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Abstract

We derive an integral formula for the universal R-matrix for the twisted quantum

affine algebra Uq(Agz)) and quantum affine superalgebra U,(osp(1|2)) with Drinfeld
comultiplication.
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1. Introduction

In the works [DK,DKP] we described the universal R-matrix for quantum
nontwisted affine algebras with the so-called Drinfeld comultiplication. It was
presented up to a standard factor as a series of contour integrals of certain canonical
tensor over the system of factorizable cycles in deformed configuration spaces. The
geometric properties of the deformed configuration spaces, which first appeared in
functional realization of Borel subalgebras of quantum affine algebra [FO,E], are
crucial for this presentation.
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Using these properties, we constructed first the system of factorizable cycles

for the algebra Uq(sAlz) and then extended the construction to other nontwisted
quantum affine algebras with a help of ‘current’ braid group action constructed
in [DK].

An analogous picture should take place for other types of quantum affine
superalgebras and we develop here our approach for twisted quantum affine algebra

Uq(A(Zz)) and its superpartner U,(osp(1|2)). The algebra Uq(Agz)) plays the same

fundamental role for twisted quantum affine algebras as the algebra Uq(s/iz) for
nontwisted algebras; its matrix elements and the deformed configuration space
should be studied separately. Then the obtained results can be used as a foundation
for further study of other twisted quantum affine algebras; such an extension of the
theory requires the construction of ‘current’ group action for all twisted quantum
affine algebras, which we plan to describe in a future publication.

The analytical properties of current operators of the algebra U, (sAlz) from one side

and of the algebras Uq(Agz)) and U,(osp(1|2)) from the other side, differ in a crucial
way: the poles and zeroes of the current operators of the last two algebras together
with vanishing ‘Serre conditions’ form a complicated structure of the deformed
configuration space. Also the role of the long root current, which is generated by one
of the two poles of the basic current operators, is quite delicate. All this makes the

new cases far more complicated with respect to that of Uq(sAlz).

As a first step towards our goals, we need a complete functional description of the
Borel parts of the algebras Uq(A<22>) and U,(osp(1|2)), or, equivalently, the
description of the matrix elements of the products of the current operators in highest
weight representations. Such a description is presented in Section 3. In particular, we
derive a complete functional version of the Serre relations analogous to [E]. The
proofs are given in the appendix using a new identity of delta functions unknown
before. Our exposition goes in the unified ways for both algebras, and the two cases
differ essentially by a sign of the parameter gy.

This gives us a possibility to introduce the corresponding configuration spaces
and to construct the universal R-matrix as a series of integrals of canonical
tensor over the systems of factorizable cycles according to the abstract theory from
[DKP]. We find the desired systems of cycles explicitly, check directly the
factorization properties and prove the formula. The final answer, given in
Theorem 2, appears to be surprisingly simple at the first glance, at least the
integration is taken over the product of unit circles. However, even the verification,
that the integration form is nonsingular on the integration cycle is quite subtle and is
based on the vanishing properties of the integration form, coming from the Serre
relations.

At this moment, we still do not fully understand the new integral formula
presented in this paper and its implications. For instance, the role played by the
current operators for the long root is essentially unclear, and we still do not know
how to derive a reasonable differential equation or recurrence relations for the

integrals, as it was done in [DKP] for Uq(sAlz).
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2. Definitions

In this section we describe quantum affine algebras U, ( ) and U,(osp(1]2)) in
current realization. It means, in particular, that we use thelr natural completions,
acting on highest weight representations. See [DKP, Section 2] for details. We
propose here the unified description these two algebras, analogous to [KLT], such

that the difference between two algebras will be only in the parity sign (—1)9.

The algebras U, ( ) and U,(osp(1]2)) are Z,-graded Hopf algebras, which
means that in the tensor square of the algebra the multiplication rule is defined for
the homogeneous elements a, b, ¢, d by

(@®b)(c®d) = (—-1)"""V(ac@ bd),

where 6(x) e Z, denotes the grading of the element x.
Define 0 =1 for U,(osp(l |2)) and 6 =0 for U, (A(z) and denote these two

algebras as &y, so ./ is U, ( ) and o7, is U,(osp(1]2)).
The algebra .7 is generated by the elements

xf, neZ, ay, n#0, d, k*' and central ¢*¢
with the parity

0(x;) =0, 0(an) = 0(k*") = 0(q*) = 0(d) = 0.
These elements are gathered into generating functions

=> x5z h K@) =k*exp (i(qql)z ainzi”),

kez

which satisfy the following relations on the level of formal power series:

¢‘a(2)q " = algz), for a=x* K*, (1)

(z = q*w)(z + g5 'w)xE (2)xt (w) = (52 = w)(gg 'z + w)x*(w)x*(2),  (2)

K*(@)x (0K (2) " = glg™2w/2)F 5% (w), (3)
K- ()t K ()" = g(z/wg™2) = xt (w). (4)
K*()K* (w) = K*(0)K* (2), (5)
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X (2)x"(w) = (=1)"x (w)xt(2)

= ; _1q71 <5 (% qf"> KT (wq%c) -0 (é q"> K- (zq%ﬂ) ) (7)
Here g9 = (—1)"q and
(z¢* = 1)(zq5" + 1)

0
95(2) = (=) - +q")

is treated as a formal power series over z.
The currents x* (z) satisfy also the following cubic Serre relations [CP,D]:

Symzy @y 2 — (070 +ap )2y + 23 )X (2)x T (2)x " (z3) =0, (9)

Sy, o (6577 = (6 + q0)z3 '+ 25 )at (20)xF (22)x7 (23) = 0. (10)

The coalgebra structure of .o7y, which we investigate here, is given by the relations:

A(q°) = ¢ ® ¢, (11)

A(x*(2) = xH(2) ® 1 + K (247) @x7 (247), (12)
Ax (1) = 1®x (2) +x (247) ®K* (242), (13)
AK™(2)) = K~ (247 2) © K (z47), (14)
AK*(2)) = K*(242) K (2472), (15)

where ¢c; = c®1 and oo = 1 ®ec.

