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Abstract

The interplay between the invariant subspace theory and spectral synthesis for locally

compact abelian group discovered by Arveson (Ann. of Math. (2) 100 (1974) 433) is extended

to include other topics as harmonic analysis for Varopoulos algebras and approximation by

projection-valued measures. We propose a ‘‘coordinate’’ approach which nevertheless does

not use the technique of pseudo-integral operators, as well as a coordinate free one which

allows to extend to non-separable spaces some important results and constructions of

Arveson. We solve some problems posed in Arveson (1974).

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The classical notion of spectral synthesis is related to the Galois correspondence
between ideals J of a commutative regular Banach algebra A and closed subsets E of
its character space X ðAÞ: ker J ¼ ftAXðAÞ : tðaÞ ¼ 0; for any aAJg; hull E ¼
faAA : tðaÞ ¼ 0; for any tAEg: Namely, a set E is called synthetic (or a set of
spectral synthesis) if ker J ¼ E implies J ¼ hull E: Note, that the converse
implication holds for any closed EDXðAÞ:
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In the invariant subspace theory the central object is a Galois
correspondence between operator algebras M and strongly closed subspace
lattices L: lat M ¼ fL : TLDL; for any TAMg; alg L ¼ fT : TLDL; for any
LALg: A lattice L can be called operator synthetic if lat M ¼ L implies M ¼
alg L:

Arveson [A] proved that if one restricts the map lat to the variety of algebras,
containing a fixed maximal abelian selfadjoint algebra (masa), then the above formal
analogy becomes very rich and fruitful. In particular, answering a question of
Radjavi and Rosenthal, he proved the failure of operator synthesis in the class of s-
weakly closed algebras, containing a masa (Arveson algebras, in terminology of
[ErKSh]), by using the famous Schwartz’s example of a non-synthetic set for the
group algebra L1ðR3Þ: Note, that among other brilliant results, [A] contains the
implication M ¼ alg L ) L ¼ lat M; for an Arveson algebra M (in full analogy
with the classical situation).

The results in [A] indicate, in fact, that the problematic of the operator
synthesis obtains a more natural setting if instead of algebras and lattices
one considers bimodules over masas and their bilattices (see the definitions
below). We choose this point of view aiming at the investigation of various
faces of operator synthesis, that reflect its connections with measure theory,
approximation theory, linear operator equations and spectral theory of multi-
plication operators, synthesis in modules, Haagerup tensor products and Varopoulos
tensor algebras.

Let us list some results, proved in this first part of our work. We show the
equivalence of several different definitions of operator synthesis. Answering a
question of Arveson we prove the existence of a minimal pre-reflexive algebra
(bimodule) with a given invariant subspace lattice (bilattice), without the assumption
of separability of the underlying Hilbert space. On the other hand, for separable case
we propose a coordinate approach which does not need a choice of a topology,
replacing it by the pseudo-topology, naturally related to the measure spaces. This
allows to consider simultaneously the synthesis for a more wide class of subsets and
to avoid the use of pseudo-integral operators and the complicated theory of integral
decompositions of measures (see [A] and [Da1]). This approach admits also the use
of measurable sections which leads to an ‘‘inverse image theorem’’ (Theorem 4.7)
for operator synthesis, implying in particular Arveson’s theorem on synthesis
for finite width lattices. We answer (in the negative) a question posed by Arveson
[A, Problem, p. 487] on synthesizability of the lattice generated by a synthetic lattice
and a lattice of finite width (Theorem 4.9). We prove that a closed subset in a
product of two compact sets is a set of spectral synthesis for the Varopoulos algebra
if it is operator synthetic for any choice of measures (Theorem 6.1) (Proposition 6.1
shows that the converse implication fails). This, together with the above mentioned
inverse image theorem, gives some sufficient conditions for spectral synthesis,
implying, for example, the well known Drury’s theorem on non-triangular sets
(Corollary 6.1).

