðzib þ qyzjaÞðzib þ qyzjbÞ

o0;

where o0 has no singularities at the hyperplanes zia þ qyzja ¼ zia þ qyzjb ¼ zib þ
qyzja ¼ zib þ qyzjb ¼ 0 and thus the triple residue of o vanishes. This is depicted at

Fig. 4.
We have checked that the integral of admissible form over cycle (34) is well

defined. We would like now to go further, namely we show below that there are some
nontrivial deformations of torus (34) which do not change the value of the integral of
admissible form.
Remind that torus (34) decomposes naturally into direct product of circles jzla j ¼

1; or two-dimensional tori ziaT� qyzja ; jzja j ¼ 1: For a one-dimensional torus jzaj ¼
l or for a two-dimensional torus zaT� qyza; jzja j ¼ l we call l to be the basic radius
of the torus. So, all basic radia of the one-dimensional and two-dimensional tori,
composing cycle (34) are close to 1. We can dilate independently all these tori,
changing their basic radii. Here we would like to make the following useful remark
about such deformations of torus (34).
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Fig. 3. The vanishing of the double residue Res
zia ¼�qyzlb
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Lemma 1. The independent dilations of one- and two- dimensional tori of torus (34) do

not change the value of the integral of admissible form, if the dilated tori satisfy the

following conditions: (i) the ratio of basic radii of any two of elementary one-

dimensional tori jzla j ¼ ra is less then jqj; (ii) the ratio of basic radii of two-dimensional

tori ziaT� qyzja ; jzja j ¼ ra; as well as the ratio between the radii of one and two-

dimensional tori (in any order) is less then jqj2:

The possible deformations of cycle (34) are depicted at Fig. 5. During such moves
the cycle can cross the following singularities:

(a) zja ¼ �qyzlb or zia ¼ q2zlb ;
(b) zlb ¼ �qyzia or zlb ¼ q2zja ;
(c) zia ¼ �qyzib or zja ¼ �qyzjb or zia ¼ q2zjb ; ð48Þ

see Fig. 6.
For example, case (a) occurs for the dilation from the product

fjzja j ¼ 1; jzia þ qyzja j ¼ eg � fjzlb j ¼ 1g

to

fjzja j ¼ l1; jzia þ qyzja j ¼ eg � fjzlb j ¼ l2g;

where l1=l24jqyj:
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zia ¼�qyzja
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zib

¼�qyzjb

Res
zia¼�qyzjb

o:

Fig. 5. Admissible deformations of Tfi1 ;j1g;y;fik ;jkg;l1 ;y;ln�2k
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In cases (a) and (b) the double residues vanish, namely

Res
zlb

¼�q�1y zja

Res
zia¼�qyzja

o ¼ 0 and Res
zlb

¼�qyzia

Res
zia¼�qyzja

o ¼ 0 ð49Þ

because of the Serre condition on codimension two planes

fzlb ¼ �q�1
y zjag

\
fzia ¼ �qyzjag and fzlb ¼ �qyziag

\
fzia ¼ �qyzjag:

The Serre condition gives additional second order zero (see Proposition 1) on the
above intersections which is more than enough for the vanishing properties (49). In
case (c), the third order residue vanishes, namely

Res
zja¼�qyzjb

Res
zib

¼�qyzjb

Res
zia¼�qyzja

o ¼ 0 ð50Þ

because of the following. Any admissible form o could have the pole of order at
most 5 at the codimension three plane

fzja ¼ �qyzjbg
\

fzia ¼ �qyzjag
\

fzib ¼ �qyzjbg:

These poles come from the factors zia þ qyzja ; zia þ qyzib ; zib þ qyzjb ; zja þ qyzjb and

zia � q2zja in the denominator of o; but the numerator of o is divisible by zja � zib

and has additional second order zero due to the Serre condition on codimension two
plane fzja ¼ �qyzjbg

T
fzia ¼ �qyzjag: Thus the total order of the pole is at most two

and the triple residue vanishes.