3. Properties of correlation functions

Let V' be a highest weight representation in the standard sense of the algebra o7y,
veV, e V*. Analogously to the case of quantized nontwisted affine Lie algebra, we
claim that the matrix coefficient

CExT ()X (Zm)v) (16)
and

& X7 (z1) X (zm)v) (17)
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belong, as formal power series, to the space

_ _ Zp Z3 Zm
Clz1, 27! Zmsy Z I]H—— ” (18)
1 2 =my I RS I
S F-A -5 RS-
that is, can be presented as Taylor series over the variables z,/zy, ..., Z—1 /zy, With
coefficients being polynomials over zj,z7!, ..., z,,z,!. These formal power series

converge in the region |zj|>|z3|> -+ »|z,| to analytical functions, which can be
analytically continued to meromorphic functions having simple poles at hyperplanes

Zi=q¢'z, and z;=—q;'z, i<j (19)
for the matrix coefficients (16) and

zi=q %z, and z;=—qz, i<j (20)
for the matrix coefficients (17). Put

Pg—tu(zl, ey Zm)

=1 (G = a2z + 45 ') <™ (z0) - x* (zm)v) (1)

i<j

We claim, that the commutation relations (2) and Serre relations (9) and (10) imply
the following properties of the correlation functions, generalizing analogous
properties of the correlation functions of nontwisted quantum affine algebras [E].

Theorem 1. The Laurent polynomials Péiv(zl ...Zp) vanish on the diagonals z; = z;, i#]
and on all codimension two planes

{zi = —qoz;} ﬂ{zj = —qozx}, I#J, j#£k, i#k. (22)

The proof of Theorem 1, based on certain delta-functions identities, is given in
Appendix A.

The vanishing conditions on correlation functions, described in the Theorem 1
could be also derived from the nondegeneracy of the Hopf pairing between two Borel
subalgebras, attached to the Hopf structure (11)—(15). This is shown in Appendix B.

In the next section we work with the currents

()= (g~ = x () ®x"(2),

() =x(2)QK(z) ®xT(2)
and

() =10x (2)®xT(2).



418 J. Ding, S.M. Khoroshkin | Advances in Mathematics 189 (2004) 413—438

Property (18) implies that for any two highest weight representations V" and U and
the vectors ve V® U, e V*® U* the matrix coefficients

¢, Z(Zl)"'t(zm)v> (23)
belong to space (18), as well as the matrix coefficients
G (z) -tz (24)

where v and ¢ are vectors and covectors in tensor product of three highest weight
representations of .o/7y.

Again, matrix coefficients (24) (and (23), as their particular case) converge in the
region |zi|>|z|> --- > |z,| to analytical functions. These functions admit mer-
omorphic analytical continuations, which have simple poles at hyperplanes

z; = qzzj, and z; = —qglzj, i#]. (25)

For any matrix coefficient (24) let us define Laurent polynomial Pe ,;, . ;. (Z1, ..., Zm)
as follows:

ng,v,il,.“,i,,,(zh ceey Zm)

_ H ((Zi o quj)(Zi + q(}le)) <é, l<il)(21)"'t(i"’)(Z,71)>. (26)

i#j
We have the following corollary of Theorem 1:

Proposition 1. The Laurent polynomials P+

[SUR IR

z; = zj, i#] and have zero of second order on all codimension two planes

(z1...zm) vanish on the diagonals

{z:i = —qoz;} ﬂ {zi = —qozk}, i#), j#k, i#k.

The proof of Proposition 1 consists of application of Theorem 1 and relations (3)
and (4) to the matrix coefficients (24).

4. The main result: the universal R-matrix

In this section we present an explicit expression for the universal R-matrix for the
algebra .o7y. The answer will be given as a product of two factors: the first is certain
canonical infinite product over generators a,, while the second is given as a series of
contour integrals analogous to [DK,DKP].

Let us remind that the universal R-matrix R for a quasitriangular Hopf algebra .o/
is characterized by the properties

A°?(a) = RA(a)R™! (27)
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for any ae.«/ and

(A®id)R = Ri3Ry, (id®4)R = Ri3Ry,. (28)

The universal R-matrix for quantum twisted affine algebra Uq(Agz) ) with standard
comultiplication, defined as

Aley,) = e, ®1 —|—kl-_l ®ey, Ale—y) =1®e_y + ey k;

on Chevalley generators, was presented in [KT1] in a form of infinite product over

the roots of Agz). The limiting twisting procedure, developed in [KT2], gives the
presentation of the universal R-matrix for coproduct (12)—(15) as

R= AR, (29)
where
h®h —c®d—d®c
ji/‘ :q7 2 q 2
—n(q — q*l)z —c®d—-d®c
X €Xp n —n n —n a ®a_ q 2 ’ (30)
(,;) (%_‘Io )(%"‘% "‘(_1)") ! !

and Z is an ordered product of g-exponents over all real roots of A(Zz).