In the second part of the work we are going to consider the individual operator
synthesis and its connections with linear operator equations.
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2. Synthetic sets (measure-theoretic approach)

Let ðX ; mÞ; ðY ; nÞ denote s-finite separable spaces with standard measures. We use
standard measure-theoretic terminology. A subset of the Cartesian product X � Y is
said to be a measurable rectangle if it has the form A � B with measurable ADX ;
BDY : A set EDX � Y is called marginally null set if EDðX1 � YÞ,ðX � Y1Þ;
where mðX1Þ ¼ nðY1Þ ¼ 0: If subsets a; b of X � Y are marginally equivalent (i.e.
their symmetric difference is marginally null) we write aDb: Following [ErKSh] we
define o-topology on X � Y such that the o-open (pseudo-open) sets are, modulo
marginally null sets, countable union of measurable rectangles. The complements of
o-open sets are called o-closed (pseudo-closed). The complement to a set A will be
denoted by Ac:

Let GðX ;YÞ ¼ L2ðX ; mÞ ##L2ðY ; nÞ be the projective tensor product, i.e. the space
of all functions F : X � Y-C which admit a representation

Fðx; yÞ ¼
XN
n¼1

fnðxÞgnðyÞ; ð1Þ

where fnAL2ðX ; mÞ; gnAL2ðY ; nÞ and
P

N

n¼1 jj fnjjL2

 jjgnjjL2

oN: Such a function F is

defined marginally almost everywhere (m.a.e.) in that, if fn; gn are changed on null

sets then F will change on a marginally null set. Then L2ðX ; mÞ ##L2ðY ; nÞ-norm of
such a function F is

jjF jjG ¼ inf
XN
n¼1

jj fnjjL2

 jjgnjjL2

;

where the infinum is taken over all sequences fn; gn for which (1) holds m.a.e. In what
follows we identify two functions in GðX ;YÞ which coincide m.a.e.

By [ErKSh, Theorem 6.5], any function FAGðX ;YÞ is pseudo-
continuous (continuous with respect to the o-topology defined above). We say
that FAGðX ;YÞ vanishes on a set KDX � Y if FwK ¼ 0 (m.a.e), where wK

is the characteristic function of K : For arbitrary KDX � Y denote by FðKÞ
the set of all functions FAGðX ;Y Þ vanishing on K : Clearly FðKÞ is a subspace of
GðX ;YÞ:

Lemma 2.1. Any convergent in norm sequence f FngAGðX ;YÞ has a subsequence

which converges marginally almost everywhere.

Proof. We may assume that f Fng converges to zero in norm. Then there exist

functions f
ðnÞ

k AL2ðX ; mÞ; g
ðnÞ
k AL2ðY ; nÞ such that

Fnðx; yÞ ¼
XN
k¼1

f
ðnÞ
k ðxÞgðnÞ

k ðyÞ;
XN
k¼1

jj f
ðnÞ

k jj2L2
-0and

XN
k¼1

jjgðnÞ
k jj2L2

-0:
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By the Riesz theorem applied to the functions f ðnÞðxÞ ¼
P

N

k¼1 j f
ðnÞ

k ðxÞj2 and

gðnÞðyÞ ¼
P

N

k¼1 jg
ðnÞ
k ðyÞj2 there exists a subsequence f Fnj

g such that f ðnjÞðxÞ and

gðnjÞðyÞ converge to zero almost everywhere. Therefore, there exist MCX ; NCY ;

mðMÞ ¼ 0; nðNÞ ¼ 0; such that f ðnjÞðxÞ-0 and gðnjÞðyÞ-0 for any xAX \M;

yAY \N; and since jFnj
ðx; yÞjpf ðnjÞðxÞgðnjÞðyÞ; this implies Fnj

ðx; yÞ-0 for any

ðx; yÞAðX \MÞ � ðY \NÞ: &

Proposition 2.1. FðKÞ is closed.

Proof. Let FAFðKÞ: By Lemma 2.1 there exists a sequence FnAFðKÞ which
converges to F marginally almost everywhere. Removing a countable union of
marginally null sets we can assume that all Fn vanish on the rest of the set K and
therefore FwK ¼ 0 m.a.e. &

If FAGðX ;YÞ vanishes on K then by pseudo-continuity it vanishes on the pseudo-
closure of K so that without loss of generality we can restrict ourselves to pseudo-
closed sets K:

Given arbitrary subset FDGðX ;Y Þ; we define the null set of F; null F; to be the
largest, up to marginally null sets, pseudo-closed set such that each function FAF
vanishes on it. To see the existence of such a set take a countable dense subset ADF

and consider K ¼
T

FAA F�1ð0Þ: Clearly, K is pseudo-closed, ADFðKÞ and, by

Proposition 2.1, F ¼ ADFðKÞ: The maximality of K is obvious.
Let F0ðKÞ be the closure in GðX ;Y Þ of the set of all functions which vanish on

neighbourhoods of K (pseudo-open sets containing K). F0ðKÞ is a closed subspace
of FðKÞ:

Proposition 2.2. null F0ðKÞ ¼ K ¼ null FðKÞ:

Proof. We work modulo marginally null sets. Let aDX ; bDY be measurable sets

such that ða� bÞ-K ¼ |: Then the function waðxÞwbðyÞ belongs to F0ðKÞ and

therefore null F0ðKÞDða� bÞc: Since K is pseudo-closed, K ¼ ð
S

N

k¼1 ak � bkÞc for

some measurable ak; bk so that ðak � bkÞ-K ¼ | and thus null F0ðKÞDK : We have
also that null F0ðKÞ+null FðKÞ+K which implies our result. &

Clearly, the subspaces F0ðKÞ and FðKÞ are invariant with respect to the
multiplication by functions fALNðX ; mÞ and gALNðY ; nÞ (we just write
invariant).

Theorem 2.1. If ADGðX ;YÞ is an invariant closed subspace then

F0ðnull AÞDADFðnull AÞ: ð2Þ
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The second inclusion is obvious. The proof of the first one is postponed till
Section 4. This theorem justifies the following definition.

Definition 2.1. We say that a pseudo-closed set KDX � Y is synthetic (or m� n-
synthetic) if

F0ðKÞ ¼ FðKÞ:

We shall also refer to synthetic sets as sets of operator synthesis or sets of m� n-
synthesis when the measures need to be specified.

We shall see that sets of operator synthesis can be defined in several different ways.
The relation to operator theory is based on the fact that elements of GðX ;YÞ are the
kernels of the nuclear (trace class) operators from H2 ¼ L2ðY ; nÞ to H1 ¼ L2ðX ; mÞ
and the space S1ðH2;H1Þ of all such operators is isometrically isomorphic to
GðX ;YÞ (see [A]). The space of bounded operators, BðH1;H2Þ; from H1 to H2 is dual

to S1ðH2;H1Þ and therefore to GðX ;YÞ: The duality between GðX ;Y Þ and
BðH1;H2Þ is given by

/T ;FS ¼
XN
n¼1

ðTfn; %gnÞ;

with TABðH1;H2Þ and Fðx; yÞ ¼
P

N

n¼1 fnðxÞgnðyÞ: This will allow us to introduce

the notion of ‘‘operator’’ synthesis for some sets of pairs of projections—bilattices—
which (for separable Hi) bijectively correspond to o-closed subsets in the product of
measure spaces.

Before we proceed with this we give two more definitions which will be used later.

Definition 2.2. A synthetic pseudo-closed set is called (operator) solvable if each its
pseudo-closed subset is synthetic.

Let X ; Y be standard Borel sets (without measures). We say that KDX � Y is
universally pseudo-closed if K is the complement of a countable union of Borel
rectangles. Note that if X ; Y are topological spaces with the natural Borel structure
then any closed subset is universally pseudo-closed.

Definition 2.3. A universally pseudo-closed set KDX � Y is said to be universally
synthetic if it is m� n-synthetic for any pair ðm; nÞ of finite measures.

3. Bilattices, bimodules and operator synthesis

First, we introduce the concept of a bilattice and give some notations. Let PðHÞ
denote the lattice of all orthogonal projections in BðHÞ; the algebra of bounded
operators on a Hilbert space H: More generally, for a von Neumann algebra
RDBðHÞ we denote by PR the lattice of all orthogonal projections in R (thus
PR ¼ R-PðHÞ; PðHÞ ¼ PBðHÞ).
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Let H1; H2 be Hilbert spaces. A subset SDPðH1Þ �PðH2Þ is called a bilattice if

* ð0; 0Þ; ð0; 1Þ; ð1; 0ÞAS;
* ðP1;Q1Þ; ðP2;Q2ÞAS ) ðP14P2;Q13Q2Þ; ðP13P2;Q14Q2ÞAS:

For a bilattice S we denote by Sl and Sr the projections of S to PðH1Þ and PðH2Þ
respectively. Clearly, Sl and Sr are lattices of projections containing 0 and 1:

Lemma 3.1. (i) Sl ¼ fP j ðP; 0ÞASg; Sr ¼ fQ j ð0;QÞASg:
(ii) If ðP;QÞAS; P1pP; Q1pQ and P1ASl ; Q1ASr; then ðP1;Q1ÞAS:

Proof. (i) follows from the equality ðP; 0Þ ¼ ðP30;Q40Þ:
By (i) ðP1; 0ÞAS; ð0;Q1ÞAS; whence ðP1;QÞ ¼ ðP4P1;Q30ÞAS and

ðP1;Q1Þ ¼ ðP130;Q4Q1ÞAS: &

In what follows we consider only bilattices closed in the strong operator
topology. By Lemma 3.1,(i), in this case the lattices Sl and Sr are also strongly
closed.