5.4. The factorizability of Dn

Due to Proposition 2 it is sufficient to prove the factorization property of the
cycles Dn: The cycles Dn are clearly antisymmetric with respect to the action of
symmetric group on the configuration space; this imply the antisymmetricity
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condition of the Section 5.2. Thus we have to prove an equalityI
Dnþm

o ¼
I

DnrDm

o ð51Þ

for any admissible oAOI 0;I 00 ; where I 0 ¼ f1;y; ng and I 00 ¼ fn þ 1;y; n þ mg; so o
has no poles at hyperplanes

zk0 ¼ �qyzk00 and zk0 ¼ q�2zk00 ð52Þ

for any k0AI 0; that is 1pk0pn and k00AI 00; that is n þ 1pk00pn þ m:
Let us fix such a form o: Consider the right-hand side of relation (51). This is a

sum of the integrals over the tori, in which the absolute values of the first n

coordinates are much smaller then of the last m: Let us dilate the first n coordinates
simultaneously, making them bigger with a final goal to make their absolute value
being equal 1. The relative move of one specific torus from Dn with respect to a torus
from Dm is depicted at Fig. 7. The indices of the first n variables are equipped with
one prime’, the indices of the last m variables are equiped with two primes’’.
Consider such a move of the torus Tfi0

1
;j0
1
g;y;fi0

k0 ;j
0
k0 g;l

0
1
;y;l0

n�2k0
relative to the torus

Tfi00
1
;j00
1
g;y;fi00

k00 ;j
00
k00 g;l

00
1
;y;l00

n�2k00
: During the move , we can meet only the singular planes

za0 ¼ �q�1
y zb00 , where 1pa0pn and n þ 1pb00pn þ m (note that jqj41). First we

meet the hyperplanes zi0a ¼ q�1
y zj00

b
; crossing two-dimensional tori zi0aTqyzj0a and

zi00
b
Tqyzj00

b
; see Fig. 8. In this case the ratio of basic radii is equal to jqj2 (that is, the

‘level’ Z is equal to jqj�2).
Let us prove that the triple residue

Res
zi0a

¼�q�1y zj00
b

Res
zi00

b
¼�qyzj00

b

Res
zi0a

¼�qyzj0a

o ¼ 0 ð53Þ
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at the codimension three plane

fzi0a ¼ �q�1
y zj00

b
g
\

fzi0a ¼ �qyzj0ag
\

fzi00
b
¼ �qyzj00

b
g ð54Þ

vanishes for any admissible form o satisfying zero conditions (52). From (52) we
conclude, that the form o can have the pole of order three at the plane (54) , arising

from the factors zi0a þ q�1
y zj00

b
; zi0a þ qyzj0a and zi00

b
þ qyzj00

b
in its denominator. But the

Serre condition on the codimension two plane

fzi0a ¼ �q�1
y zj00

b
g
\

fzi0a ¼ �qyzj0ag ð55Þ

says that the form o should have one additional zero on the plane (55) in addition to

the first order zero, prescribed by (52), which cancels original factor zj00
b
� q2zj0a in the

denominator of o: So, o has the pole of order two at codimension three plane (54)
and thus any triple residue at this plane vanishes.

So we cross the level Z ¼ jqj�2 without any change. Next, we meet the singularities
at the level Z ¼ jqj�1: The hyperplane of singularity can cross:

(a) two two-dimensional tori fzi0aT� qyzj0a ; jzj0a j ¼ qyg and fzi00
b
T� qyzj00

b
;

jzj00
b
j ¼ 1g;

(b) one two-dimensional torus from Dn and a circle from Dm: fzi0aT� qyzj0a ; jzj0a j ¼
qyg and jzl00

b
j ¼ 1;

(c) one two-dimensional torus from Dm and a circle from Dn: jzl0a j ¼ 1 and fzi00
b
T�

qyzj00
b
; jzj0a j ¼ qyg;

(d) two circles jzl0a j ¼ q and jzl00
b
j ¼ 1:

We have shown already in Lemma 1 that the multiple residues appearing in the first
three cases vanish for any admissible form o even without vanishing conditions
(52). These are respectively cases (a)–(c) of (48). The nonzero residues appear
only in case (d). This shows that we can make under the integral of o the basic
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radii of all two-dimensional tori fzi0aT� qyzj0a ; jzj0a j ¼ qyg to be equal one. In

other words, we can replace the integral over T ¼ ZTfi0
1
;j0
1
g;y;fi0

k0 ;j
0
k0 g;l

0
1
;y;l0

n�2k0
�

Tfi00
1
;j00
1
g;y;fi00

k00 ;j
00
k00 g;l

00
1
;y;l00

n�2k00
by the integral over T ¼ T 0 � T 00; where T 0 ¼ ZTl0

1
;y;l0

n�2k0
;