The main result of this paper is a presentation of the factor # as a series of
contour integrals.
Let us introduce the new current s(z) as

s(z) = Res t(z))t(z) —. (31)

Z1=—4qp= Z]

Theorem 2. Let |q|> 1. Then for any n>0 the contour integral

dz; dz,

7{% (t(z1) + s(z1)) -+ (t(zn) + 5(zn)) — (32)
=1

2] Zn

lz1|==

is well defined and the factor R of the universal R-matrix can be presented as
a series

+Z % ]{ (t(z1) + 5(z1)) - (£(z) +S(Zn))@,..d2n. (33)

Z1 Zn
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Due to the delicate structure of the singularities of the integrand series (33) is very
far from being an exponent. Also we do not have a direct way of comparing this
series with its expression in Cartan—Weyl generators in [KT1].

The classical r-matrix, to which the R-matrix (33) degenerates when ¢ tends to 1,
can be described as follows. The Lie algebra A<22) can be identified with the central
extension of the algebra of s/3 valued functions X (¢) on C*, satisfying the condition
X*(1) = X(—1), where 7 is the automorphism of g/5 defined as Ej; = (—I)HjEﬁ on
matrix units Ej. Here k =4 — k.

In this description the Lie algebra A(22> is generated by central element ¢, grading
element d, Cartan element ay = E); — Es3, imaginary root vectors a, = (E1; —
Ey)®7", n#0 and az,1 = (Ei1 — 2E» + E33) @ 211 and real root vectors x;F =
(En+ (=1)"Ex)®1", x, = (Ex+ (-1)"En)®1", s3,.,=E®", 5, =
E31 ® 12n+1 .

We collect the real root vectors into generating functions x*(z) =Y, _, xfz™"
and s*(2) =3,/ 85, 2!

(33) looks as follows:

. In these notations the r matrix, corresponding to

r :%(ao ®ay+c®d+d®c) + ;(‘hn ®a_o, +%a2n—l ®a—2n+l)

+ f{ %(X’ (2)®x"(2) +57(2) ®5"(2)).

5. Proof of the Theorem 2
5.1. A reformulation

We rewrite first the statement of Theorem 1 in terms of multiple integrals over the
current #(z) only. In order to do this, we introduce a family of integration cycles.

Fix an integer n and denote by U, the complement in C" to the union of
hyperplanes

Hy,={z = —qoz}, H=A{z = ¢z}, 1<k#I<n,
H; = {z; =0}, 1<i<n.

Let k be an integer such that 2k<n and {i|,ji,02,/2, ---, ks Jics 11y -y ln2k} be a
permutation of the set {1,2,...,n}. Denote by T }.(n) the
following torus in C":

3 L PR

T{i1Jl},.--1{1'ka}1/1,---~,1;1-21< = {Zfl O — q40Zj» Zi O - q40Zj5 -+

Zip O — q0Zj. |Z./| ‘ = |Ziz

==zl =lal = =zl =1}, (34)
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that is,
T{lljl} ----- {ikic bl sk {Zil = —qozj, + glei¢il7 Zj, = ei%v )
Zj, = —qoZj, + skei‘bf/c, zj, = ei<bf/<,
z, =€,z =P}, (35)
where ¢, ..., & are small positive real numbers, 0< qu <27 and the orientation of the

torus T, iy, .. {ir e} ..o 1S given by natural order of the coordinates ¢;, that is, by
the top form d¢, /\d(bz A +-- Ad¢,. The notation for the cycles T, iy, fi bt o
is compatible with the action of the symmetric group S,: if we keep for a
permutation o € S, the same notation ¢ for the corresponding diffeomorphism of C":
a(zi) = z4(;), then

Tio(i).0G1) - Ao (ie) 0Gi) 1o ()0 ()
= (_l)sgn UOT{iIJl} ----- Ak bl da—ak (36)

in H,(U,). Moreover, for any permutations ¢’ €S and ¢” € S,,_»; the homology class
in H,(U,) of the cycles

T{il.jl} ..... {’k./k} [] " 2%k and T{ig’(l)Jg’(l)}=-~~~{ig’ }lu ..... [ o' (n—2k)

coincide. Thus we have yalrmTal 2k different cycles
T jib ivged e 0 Hy (U,). Denote by Dy, their total normalized sum:

K\(n — 2k)!

l)kﬂ = 7l

Z T15(1).02)}... f6(2k—1).6(2K) .0 (2k+1),....a(n)s (37)

ogesS,

and D, be the sum of all Dy, over k:

D, = Z Dy . (38)

k:0<2k<n

The nontrivial statement which we would like to prove further becomes as following

Theorem 3. Let |q|>1. Then the factor # of the universal R-matrix can be presented
as a following series of correctly defined contour integrals:

R = j{ (z1)t(z2) )dl A A dZ,". (39)

n>0 27izy 27iz,

The main Theorem 2 follows from Theorem 3 due to the description of the
contours (37), (38) and the symmetry of the integrands in (39).
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5.2. Factorizable cycles

The proof of Theorem 3 is strongly based on the results of [DKP]. In that paper we
reformulated the properties of the universal R-matrix of the quantum affine algebra
according to the properties of the integration cycles of the factor #. The
reformulation is valid for quantum twisted affine algebras and superalgebras as well.

In the case of Uq(A(f)) and Uy(osp(1]2)) it looks as follows. Let I = {ky, ..., k,},
n = |I| be an ordered finite set of integers. Let X, be the following stratified space. As
a total space, Xj is isomorphic to C" with coordinates z;, kel. The closures of the
strata are given by the intersections of hyperplanes

Hy = {zx = —qoz1}, H,;={z = @z}, klel, k#1, H;={z;=0},iel.