To see examples of bilattices note that any subset U of BðH1;H2Þ defines a
strongly closed bilattice

Bil U ¼ fðP;QÞAPðH1Þ �PðH2Þ j QTP ¼ 0 for any TAUg:

Conversely, given a subset FDPðH1Þ �PðH2Þ we set

MðFÞ ¼ fTABðH1;H2Þ j QTP ¼ 0 for each ðP;QÞAFg:

These maps are in a Galois duality:

BilðMðBil UÞÞ ¼ Bil U ; MðBil MðFÞÞ ¼ MðFÞ:

It is not difficult to see that spaces of the form MðFÞ are exactly the reflexive
(in sense of [LSh]) operator spaces; they are characterized by the equality U ¼
MðBil UÞ: Similarly, the bilattices of the form Bil U are characterized by the equality
S ¼ Bil MðSÞ and can be called reflexive.

It is easy to check that MðSÞ is a bimodule over the algebras Al ¼ alg Sl ;

Ar ¼ ðalg SrÞ�:

ArMðSÞAlDMðSÞ:

The partial converse of this fact is following: if UDBðH1;H2Þ is a bimodule over
unital subalgebras W1DBðH1Þ; W2DBðH2Þ then any pair ðP;QÞABil U is majorized

by a pair ðP0;Q0ÞABil U-ðlat W1; lat W �
2 Þ: Indeed, one sets P0H ¼ W1PH; Q0H ¼

W �
2 QH:

Let R1DBðH1Þ; R2DBðH2Þ be von Neumann algebras. A bilattice S is called
R1 �R2-bilattice if Sl ¼ PR1

and Sr ¼ PR2
: For example, Bil U is always a

BðH1Þ � BðH2Þ-bilattice.
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The above argument shows that if S is an R1 �R2-bilattice then MðSÞ is an

R0
1 �R0

2-bimodule. Conversely, for an R0
1 �R0

2-bimodule U we will consider an

R1 �R2-bilattice

BilR1;R2
U ¼ ðBil UÞ-R1 �R2:

If R1; R2 are clear we write bil U instead of BilR1;R2
U :

We will need a bilattice version of Arveson’s reflexivity theorem for CSL [A]. Let
us call a bilattice S commutative if Sl and Sr are commutative.

Theorem 3.1. If S is a commutative bilattice then

ðBil MðSÞÞ-ðSl � SrÞ ¼ S:

Proof. It can be reduced, by a 2 � 2-matrix trick, to Arveson’s theorem on reflexivity
of commutative subspace lattices, [A] (for a coordinate-free proof see [Da2] or [Sh1]).

Indeed, consider the set, L; of all projections P
0

0
1�Q

� �
APBðH1"H2Þ; where ðP;QÞAS:

Clearly, L is a commutative strongly closed lattice. Therefore, L is reflexive, i.e.,
lat alg L ¼ L: One easily checks that

alg L ¼fT ¼ ðTijÞ2
i;j¼1ABðH1"H2Þ j T11Aalg Sl ;T22Aðalg SrÞ�;

T21AMðSÞ;T12 ¼ 0g:

Therefore, if QMðSÞP ¼ 0 for some PASl ; QASr then P"ð1 � QÞA lat alg L ¼ L;
i.e. ðP;QÞAS: This yields ðBil MðSÞÞ-ðSl � SrÞDS: The reverse inclusion is
obvious. &

We have, in particular, BilD1;D2
MðSÞ ¼ S for any D1 �D2-bilattice S; where Di

are commutative von Neumann algebras. Such bilattices will be the main object of
this paper. In what follows we suppose that D1; D2 are fixed and bil U means
BilD1;D2

U for UDBðH1;H2Þ:
We see that MðSÞ is the largest among all D0

1 �D0
2-bimodules U with bil U ¼ S:

Now we are going to present the smallest one.
Given a state j on Bðl2Þ; consider a slice operator Lj :