T 00 ¼ Tfi0
1
;j0
1
g;y;fi0

k0 ;j
0
k0 g;y;fi00

k00 ;j
00
k00 g;l

00
1
;y;l00

n�2k00
; and 0oZojqj�1: What is left, is to move the

circles jzl0a j ¼ n to the positions jzl0a j ¼ 1: Perturb first slightly all the radii of one-

dimensional circles. Then during the move we meet one by one the planes of type (d)

zl0a ¼ �q�1
y zl00

b
;

which adds the residue at zl0a ¼ �q�1
y zl00

b
with a negative sign, see Fig. 9.

More precisely, we get instead of T ¼ T 0 � T 00 the cycle T̃ ¼ *T 0 � T 00; where the

coordinate zl0a in
*T 0 runs in a unit circle, that is,

T̃ ¼ ZTl0
1
;y;l0a;y;l0

n�2k0
� Tfi0

1
;j0
1
g;y;fi0

k0 ;j
0
k0 g;y;fi00

k00 ;j
00
k00 g;l

0
a;l

00
1
;y;l00

n�2k00
;

minus the cycle *̃T; which differs from T by

zl0a ¼ �q�1
y zl00

b
þ el00

b
e

ifl0a ; zl00
b
¼ e

ifl00
b ð56Þ

instead of zl0a ¼ Ze
ifl0a and zl00

b
¼ e

ifl00
b : This is depicted in Fig. 10.
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Fig. 10. The appearance of a new cycle.
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The two-dimensional torus (56) is homotopic to

zl0a ¼ jqj�1eifl00
b ; zl00

b
¼ �qyzl0a þ el00

b
e

ifl0a : ð57Þ

Again, by Lemma 1, we can change the basic radius of this torus from jqj�1 to 1 and
finally we get, taking in mind the change of the order of local parameters in (57), that

ŤE� ZTl0
1
;y;l0a;y;l0

n�2k0
� Tfl00

b
;l0ag;fi0

1
;j0
1
g;y;fi0

k0 ;j
0
k0 g;y;fi00

k00 ;j
00
k00 g;l

00
1
;y;l00

b
;y;l00

n�2k00

and TET̃ þ Ť: In other words, we get one more cycle from Dnþm which contains one
two-dimensional torus

zl00
b
¼ �qyzl0a ; jzl0a j ¼ 1; ð58Þ

where the coordinate zl0a is from the first group in (44), while zl00
b
is from the second.

Continuing the move, we get all the tori Tfi1;j1g;y;fik ;jkg;l1;y;lnþm�2k
where for any

two-dimensional torus zia ¼ �qyzja ; jzja j ¼ 1 either both coordinates are from the

same group I 0 or I 00; or the coordinate zja is from the first group I 0 in (44), while zia is

from I 00: But we can also freely add under the integral of o , satisfying (52) any torus
Tfi1;j1g;y;fik ;jkg;l1;y;lnþm�2k

; which contains a two-dimensional torus zia ¼ �qyzja ; jzja j ¼
1; for which the coordinate zia is from the first group I 0 in (44), and zja is from the

second, I 00; since the integral of o over such cycle is zero due to (52), and so get all
possible tori Tfi1;j1g;y;fik ;jkg;l1;y;lnþm�2k

:

This proves equality (51) and the Theorem 3.

Acknowledgments

This work was partially supported by the Taft Memorial Fund of the University of
Cincinnati.
The work of J.D. was also supported by University Research Council of the

University of Cincinnati and NSA and the work of S.Kh. was supported by grants
RFBR 02-01-00668, INTAS OPEN 00-00055 and by the grant for the support of
scientific schools, n. 00-15-96557. The authors also thank the referee for useful
remarks and comments.