By U; we denote an open stratum: the complement to the union of hyperplanes. A
holomorphic top form weQ"'(U;) is called admissible, w ey, if it has a form

P d d. dzy,
w= (Zhs -2 Zh) 5 “ky /\i/\m/\i, (40)
[ (G + 021, (20 — €P20,)) 210 2k Zky
where P(zg,,...,zk,) is a Laurent polynomial over zj, satisfying the vanishing
conditions (41), (42):
P(Zkl,...,Zk”):O if Zk;:Zk;; (41)
and P(zy,, ..., zx,) has zero of the second order on any Serre stratum
{zt = —quzi [ Wz = —quzn}, i), j#1, i#L (42)

Introduce also the subspace
Qll g2 = Qr

for any decomposition of I = I' [] I? into disjoint union of its ordered subsets /' and
I? (the order in I is as follows: first we count the elements of /! in their given order,
then the elements of /% in their order): an admissible form  belongs to Qp p, if it
has no singularities at hyperplanes z; = —¢qyz; and z; = ¢~>z; for any ke ' and /e I’

Suppose that for any I we have chosen an antisymmetric cycle D, e H,(U;), where
n =|I|. The symmetricity condition means that for any bijection o:I—0o(I) of
ordered sets (which induces the diffeomorphism ¢: X7 — X,(;)) and for any admissible
form weQ, there is an equality

]{ w:f (o). (43)

Dy (ry Dy
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The system {D;} of antisymmetric cycles is called factorizable if for any ordered
finite set 7 and for any its ordered decomposition I = I' [] I? the following equality
holds for any admissible form weQp p:

7{ w= f w, (44)
Dy Dll I><D12

where Dji><Dp means the set-theoretical product nDyi x Dy of dilated cycle nDp
and Dp. with a sufficiently small #>0.

The translation of the Theorem 1 from [DKP] to the case of Uq(A(ZZ)) and
U (05p(1]2)) says

Proposition 2. For any factorizable system of antisymmetric cycles {Dr} with initial
condition Dy = {|zx| = 1} the tensor

AR,

where

Z=1 ]( (e)t(za) o t(z) L En (45)

”>0 2nizy  2miz,
D{] 2,....n}

satisfy properties (27) and (28) of the universal R-matrix.

Indeed, repeating the arguments of [DKP], we can prove, that if the factorization
property (44) holds for any form w = g(z)dz; A --- Adz,, where g(z) is an arbitrary
matrix coefficient (24), then the factor Z of the universal R-matrix coincides with the
canonical integral (45) over the corresponding system & of symmetric cycles. Due to
Proposition 1 any such form is admissible and it is enough to check the factorization
property for all admissible forms.

5.3. The cycles Ty jy, ... fi v, dy o @nd their deformations

Before the proof of Theorem 3 we would like to verify that the integrals of
admissible forms over the cycles T, i1 . {iji}hi.... 4o ar€ correctly defined and do
not depend of certain perturbations of the cycles. In particular, this implies the first
statement of the Theorem 2: the integrand in (32) has no singularity at the
integration contour |z| = -+ = |z,| = 1.

We attach to any cycle Ty iy, fijidih,...
our arguments:

In Fig. 1 the vertical position represents the absolute value of the variables, so the
points on the same horizontal line have the same absolute value, and the higher the
vertical position is, the bigger absolute value the point has.

1, the following diagram to illustrate
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z; Z;, 2y
lqol _______ T___T-_-]_-I_I____T ______________________________
1 e e e e e m B m - e — o e — o e O — B e = = — —
Zj Zj Zj Z1 Z1, Zly_

Fig. 1. The diagram of |z| for the cycle Ty;, ;3

ol Bl

The cycle T, iy, {ijibdi.....d, » 18 @ product of one- and two-dimensional tori.
Each thick point on the lower horizontal line represents the circle |z;| = 1. Fig. 2
represents the two-dimensional torus |z; | = 1, |z; + gpz;,| = &, where ¢ is a small
positive number. The vertical line, connecting the point z;, and z;, on the diagrams
shows that an admissible form w has a singularity along the hyperplane z;, = —qoz;,
and this singularity is enclosed in the integration contour.

This implies that the only singularities of the admissible form, which can cross the
contour T iy, . fivjehdisodn s 8T€ Zip = —qozy,, a=1,...;k, b=1,....,n =2k, or
zi, = —qozj,, a=1,...,k, b=1, ...k, a#b. By dimensional reasons we can deform
the torus T, }.... {ijicbdi....n o SUch that it does not intersect the hyperplane A(z) =
0 of singularity of the form, but the resulting integral will not depend on the
deformation, if the corresponding residue at the hyperplane 4 = 0 vanishes.

Consider first the case, when the contour crosses the singularity z;, = —ggz;,. Since
the torus T7i iy, skt dn o d€composes into a product of one- and two-
dimensional tori, it is sufficient to prove the vanishing of the double residue

Res Res w=0. (46)

Zig==40%1, Zig==40%4

The double residue (46) is equal to zero since any admissible form @ vanishes on the
diagonal z;, = z;,, that is, the form ® can be written as

— Zlb B Zja w()
(zi, +q02;,)(zi, + qoz1,)

where wo does not have the singularities on the hyperplanes z;, = —qyz;, and z;, =
—4q0Z1,-

This case is depicted in the diagram of Fig. 3. Again, the horizontal position
denotes the absolute values of coordinates, thick lines denote the possible simple
poles, which are z;, = —¢qgz;, and z;, = —¢qyz;,, and the crossed line denotes a zero
zj, = zj,. The diagram demonstrates that finally we have only a first order pole, thus
the second order residue is zero.