Bðl2#H1; l2#H2Þ-BðH1;H2Þg defined by LjðA#BÞ ¼ jðAÞB: Let conv S denote

the convex hull of S (in BðH1Þ � BðH2Þ), Conv S the weak (or uniform, see Lemma

3.2) closure of conv S and let R1 ¼ Bðl2Þ %#D1; R2 ¼ Bðl2Þ %#D2: Set

FS ¼fðA;BÞABðl2#H1Þ � Bðl2#H2Þ j ðLjðAÞ;LjðBÞÞAConv S for any jg

S̃ ¼fðP;QÞAFS j P;Q are projectionsg

and define

M0ðSÞ ¼ fXABðH1;H2Þ j 1#XAMðS̃Þg;
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where 1 is the identity operator on l2: Then FSDR1 �R2 by the Fubini property of

tensor product [Ta] and M0ðSÞ is an ultraweakly closed D0
1 �D0

2-bimodule like

MðSÞ: Here and subsequently bil 1#U for UDBðH1;H2Þ means bilR1;R2
1#U ;

where Ri ¼ Bðl2Þ %#Di:

Lemma 3.2. Let S be a commutative D1 �D2-bilattice. Then

conv S
u ¼ conv S

w ¼fðA;BÞAD1 �D2 j 0pAp1; 0pBp1;

ðEAð½a; 1�Þ;EBð½b; 1�ÞÞAS; aþ b41g:

where ‘‘u’’ and ‘‘w’’ indicate the ‘‘uniform’’ and the ‘‘weak operator topology’’ closure

of the convex hull, conv S; of S and EX ð
Þ is the spectral projection measure of

selfadjoint operator X :

Proof. Let R denote the set to the right. To see that RDconv S
u
; set An ¼Pn

i¼1
1
n

EA
i
n
; 1
� �	 


; Bn ¼
Pn

i¼1
1
n

EB
i
n
; 1
� �	 


for ðA;BÞAR: Clearly, An-A and Bn-B

uniformly as n-N: Then, since EA
i
n
; 1
� �	 


;EB
n�iþ1

n
; 1

� �	 
	 

AS and

ðAn;BnÞ ¼
1

n

Xn

i¼1

EA

i

n
; 1

� � �
;EB

n � i þ 1

n
; 1

� � � �
;

we have ðAn;BnÞAconv S and therefore ðA;BÞAconv S
u
:

Next claim is that R is convex. In fact, for ðA1;B1Þ; ðA2;B2ÞAR; we have

EðA1þA2Þ=2ð½a; 1�Þ ¼
_

n

EA1
ð½en; 1�ÞEA2

ð½2a� en; 1�Þ;

EðB1þB2Þ=2ð½b; 1�Þ ¼
_
m

EB1
ð½em; 1�ÞEB2

ð½2b� em; 1�Þ;

where a; bA½0; 1Þ; feng is a countable dense subset of ½0; 1�: Fix a; b such that

aþ b41: Then for n; mAZþ; we have either en þ em41 which gives
ðEA1

ð½en; 1�Þ;EB1
ð½em; 1�ÞÞAS and therefore

ðEA1
ð½en; 1�ÞEA2

ð½2a� en; 1�Þ;EB1
½em; 1�ÞEB2

ð½2b� em; 1; 1�ÞÞAS;

or ð2a� enÞ þ ð2b� emÞ41 which implies

ðEA1
ð½en; 1�ÞEA2

ð½2a� en; 1�ÞÞ;EB1
ð½em; 1�ÞEB2

ð½2b� em; 1�ÞÞAS:

Since S is a bilattice,

ðEðA1þA2Þ=2ð½a; 1�Þ;EðB1þB2Þ=2ð½b; 1�ÞÞAS:

Next step is to prove that R is weakly closed. Since it is convex it is enough to
prove that it is strongly closed. Let fðAn;BnÞgCR be a sequence strongly converging
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to ðA;BÞAD1 �D2: Then, for any e40 and a; bo1; we have

EAð½a; 1�Þps: lim
n-N

EAn
ð½aþ e; 1�Þ and EBð½b; 1ÞÞps: lim

n-N

EBn
ð½bþ e; 1�Þ

(the strong limit). Since ðEAn
ð½aþ e; 1�Þ;EBn

ð½bþ e; 1�ÞAS if aþ b41 and S is

decreasing and closed in the strong operator topology, we obtain
ðEAð½a; 1�Þ;EBð½b; 1�ÞÞAS: If one of a; b equals 1; then that ðEAð½a; 1�Þ;EBð½b; 1�ÞAS

follows from EAðf1gÞ ¼ s:lime-0 EAð½1 � e; 1�Þ; EBðf1gÞ ¼ s:lime-0 EBð½1 � e; 1�Þ: So
we can conclude that ðA;BÞAR:

We have therefore

SDRDconv S
u
Dconv S

w
;

and, since R is convex and weakly closed, R ¼ conv S
u ¼ conv S

w
: &

Definition 3.1. We say that a D1 �D2-bilattice, S; is synthetic if there exists only one

ultraweakly closed D0
1 �D0

2-bimodule M such that bil M ¼ S:

Theorem 3.2. Let S be a D1 �D2-bilattice and let M be an ultraweakly closed

D0
1 �D0

2-bimodule such that bil MDS: Then bil 1#MDS̃:

Proof. Let ðP;QÞAbil 1#M: Fix xAl2; jjxjj ¼ 1: Consider the corresponding state
jxðAÞ ¼ ðAx; xÞ and denote the corresponding operator Ljx

simply by Lx: It suffices

to show that ðLxðPÞ;LxðQÞÞAConv S: By definition of Lx; we have ðLxðKÞx; xÞ ¼
ðKðx#xÞ; x#xÞ for any operator K on l2#H and, in particular, if K ¼ P

(a selfadjoint projection) then ðLxðPÞx; xÞ ¼ jjPðx#xÞjj2: Therefore, for AAM the
following holds

ðALxðPÞA�x; xÞ ¼ ðLxðPÞA�x;A�xÞ ¼ jjPðx#A�xÞjj2

¼ jjPð1#A�ÞQ>ðx#xÞjj2pjjAjj2jjQ>ðx#xÞjj2

¼ jjAjj2ðLxðQ>Þx; xÞ:

We obtain now the inequality ALxðPÞA�pjjAjj2LxðQ>Þ: Let LxðPÞ ¼ K2; LxðQ>Þ ¼
L2; where K ;LX0: Then jjKA�xjjpjjAjj jjLxjj for any AAM and xAH:

If L is invertible this is equivalent to jjKA�L�1jjpjjAjj: Since M is a

bimodule, KA�L�1AM�: Writing now KA�L�1 instead of A� we get

jjK2A�L�2jjpjjKA�L�1jjpjjAjj: Proceeding in this fashion we obtain
jjKnA�L�njjpjjAjj and hence

jjKnA�xjjpjjAjj jjLnxjj; xAH: ð3Þ

If L is not invertible, then replacing L by L þ e1 in the above argument we obtain (3)
for all L þ e1 with e40: Letting e-0; we get (3) for L:
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Fix xAELð½0; e�Þ; where ELð
Þ is the spectral projection measure of L: Then
jjLnxjjpCen and, by (3), we obtain A�xAEKð½0; e�Þ: Thus M�ELð½0; e�ÞDEKð½0; e�Þ
or, equivalently, EKð½e0; 1�ÞM�ELð½0; e�Þ ¼ 0 if e04e: This implies
EK2ð½e0; 1�ÞM�E1�L2ð½1 � e; 1�Þ ¼ 0; as e04e; i.e.

ELxðQÞð½a; 1�ÞMELxðPÞð½b; 1�Þ ¼ 0; aþ b41:

Since ðELxðQÞð½a; 1�Þ;ELxðPÞð½b; 1�ÞÞAbil MDS as aþ b41; by Lemma 3.2, we obtain

ðLxðQÞ;LxðPÞÞAConv S for any xAH: &

The idea of the proof goes back to Arveson [A].

Corollary 3.1. Let S be a D1 �D2-bilattice and let M be an ultraweakly closed

D0
1 �D0

2-bimodule such that bil MDS: Then M0ðSÞDM:

Proof. Let TAM0ðSÞ: To see that TAM we choose an ultraweakly continuous linear
functional j such that jðMÞ ¼ 0: Then there exist FAl2#H1; GAl2#H2 such that
jðAÞ ¼ ðð1#AÞF ;GÞ; AABðH1;H2Þ; moreover, ð1#MÞF>G: Denoting by PF and

PG the projections on ½ð1#D0
1ÞF � and ½ð1#D0

2ÞG� we have PGð1#MÞPF ¼ 0; i.e.