Appendix A. Serre relations and the properties of the correlation functions for

UqðAð2Þ
2 Þ and Uqðcospospð1 j 2ÞÞ

This appendix contains the proof of Theorem 1, that is a deduction of the
properties of the correlation functions listed in the Theorem 1 from relations (2), (9)
and (10). The technique is the same as in Enriquez paper [E].
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Consider relation (9) for the current xþðzÞ:

Symz1;z2;z3
ðq�3

y z1 � ðq�2
y þ q�1

y Þz2 þ z3Þxþðz1Þxþðz2Þxþðz3Þ ¼ 0: ðA:1Þ

Relations (2) imply that the correlation function of the productY
1piojp3

ðzi � q2yzjÞðzi þ q�1
y zjÞxþðz1Þxþðz2Þxþðz3Þ

is an antisymmetric Laurent polynomial and for any vAV ; xAV �; where V is a

highest weight representation of UqðAð2Þ
2 Þ or Uqðcospospð1 j 2ÞÞ the formal power series

Ex;vðz1; z2; z3Þ

¼ ox;
Y

1piojp3

ðzi � q2yzjÞðzi þ q�1
y zjÞ

zi � zj

xþðz1Þxþðz2Þxþðz3Þv4; ðA:2Þ

defined originally in a region jz1jcjz2jcjz3j is a symmetric Laurent polynomial.
Denote by Fðz1; z2; z3Þ the following power series in the region jz1jcjz2jcjz3j

Fðz1; z2; z3Þ

¼ ðq�3
y z1 � ðq�2

y þ q�1
y Þz2 þ z3Þ

Y
1piojp3

zi � zj

ðzi � q2yzjÞðzi þ q�1
y zjÞ

: ðA:3Þ

Then the Serre relation (A.1) can be written as

Symz1;z2;z2
Fðz1; z2; z3ÞEx;vðz1; z2; z3Þ ¼ 0;

or, due to the symmetricity of Ex;vðz1; z2; z3Þ;

Symz1;z2;z2
Fðz1; z2; z3Þ � Symz1;z2;z2

Ex;vðz1; z2; z3Þ ¼ 0: ðA:4Þ

Then the Theorem 1 follows from the following

Lemma A.1. The following equality of the formal power series takes place:

Symz1;z2;z2
Fðz1; z2; z3Þ

¼ q�1
y

1� qy þ q2y
Symz1;z2;z2

dðz3 � q2yz1Þdðz2 þ q�1
y z3Þ: ðA:5Þ

Here dðx � yÞ ¼
P

nAZxny�n�1:
The longest technical step of the proof of the lemma is the decomposition of the

rational function Fðz1; z2; z3Þ into a sum of rational functions having only two poles.
In order to perform such a decomposition, we consider first Fðz1; z2; z3Þ as a function
over z2 depending on the parameters z1 and z3 and decompose it into a sum of
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elementary (over z2) fractions:

Fðz1; z2; z3Þ

¼ A1ðz1; z3Þ
z1 � q2yz2

þ B1ðz1; z3Þ
z1 þ q�1

y z2
þ A3ðz1; z3Þ

z2 � q2yz3
þ B3ðz1; z3Þ

z2 þ q�1
y z3

: ðA:6Þ

The answer is

Fðz1; z2; z3Þ ¼ � q�2
y � 1

ðq3y þ 1Þðz1 � q2yz2Þ
� z1 � z3

ðq�1
y z1 þ z3Þðz1 þ q�1

y z3Þ

þ q�3
y ðq2y � 1Þ

ðq3y þ 1Þðz2 � q2yz3Þ
� z1 � z3

ðq�1
y z1 þ z3Þðz1 þ q�1

y z3Þ

þ 1þ qy

ð1þ q3yÞðz1 þ q�1
y z2Þ

� ðz3 þ ð1þ q�1
y þ q�3

y Þz1Þðz1 � z3Þ
ð�q2yz1 þ z3Þðq�1

y z1 þ z3Þðz1 � q2yz3Þ

� q�2
y ð1þ qyÞ

ð1þ q3yÞðz2 þ q�1
y z3Þ

� ðz1 þ ð1þ qy þ q3yÞz3Þðz1 � z3Þ
ð�q2yz1 þ z3Þðq�1

y z1 þ z3Þðz1 � q2yz3Þ
: ðA:7Þ

The crucial point here that in this decomposition no new poles appear. Now, to get
the desired decomposition, it is sufficient to decompose the coefficients A2ðz1; z3Þ;
B2ðz1; z3Þ; A3ðz1; z3Þ and B3ðz1; z3Þ into the sum of elementary (over z1; e.g.)
fractions. We get finally