In the second case, there are two hyperplanes, z;, = —qoz;, and z;, = —qoz;,, where
the integrand could have poles. So, we have to show that the integral over the torus,
which can be obtained from torus (34) by a replacing of the condition |z;,| = 1 with
z;, O — q;'zj,, that is |z, + g;'z;,| =&, vanishes. Again, for this it is sufficient to
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Zjy
@l e <[ -----------
1 b
Zjx
Fig. 2. The diagram of two-dimensional cycle |z, | = 1, |z;, + qoz;, | = ¢.
Zia
gl e N
| XXXXX
Zja 2

Fig. 3. The vanishing of the double residue Res Res .

Zia==40%l, Zia="40%a
show that the triple residue

Res Res Res w=0 (47)

Zig==40%ja Ziy==40%j, Zia=—90%j,

vanishes. This is true, since w has now zero of second order on the intersection of
hyperplanes, defining the triple residue, while the order of the pole on this
intersection is four, that is,

o = (Zi(z - Zil))(zju - Zjl)) CUO
(zi, + q0zj,)(zi, + q0z;,) (23, + q02;,) (zi, + qoZj,)

where o has no singularities at the hyperplanes z;, + qoz;, = z, + g0z, = z;, +
q0zj, = zi, + qoz;, = 0 and thus the triple residue of w vanishes. This is depicted at
Fig. 4.

We have checked that the integral of admissible form over cycle (34) is well
defined. We would like now to go further, namely we show below that there are some
nontrivial deformations of torus (34) which do not change the value of the integral of
admissible form.

Remind that torus (34) decomposes naturally into direct product of circles |z;,| =
1, or two-dimensional tori z;, O — ¢yz;,, |z;,| = 1. For a one-dimensional torus |z,| =
/ or for a two-dimensional torus z, O — gyz,, |zj,| = 4 we call A to be the basic radius
of the torus. So, all basic radia of the one-dimensional and two-dimensional tori,
composing cycle (34) are close to 1. We can dilate independently all these tori,
changing their basic radii. Here we would like to make the following useful remark
about such deformations of torus (34).
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Z, ia V4 i
‘ q | -------------------- XXXXX
1 - XXXXX
Zja Zjy

Fig. 4. The vanishing of the triple residue  Res Res Res .

Zig==40%)a Zip ==490%)), Zia="90%j)

=~ el .

Fig. 5. Admissible deformations of T, ji}.....{ixuix }1seoidyoi -

Lemma 1. The independent dilations of one- and two- dimensional tori of torus (34) do
not change the value of the integral of admissible form, if the dilated tori satisfy the
following conditions: (1) the ratio of basic radii of any two of elementary one-
dimensional tori |z;,| = r, is less then |q|; (ii) the ratio of basic radii of two-dimensional
tori z;, O — qoz;,, |z,| = ra, as well as the ratio between the radii of one and two-

dimensional tori (in any order) is less then |q|2.

The possible deformations of cycle (34) are depicted at Fig. 5. During such moves
the cycle can cross the following singularities:

2, .
(a) Z/u = —qf)Z]b or Zia = q le)’
(b) z, = —qozi, or zi, = ¢°z,; )
(C) Z[tl = _qHZib or Z]‘” = _q92111 or Zi(l = q Z./b7 (48)
see Fig. 6.

For example, case (a) occurs for the dilation from the product
{lzil =1, |z + g0z, = &} x{|z,| = 1}
to
{lzil = 415 |z, + qozi] = &} x {23, = 42},

where 41 /22> 1qq|.
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Z

zy, Zj

a

In cases (a) and (b) the double residues vanish, namely

Res Res w=0 and Res Res w=0 (49)

2y ==y 'z Fla="40%a 2, =—q0%i, Zia="40%ja
because of the Serre condition on codimension two planes

{z1, = =45 'z} (e = —a0z.} and {z, = —qoz, } (=i = —407,}-

The Serre condition gives additional second order zero (see Proposition 1) on the
above intersections which is more than enough for the vanishing properties (49). In
case (c), the third order residue vanishes, namely

Res Res Res w=0 (50)

Zja=—490%, Ziy=—490%), Zia="40%a

because of the following. Any admissible form w could have the pole of order at
most 5 at the codimension three plane

{Zja = _qezjh} ﬂ{zia = _quja} n{zib = _qezjb}'

These poles come from the factors z;, + qoz;,, zi, + qozi,, zi, + qozj,, 2, + g0z, and
zi, — ¢*zj, in the denominator of w, but the numerator of w is divisible by z;, — z;
and has additional second order zero due to the Serre condition on codimension two
plane {z;, = —qoz;, } (N{zi, = —qoz;, }- Thus the total order of the pole is at most two

and the triple residue vanishes.
5.4. The factorizability of D,
Due to Proposition 2 it is sufficient to prove the factorization property of the

cycles D,. The cycles D, are clearly antisymmetric with respect to the action of
symmetric group on the configuration space; this imply the antisymmetricity
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condition of the Section 5.2. Thus we have to prove an equality

%w: % @) (51)

Dyym Dy<Dy,
for any admissible weQy j», where I' = {1, ...,n} and I" = {n+ 1, ...,.n + m}, so
has no poles at hyperplanes
zp = —qozpr and  zp = ¢ 2z (52)

for any k'el’, that is I<k’<n and k" el”, thatis n+ 1<k"<n+m.