ðPF ;PGÞAbil 1#M: It follows now from the definition of M0ðSÞ and Theorem 3.2

that ðPF ;PGÞAS̃Dbil 1#T and therefore PGð1#TÞPF ¼ 0; i.e. jðTÞ ¼ 0: From the
arbitrariness of j we obtain TAM: &

Summarising we have the following statement.

Theorem 3.3. Let S be a D1 �D2-bilattice. If M is an ultraweakly closed D0
1 �D0

2-

bimodule such that bil M ¼ S then M0ðSÞDMDMðSÞ:

Theorem 3.4. Given a D1 �D2-bilattice S; bil M0ðSÞ ¼ S:

Theorems 3.3 and 3.4 state that M0ðSÞ is the smallest ultraweakly closed D0
1 �D0

2-

bimodule whose bilattice is S and that a commutative bilattice S is synthetic if and
only if MðSÞ ¼ M0ðSÞ:

We shall prove Theorem 3.4 in Section 5 after treating the case of bilattices on
separable Hilbert spaces. Here we only give one of its consequences.

Corollary 3.2. If L is a CSL then there is a smallest element in the class of all ultra-

weakly closed algebras A such that lat A ¼ L and L0DA:

Proof. Set D ¼ L00 and

S ¼ fðP;QÞAPD �PD j (RAL with PpRp1 � Qg:

Then S is a D�D-bilattice. We denote by A0ðLÞ the ultra-weakly closed algebra
generated by M0ðSÞ:
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Note that 1AM0ðSÞ: Indeed, since P þ Qp1 for any ðP;QÞAS;

Conv SDfðA;BÞAD�D j A þ Bp1g:

Hence if ðP1;Q1ÞAS̃ then LjðP1 þ Q1Þp1 for any state j on Bðl2Þ: Since P1 þ
Q1ABðl2Þ %#D; we can conclude, using [ErKSh, Lemma 7.5, (ii)], that P1 þ Q1p1:
Hence P1Q1 ¼ 0 and Q1ð1#1ÞP1 ¼ 0; 1AM0ðSÞ:

Since M0ðSÞ is an L0-bimodule, we have L0DM0ðSÞ and L0DA0ðLÞ: Let us
show that lat A0ðLÞ ¼ L: Indeed,

lat A0ðLÞDlatðL0ÞDD

and PAPD belongs to lat A0ðLÞ iff PAlat M0ðSÞ iff ð1 � PÞM0ðSÞP ¼ 0 iff ðP; 1 �
PÞAbil M0ðSÞ ¼ S iff PpRpP for some RAL iff PAL:

Let A be an ultra-weakly closed algebra containing L0 and lat A ¼ L: Then
bil A ¼ S: Indeed, if ðP;QÞAS then there is RAL such that PpR; Qp1 � R;
whence

QAP ¼ Qð1 � RÞARP ¼ 0;

ðP;QÞAbil A: Conversely, if ðP;QÞAbil A then setting RH ¼ APH we have RAL;
QAR ¼ 0 whence QR ¼ 0; Qp1 � R and ðP;QÞAS; because PpR:

By Theorem 3.3, M0ðSÞDA whence A0ðLÞDA: &

Remark 3.1. Arveson [A] calls an ultra-weakly closed algebra A with lat A ¼ L

pre-reflexive if L0DA: In this terms corollary can be considered as an extension to
non-separable spaces of the result by Arveson [A, Theorem 2.1.8, (ii)] on the
existence of the smallest pre-reflexive algebra with a given commutative lattice.

4. Separably acting bilattices

If Hilbert spaces H1 and H2 are separable then there exist finite separable measure
spaces ðX ; mÞ and ðY ; nÞ with standard measures m; n; such that H1 ¼ L2ðX ; mÞ;
H2 ¼ L2ðY ; nÞ and the multiplication algebras D1 and D2 are LNðX ; mÞ and
LNðY ; nÞ respectively. Denote by PU and QV the multiplication operators by
the characteristic functions of UDX and VDY : Given EDX � Y ; we define SE

to be the set of all pairs of projections ðPU ;QV Þ; where UDX ; VDY and

ðU � VÞ-ED|:

Theorem 4.1. SE is a D1 �D2-bilattice.