Fðz1; z2; z3Þ ¼
q�1
y

1� qy þ q2y

q�1
y

ðz1 þ q�1
y z2Þð�q2yz1 þ z3Þ

�
� q�2

y

ðz1 þ q�1
y z2Þðq�1y z1 þ z3Þ

� 1

ðz1 þ q�1
y z2Þðz1 � q2yz3Þ

� 1

ðz2 þ q�1y z3Þð�q2yz1 þ z3Þ

� q�2
y

ðz2 þ q�1
y z3Þðq�1

y z1 þ z3Þ
þ q�1y

ðz2 þ q�1
y z3Þðz1 � q2yz3Þ

� 1

ðz1 � q2yz2Þðq�1y z1 þ z3Þ

þ 1

ðz1 � q2yz2Þðz1 þ q�1
y z3Þ

þ q�1
y

ðz2 � q2yz3Þðq�1
y z1 þ z3Þ

� q�1
y

ðz2 � q2yz3Þðz1 þ q�1
y z3Þ

	
: ðA:8Þ

Here we treat the r.h.s. of (A.8) as a formal power series in the region jz1jcjz2jcjz3j:
We also follow the convention

1

x � y
¼
X
nX0

ynx�n�1; ðA:9Þ
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where the order of the arguments in the denominator indicate the region of the
decomposition into power series.
The role of the 10 summands in the r.h.s. of (A.8) is different. The 6 of them

(numbers 1,2,4,5,7,9) have singularities on the Serre strata while the singularities of
the rest (numbers 3,6,8,10) are not of the Serre type.
It is not difficult to observe why after the symmetrization the last terms vanish.

For instance, the third term in r.h.s. of (A.8)

� 1

ðz1 þ q�1
y z2Þðz1 � q2yz3Þ

;

which is defined in the region jz1jcjz2j; jz1jcjz3j; appears also with a different sign
as the 8th term of Fðz1; z3; z2Þ where it is defined in the same region, so their sum in
the symmetrization is zero. We can slightly simplify the six terms, contributing into
the symmetrization of Fðz1; z2; z3Þ; reducing their number to 4. This is done by
means of identities like

1

ðz1 þ q�1
y z2Þðq�1

y z1 þ z3Þ
¼ qy

ðq�1
y z1 þ z3Þðz2 � q2yz3Þ

� q2y
ðz1 þ q�1

y z2Þðz2 � q2yz3Þ
:

We have finally

Symz1;z2;z2
Fðz1; z2; z3Þ ¼

q�1
y

1� qy þ q2y
� Symz1;z2;z2

Gðz1; z2; z3Þ; ðA:10Þ

where

Gðz1; z2; z3Þ ¼
q�1
y

ðz1 þ q�1
y z2Þð�q2yz1 þ z3Þ

� 1

ðz2 þ q�1
y z3Þð�q2yz1 þ z3Þ

þ 1

ðz1 þ q�1
y z2Þðz2 � q2yz3Þ

� q�1
y

ðz2 þ q�1
y z3Þðz1 � q2yz2Þ

: ðA:11Þ

Now the deduction of (A.5) is just an application of the identity

dðx � yÞ ¼ 1

x � y
� 1

�y þ x
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to (A.10) under convention (A.9). For instance, the term
q�1y

1�qyþq2y
dðz3 � q2yz1Þdðz2 þ

q�1
y z3Þ is the result of the summation of the four terms up to overall factor

q�1
y

1� qy þ q2y
:

dðz3 � q2yz1Þdðz2 þ q�1
y z3Þ ¼

q�1
y

ðz1 þ q�1
y z2Þð�q2yz1 þ z3Þ

� 1

ðz2 þ q�1
y z3Þð�q2yz1 þ z3Þ

þ 1

ðz2 þ q�1
y z3Þðz3 � q2yz1Þ

� q�1
y

ðz1 þ q�1
y z2Þðz3 � q2yz1Þ

;

where the first two terms are taken from Gðz1; z2; z3Þ; the third is from Gðz2; z3; z1Þ
and the fourth is from Gðz3; z1; z2Þ:
If we want to deduce the properties of the correlation functions from another

Serre relation:

Symz1;z2;z3
ðq3yz�11 � ðq2y þ qyÞz�12 þ z�13 Þxþðz1Þðz2Þxþðz3Þ ¼ 0; ðA:12Þ

we use the symmetric Laurent polynomial

Ẽx;vðz1; z2; z3Þ

¼
Y

1piojp3

ðz�1i � q�2
y z�1j Þðz�1i þ qyz�1j Þ
z�1i � z�1j

xþðz1Þðz2Þðz3Þ ðA:13Þ

and prove the delta function decomposition for the symmetrization of the rational
function

F̃ðz1; z2; z3Þ

¼ ðq3yz�11 � ðq2y þ qyÞz�12 þ z�13 Þ
Y

1piojp3

z�1i � z�1j

ðz�1i � q�2
y z�1j Þðz�1i þ qyz

�1
j Þ ðA:14Þ

which can be done by a formal change zi-z�1i and qy-q�1
y in the proof of lemma.

We can reverse the arguments. Then, by Lemma A.1, the vanishing conditions
listed in Theorem 1 imply equality (A.4), that is, that any matrix coefficient of the left
hand side of the first Serre relation (9) vanishes,

/x; Symz1;z2;z3
ðq�3

y z1 � ðq�2
y þ q�1

y Þz2 þ z3Þxþðz1Þxþðz2Þxþðz3ÞvS ¼ 0:
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The delta functions identity for (A.14) show that the vanishing conditions of
Theorem 1 also imply the vanishing of the matrix coefficients of the second Serre
relation (10),

/x; Symz1;z2;z3
ðq3yz�11 � ðq2y þ qyÞz�12 þ z�13 Þxþðz1Þxþðz2Þxþðz3ÞvS ¼ 0:

We see that in the highest weight representations any one of the Serre relations (9),
(10) implies another. This indicates that one can probably find a direct algebraic
proof of the equivalence of relations (9) and (10).

Appendix B. Vanishing properties of the correlation functions from the pairing

In this appendix we demonstrate the vanishing properties of correlation functions
by means of the Hopf pairing between two opposite Borel subalgebras related to
Drinfeld comultiplication. We show that the pairing

/x�ðw1Þx�ðw2Þx�ðw3Þ; xþðz1Þxþðz2Þxþðz3ÞS

between the products of three opposite currents, multiplied by the polynomial

f ðz1; z2; z3Þ ¼
Y
ioj

ðzi � q2yzjÞðzi þ q�1
y zjÞ ðB:1Þ

can be restricted to ‘Serre planes’ (22) and this restriction is zero, that is, Serre
relations in this form lie in the kernel of the Hopf pairing.
Denote by %gyðzÞ the Taylor expansion at a point z ¼ 0 of the following rational

function:

%gyðzÞ ¼
ðq2 � zÞðq�1

y þ zÞ
ð1� q2zÞð1þ q�1

y zÞ: ðB:2Þ

The Hopf pairing between the products of the currents looks like:

/x�ðw1Þ?x�ðwnÞ; xþðz1Þ;?xþðznÞS

¼ 1

ðq�1
y � qyÞn

X
sASn

Yn

k¼1
d

zk

wsðkÞ

� 	 Y
kol

sðkÞ4sðlÞ

%gy
zl

zk

� 	
: ðB:3Þ

Note that there are no overall factors ð�1Þy in the r.h.s. of (B.3). During the proof of
(B.3) they appear twice: once from translating the pairing of tensor products to the
products of the pairing, and the second time during the permutation of K�ðziÞ via
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xþðzkÞ and cancel each other. Put

%Ew1;w2;w3
ðz1; z2; z3Þ

¼ ðq�1
y � qyÞ3f ðz1; z2; z3Þ/x�ðw1Þx�ðw2Þx�ðw3Þ; xþðz1Þxþðz2Þxþðz3ÞS:

Presentation (B.3) implies that %Ew1;w2;w3
ðz1; z2; z3Þ can be considered as a Laurent

series %Ew1;w2;w3
ðz1; z2; z3Þ ¼

P
n1;n2;n3AZ

En1;n2;n3ðz1; z2; z3Þwn1
1 wn2

2 wn3
3 over w1;w2;w3 with

coefficients En1;n2;n3ðz1; z2; z3Þ in C½z71
1 ; z71

2 ; z71
3 	½½z2

z1
; z3

z2
		:

These coefficients correspond to matrix coefficients of the product of the currentsQ
1piojp3ðzi � q2yzjÞðzi þ q�1

y zjÞxþðz1Þxþðz2Þxþðz3Þ; they are antisymmetric and

converge in a region jz1jcjz2jcjz3j to rational functions. The arguments here

repeat [E,DKP]. In this sense the restriction of %Ew1;w2;w3
ðz1; z2; z3Þ to a subvariety of

C3 is well defined. Due to antisymmetricity for the deduction of the properties of

correlation functions it is sufficient to prove that the series %Ew1;w2;w3
ðz1; z2; z3Þ

vanishes on the line z1 ¼ �qyz2; z2 ¼ �qyz3: We compute from (B.3):

%Ew1;w2;w3
ðz1; z2; z3Þ

¼
X
sAS3

ð�1ÞlðsÞ Y
sðiÞosðjÞ

ðzi � q2yzjÞðzi þ q�1
y zjÞ

Y
k¼1;2;3

d
zk

wsðkÞ

� 	
: ðB:4Þ

The equality shows that the coefficients at the delta functions in %Ew1;w2;w3
ðz1; z2; z3Þ

are proportional to f ðzsð1Þ; zsð2Þ; zsð3ÞÞ; so we have only to observe that f ðz1; z2; z3Þ
vanishes on all six lines

fzsð1Þ ¼ �qyzsð2Þg
\

fzsð2Þ ¼ �qyzsð3Þg; sAS3;

which is an elementary check.

References

[CP] V. Chari, A. Pressley, Twisted quantum affine algebras, Comm. Math. Phys. 198 (2) (1998)

461–476.

[D] V.G. Drinfeld, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl.

36 (1988) 212–216.

[DK] J. Ding, S. Khoroshkin, Weyl group extension of quantized current algebras, Transform. Groups

5 (1) (2000) 35–59.

[DKP] J. Ding, S. Khoroshkin, S. Pakuliak, Integral presentations for the universal R-matrix, Lett.

Math. Phys. 53 (2) (2000) 121–141.

[E] B. Enriquez, On correlation functions of Drinfeld currents and shuffle algebras, Transform.

Groups 5 (2) (2000) 111–120.

[FO] B.L. Feigin, A.V. Odesskii, Vector bundles on elliptic curve and Sklyanin algebras, topics in

Quantum Groups and Finite-type Invariants, AMS Translation Series 2, AMS, Providence, RI,

Vol. 185, pp. 65–84.

ARTICLE IN PRESS
J. Ding, S.M. Khoroshkin / Advances in Mathematics 189 (2004) 413–438 437



[KT1] S.M. Khoroshkin, V.N. Tolstoy, The uniqueness theorem for the universal R-matrix, Lett. Math.

Phys. 24 (3) (1992) 231–244.

[KLT] S.M. Khoroshkin, J. Lukiersky, V.N. Tolstoy, Quantum affine superalgebras UqðAð2Þ
2 Þ and

UqðCð2Þ
2 Þ; Comm. Math. Phys. 220 (3) (2001) 537–560.

[KT2] S.M. Khoroshkin, V.N. Tolstoy, The Cartan–Weyl basis and the universal R-matrix for quantum

Kac–Moody algebras and superalgebras, in: H.-D. Doebner, V.K. Dobrev (Eds.), Quantum

Symmetries, World Scientific Publishing Co, Singapore, New Jersey, London, Hong Kong, 1993,

pp. 336–351.

ARTICLE IN PRESS
J. Ding, S.M. Khoroshkin / Advances in Mathematics 189 (2004) 413–438438


	Universal R-matrix for quantum affine algebras Uq(A2(2)) and Uq(osp(1|2)) with Drinfeld comultiplication
	Introduction
	Definitions
	Properties of correlation functions
	The main result: the universal R-matrix
	Proof of the Theorem 2
	A reformulation
	Factorizable cycles
	The cycles T{i1,j1},hellip,{ik,jk},l1,hellip,ln-2k and their deformations
	The factorizability of Dn

	Acknowledgements
	Serre relations and the properties of the correlation functions for Uq(A2(2)) and Uq(osp(1|2))
	Vanishing properties of the correlation functions from the pairing
	References