Let us fix such a form w. Consider the right-hand side of relation (51). This is a
sum of the integrals over the tori, in which the absolute values of the first n
coordinates are much smaller then of the last m. Let us dilate the first n coordinates
simultaneously, making them bigger with a final goal to make their absolute value
being equal 1. The relative move of one specific torus from D,, with respect to a torus
from D,, is depicted at Fig. 7. The indices of the first n variables are equipped with
one prime’, the indices of the last m variables are equiped with two primes”.

Consider such a move of the torus T RS W relative to the torus

Tyin gy, it gt vt During the move , we can meet only the singular planes

Zg = —qy 'z , where 1<d'<n and n+ 1<b"<n+m (note that |¢|>1). First we
meet the hyperplanes z; = qglzjg, crossing two-dimensional tori zy Oggz; and

zi Oqujg, see Fig. 8. In this case the ratio of basic radii is equal to |q|2 (that is, the

‘Jlevel’ 1 is equal to |g| 7).
Let us prove that the triple residue

Res Res Res w=0 (53)
Zi;:,qal;/;: Z[;/:—q(yzj;: Z[fl:—q()ZjL/’

Zj{' Zjél Zlil Zl”

nlgl ----- T --- T --------- Ty eyt

T iyl

Fig. 7. Relative move of the cycles.
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lg] e Zip

1 - Zj,

|q|_1 ____________________ Zia

|q ’ B L L LT T T ISP ey Zj,

Fig. 8. Vanishing residue at the level 5 = || ™.

at the codimension three plane

{zi, = —qglzjg} ﬂ{Zi;, = —qoz;,} ﬂ{zi’b’ = —qozjy} (54)

vanishes for any admissible form  satisfying zero conditions (52). From (52) we
conclude, that the form @ can have the pole of order three at the plane (54) , arising
from the factors z; + g5 lzjg, zy +qoz;, and zir + qozjy in its denominator. But the
Serre condition on the codimension two plane

{zy = —a5 "'z} Nz, = —0z) (55)

says that the form w should have one additional zero on the plane (55) in addition to
the first order zero, prescribed by (52), which cancels original factor zZp — qzzj(/l in the

denominator of w. So, w has the pole of order two at codimension three plane (54)
and thus any triple residue at this plane vanishes.

So we cross the level = |q\72 without any change. Next, we meet the singularities
at the level n = |q|_l. The hyperplane of singularity can cross:

() two two-dimensional tori {z;, O —qoz, |z;| =qo} and {zy O —qyzy,
|zl =1}

(b) one two-dimensional torus from D, and a circle from D,,: {z; O — qpz;, |z;| =
qo} and |Z]//)/| =1;

(c) one two-dimensional torus from D,, and a circle from D,: |z, | = 1 and {zy O —
02y 21| = qo};
(d) two circles |z | = g and |z| = 1.

We have shown already in Lemma 1 that the multiple residues appearing in the first
three cases vanish for any admissible form @ even without vanishing conditions
(52). These are respectively cases (a)—(c) of (48). The nonzero residues appear
only in case (d). This shows that we can make under the integral of w the basic
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radii of all two-dimensional tori {z; O —gz;, |z;| = qo} to be equal one. In
other words, we can replace the integral over 7 = nT{,»/l I di el %
T{"'{Ji'}-~--»{"Zvd'l//}”i’v--J,’sz/f by the integral over T = 7' x T", where T’ = ’1Tl;, _____ o
T = T e il Yo A Y, ADD 0 << lg|~". What is left, is to move the
circles |zy| = v to the positions |zy| = 1. Perturb first slightly all the radii of one-

dimensional circles. Then during the move we meet one by one the planes of type (d)

-1
Z, = —49 ZIy,
which adds the residue at z; = —qglzlz with a negative sign, see Fig. 9.

More precisely, we get instead of 7 = T’ x T” the cycle 7= T" x T", where the
coordinate zy in 77 runs in a unit circle, that is,

A K N RS S T SO U/ OO (/00 0 W/ O

Preetars oty o 1
minus the cycle T , which differs from T' by
i(f)///

= —qglzlg + slge'%, p=e" (56)

instead of z; = nei(p’c’: and Zp = ei¢’g . This is depicted in Fig. 10.

-1
Zp==4q9 i
Q .a ’ N

|Zl,’z|:'7
|Z1£'1|:1
Fig. 9. The sign of the residue Res:], e
a b
-------- e
Zl/b/ Zl;)’
[P S — = i 1
T
-1
S oo 4
T zy Zr =

Fig. 10. The appearance of a new cycle.
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The two-dimensional torus (56) is homotopic to

_1 ipm iy
z, =gl e, zp = —qozy +epeh. (57)

Again, by Lemma 1, we can change the basic radius of this torus from |q|71 to 1 and
finally we get, taking in mind the change of the order of local parameters in (57), that

T~ =Ty 1.1

PR /A U003 WO /18 SO 0 0 W OO [ L

and T~ T + T. In other words, we get one more cycle from D,,.,, which contains one
two-dimensional torus

zp = —qozr, |z =1, (58)

where the coordinate z;, is from the first group in (44), while z is from the second.

Continuing the move, we get all the tori T iy, {ijib i, yom o Where for any
two-dimensional torus z;, = —qyz;,, |z;,| = 1 either both coordinates are from the
same group /I’ or I”, or the coordinate z;, is from the first group I’ in (44), while z;, is
from I”. But we can also freely add under the integral of  , satisfying (52) any torus
Tii iy fivgi b dyom o » Which contains a two-dimensional torus z;, = —qoz;,, |z;,| =
1, for which the coordinate z;, is from the first group I’ in (44), and z;, is from the
second, I”, since the integral of w over such cycle is zero due to (52), and so get all
possible tori LA SR TS W A

This proves equality (51) and the Theorem 3.
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Appendix A. Serre relations and the properties of the correlation functions for
2 _
Uy(45”) and Uy(asp(1|2))

This appendix contains the proof of Theorem 1, that is a deduction of the
properties of the correlation functions listed in the Theorem 1 from relations (2), (9)
and (10). The technique is the same as in Enriquez paper [E].
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Consider relation (9) for the current x*(z):
Sym., -, - (95721 = (457 + g )72 + 23)x7 (21)x™ (22) % (23) = 0. (A1)
Relations (2) imply that the correlation function of the product

I G—@z)G+a'2)x E)xt (z2)x" (z)

1<i<j<3

is an antisymmetric Laurent polynomial and for any ve V', £ V*, where V is a
highest weight representation of Uq(Af)) or U,(osp(1]2)) the formal power series

E: (21,22, 23)

= <¢, H Gi = p2)(zi + 45'5) xt(z)xt (z2)xt (z3)0>, (A.2)

Z,’*Z]‘

defined originally in a region |z;|> |z2|>|z3| is a symmetric Laurent polynomial.
Denote by F(zy,z2,z3) the following power series in the region |z|> |z2| > |z3]

F(z1,22,23)
= (¢°2 — (g + ;)= +2) ] STE . (A3)
1<i<j<3 (zi — ‘192./)(21' +qy zj)
Then the Serre relation (A.1) can be written as
SyleﬁzzﬂzzF(zl,22,23)E57v(21,22,23) =0,
or, due to the symmetricity of E¢,(zy, 22, 23),
Sym,, ., .. F(z1,22,23) - Sym,, ., . E¢,(z1,22,23) = 0. (A.4)
Then the Theorem 1 follows from the following
Lemma A.1. The following equality of the formal power series takes place:
Symzl,zzA,:zF(Zl » 225 23)
- ISy, (e — g3 7' 2) (A5)
T 1= qo + Q(Z) ym;, -, -,0(Z3 — {qpZ1)0(Z2 T {4y Z23). .

Here d(x —y) =, x"y " L.

The longest technical step of the proof of the lemma is the decomposition of the
rational function F(z;,z,,z3) into a sum of rational functions having only two poles.
In order to perform such a decomposition, we consider first F(zy, z, z3) as a function
over z; depending on the parameters z; and z3; and decompose it into a sum of
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elementary (over z;) fractions:

F(z1,22,23)

Ay(z1,z Bi(z1,z2 As3(z1, 22 By(z1,2
_ Az 23)+ 1( 1713) . 3(21 2%)+ 3( 1713). (A.6)
Z1—qgZ2  Z1t gy Z2 Zx—qgZz 2+ gy Z3

The answer is

F(z1,22,73) = — g, — 1 - 1 — 23 _
(g5 + V(21 — q5z2)  (q5'21 +23) (21 + g5 '23)
n 0@ (@G—1 21— 23
(g5 + D(z2 — q5z3)  (g5'21 +23) (21 + g5 ' 23)
1+ qo (z3+ L+ g5 +¢°)21)(z1 — z3)
I+ @) +45'2)  (—a321 +23)(g5 21+ 23) (21 — 4323)
_ 95>(1+ q0) (@ + (1490 +g5)z3) (21 — 23)

. A7
(T @)@t a) fa o s + o) — gy )

The crucial point here that in this decomposition no new poles appear. Now, to get
the desired decomposition, it is sufficient to decompose the coefficients A>(z, z3),
By(z1,23), As(z1,z3) and Bjs(zp,z3) into the sum of elementary (over zj, e.g.)
fractions. We get finally

4" 4"
F(Zl z) 23) = (
o 1—qo+q5\(21 + g5 "' 22) (—q5321 + 23)

_ 4% _ 1 B 1
@ +qp'2) 'z +23) (@ +aqp'2) (@ —giz) (2 + g5 z)(—ggn + 23)

- 4’ N 4" ~ I
(m+ap'zn)gplzi+23)  (2+qp'z) @ —@z) (20— gh22) (g5 2 + 23)

1 4"

+ +
(z1 —ggz) (21 + q5'2z3) (22— qz3)(qy 21 + 23)
—1
qp

- ) (A.8)

(22 — q§z3) (21 + g5 ' 23)

Here we treat the r.h.s. of (A.8) as a formal power series in the region |z;|> |z2| > |z3]|.
We also follow the convention

=3 e, (A9)
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where the order of the arguments in the denominator indicate the region of the
decomposition into power series.

The role of the 10 summands in the r.h.s. of (A.8) is different. The 6 of them
(numbers 1,2,4,5,7,9) have singularities on the Serre strata while the singularities of
the rest (numbers 3,6,8,10) are not of the Serre type.

It is not difficult to observe why after the symmetrization the last terms vanish.
For instance, the third term in r.h.s. of (A.8)

1
(z1 + 45" 22) (21 — gfz3)

which is defined in the region |z;|> |z2], |z1| > |z3], appears also with a different sign
as the 8th term of F(zy,z3,z;) where it is defined in the same region, so their sum in
the symmetrization is zero. We can slightly simplify the six terms, contributing into
the symmetrization of F(zj,z»,z3), reducing their number to 4. This is done by
means of identities like

1 qe ‘1(2)

(z1+q5'22)(q' 21 +23)  (gp'z1 +23)(22 —q5z3) (21 + g5 ' 22) (22 — qjz3)

We have finally

Sym G(z1,22,23), (A.10)

Z1,22522
where

—1
9s _ 1
(zi + 45" ) (—gpz1 + 23) (224 45" z3)(—qfz1 + 23)

G(z1,22,23) =

1 qgl
§ - § (A
(z1+q5'2) (22— gjz3) (224 q;'23) (21 — gjz2)

Now the deduction of (A.5) is just an application of the identity

5(x—y)=x_y—_y+x
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to (A.10) under convention (A.9). For instance, the term 3(z3 — q321)0(z2 +

N

1—qp+q;

¢y'z3) is the result of the summation of the four terms up to overall factor
G

I—qo+q5

—1
4y
(z1 + 45" 22) (—q521 + 23)
1
(22 +q, tz3)( Q(.)Zl +z3)

8(z3 — q571)0(z2 + ¢y ' z3) =

1
(22 +q, '23)(z3 qul)
4"

(z1 + 45" 22) (23 — g}z1)

where the first two terms are taken from G(z), z, z3), the third is from G(z3,z3,z;)
and the fourth is from G(z3,z1,22).

If we want to deduce the properties of the correlation functions from another
Serre relation:

SymZ] 122,23 (qul_l - (Q5 + qO)Zz_l + 23_1)x+(zl)(22)x+(z3) = Oa (AlZ)

we use the symmetric Laurent polynomial

E: (21,22, 23)

b= g2z (! z;!
I (z' —qp 5 I 3 + qoz; )x+(21)(22)(23) (A.13)

1<i<j<3 i j

and prove the delta function decomposition for the symmetrization of the rational
function

F(21722,Z3)
-1 _ -1
- (qzzl_] - (q«%) + %)22_1 +Z3_]) H —1 j[ 717 Zj,1 —1 (A.14)
1<i<j<3 (z7" =4z ) + qoz)

which can be done by a formal change z;—z; ! and ¢y —qp !in the proof of lemma.

We can reverse the arguments. Then, by Lemma A.1, the vanishing conditions
listed in Theorem 1 imply equality (A.4), that is, that any matrix coefficient of the left
hand side of the first Serre relation (9) vanishes,

CESym, - (q57z1 — (57 + ¢ )22 + 23)x T (21)x T (z2)x T (z3)v) = 0.
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The delta functions identity for (A.14) show that the vanishing conditions of
Theorem 1 also imply the vanishing of the matrix coefficients of the second Serre
relation (10),

(& Sym., ., - (571" — (45 + 90)23 " + 25 )x" (z0)x " (z2)x " (z3)0) = 0.
We see that in the highest weight representations any one of the Serre relations (9),
(10) implies another. This indicates that one can probably find a direct algebraic
proof of the equivalence of relations (9) and (10).
Appendix B. Vanishing properties of the correlation functions from the pairing
In this appendix we demonstrate the vanishing properties of correlation functions

by means of the Hopf pairing between two opposite Borel subalgebras related to
Drinfeld comultiplication. We show that the pairing

<x™(wr)x™ (wa)x™ (w3), xT(z1)x T (z2)xF(23) >

between the products of three opposite currents, multiplied by the polynomial

fem,z) =[] G- a2+ 4p'2) (B.1)

i<j

can be restricted to ‘Serre planes’ (22) and this restriction is zero, that is, Serre
relations in this form lie in the kernel of the Hopf pairing.

Denote by gy(z) the Taylor expansion at a point z = 0 of the following rational
function:

o (=2 +2)
W) = Tt g )

(B.2)

The Hopf pairing between the products of the currents looks like:

X7 (wi) e (W), X7 (20), X (20)

e R I e e

— ) ceS, k=l k<i
(k) >o(l)

Note that there are no overall factors (—1)0 in the r.h.s. of (B.3). During the proof of
(B.3) they appear twice: once from translating the pairing of tensor products to the
products of the pairing, and the second time during the permutation of K_(z;) via
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x*(z) and cancel each other. Put
Evyyns (21,22, 23)
= (" = 90)f (1,72, 73) <X~ (wi)x™ (wa)x™ (w3), ¥ (z0)x" (22)xF (23) ).

Presentation (B.3) implies that Ew,.,wz,w_; (z1,22,23) can be considered as a Laurent
series Ey, v, ws(21,22,23) = an,nz,ngezEnlwnzaHS (z1, 22, z3)wW]' Wi w5 over wy, wa, w3 with
coefficients Ey, 4, (21,22,23) in C[zf—rl,zzil,z;—rl][[i—f,j—;]].

These coefficients correspond to matrix coefficients of the product of the currents
[Ti<icj<a(zi— 43z)(zi + g 'zj)x " (z1)xF (z2)x T (z3); they are antisymmetric and
converge in a region |zj|>|z;|>|z;3| to rational functions. The arguments here
repeat [E,DKP]. In this sense the restriction of Ew,_,ww,} (z1, 22, z3) to a subvariety of
C? is well defined. Due to antisymmetricity for the deduction of the properties of
correlation functions it is sufficient to prove that the series Em.,vvz,w; (z1,22,23)
vanishes on the line z; = —gyz, 20 = —¢qpz3. We compute from (B.3):

Ewl W, W3 (Zl y 22 23)

S ] GedE g I] 6(“ ) (B.4)

se5s o(i) <a(j) k=123 \Wolk)

The equality shows that the coefficients at the delta functions in E,,, s, v, (z1,22,23)
are proportional to f(z4(1), Zs(2), Z6(3)), SO We have only to observe that f(zy, 22, z3)
vanishes on all six lines

{2601y = —q075(2)} ﬂ{%(z) = —qoZ4(3)}, O€Ss,

which is an elementary check.
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