Proof. We shall prove only the closeness of SE ; the other conditions trivially hold.
Let ðPn;QnÞASE ; Pn-P; Qn-Q in the strong operator topology. Then there exist
ADX ; BDY such that P ¼ PA; Q ¼ QB: Changing, if necessarily, Pn to PnP; Qn to
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QnQ; we may assume that PnpP and QnpQ: We have therefore Pn ¼ PAn
; Qn ¼

QBn
; for some AnDX ; BnDY such that ðAn � BnÞ-ED| and mðA \AnÞ-0;

nðB \BnÞ-0: Given e40; kAN; choose nk such that mðA \Ank
Þo e

2k and

nðB \Bnk
Þo e

2k: Set

Ae ¼
\N
k¼1

Ank
; Be ¼

[N
k¼1

Bnk
:

Then mðA \AeÞpe; nðB \BeÞ ¼ 0 and ðAe � BeÞ-ED|: Taking now A0 ¼
S

N

n¼1 A1=n

and B0 ¼
T

N

n¼1 B1=n; we obtain mðA \A0Þ ¼ 0; nðB \B0Þ ¼ 0; ðA0 � B0Þ-ED| so that

ðP;QÞ ¼ ðPA0
;QB0

ÞASE : &

Theorem 4.2. Let S be a D1 �D2-bilattice. Then there exists a unique, up to a

marginally null set, pseudo-closed set EDX � Y such that S ¼ SE :

Proof. Let fðPn;QnÞg be a strongly dense sequence in the bilattice S; and let AnDX ;

BnDY be such that Pn ¼ PAn
and Qn ¼ QBn

: The set E ¼ ðX � Y Þ \ð
S

N

n¼1 An � BnÞ
is clearly pseudo-closed. We will show that S ¼ SE :

Since SE is closed in the strong operator topology, we have the inclusion SDSE :
For the reverse inclusion, we first show that if a rectangle, A � B; lies in the union
of a finite number of rectangles, say Ck � Dk ð1pkpnÞ; such that ðPCk

;QDk
ÞAS;

then ðPA;QBÞAS: We use the induction by n: The case n ¼ 1 is obvious from

the decreasing condition on S: If A � BD
Sn

k¼1 Ck � Dk; then ðA \C1Þ �
BD

Sn
k¼2 ðCk � DkÞ and so, by the induction hypothesis, we have that

ðPA \C1
;QBÞAS: Similarly, ðPA;QB \D1

ÞAS: Therefore, ðPA-C1
;QB \D1

ÞAS:

Since S is closed under the operation ð3;4Þ; this together with ðPC1
;PD1

ÞAS

gives us ðPA-C1
;PBÞAS: Using again closeness under ð4;3Þ; we obtain

ðPA;QBÞAS:
Let now ðP;QÞ ¼ ðPA;QBÞASE : Deleting null sets from A; B we may assume that

A � BD
S

N

n¼1 An � Bn: Then, by [ErKSh] [Lemma 3.4], given e40; there exist

AeDA; BeDB with mðA \AeÞoe; nðB \BeÞoe such that Ae � Be is contained in the
union of a finite number of sets fAn � Bng: By the statement we have just proved,
ðPAe ;QBeÞAS; and, since PAe-P; QBe-Q strongly, as e-0; we have ðP;QÞAS: This
proves S ¼ SE :

To see the uniqueness, let E1 be a pseudo-closed set such that SE1
¼ SE : Then

ðPA;QBÞASE for any A � B D Ec
1 and therefore A � BDEc up to a marginally null

set. As Ec
1 is pseudo-open, we have Ec

1DEc up to a marginally null set. Similarly, we

have the reverse inclusion and therefore Ec
1DEc and E1DE: &

We say that TABðH1;H2Þ is supported in EDX � Y if bil T+SE ; i.e., if QV TPU ¼
0 for each sets UDX ; VDY such that ðU � VÞ-ED|: Clearly,

MðSEÞ ¼ fTABðH1;H2Þ j T is supported in Eg:
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For any subset UDBðH1;H2Þ there exists the smallest (up to a marginally null set)
pseudo-closed set, supp U; which supports any operator TAU; namely, supp U is the
pseudo-closed set E such that bil U ¼ SE : The support of an operator TABðH1;H2Þ
will be denoted by supp T : We will also use the notations MmaxðEÞ and MminðEÞ for
the bimodules MðSEÞ and M0ðSEÞ: Theorem 3.3 says now that

MminðEÞDMDMmaxðEÞ

if supp M ¼ E: Clearly, supp MmaxðEÞ ¼ E and therefore MmaxðEÞ is the largest
ultraweakly closed bimodules whose support is E: By proving now that
supp MminðEÞ ¼ E we would also have that MminðEÞ is the smallest ultraweakly
closed bimodules whose support is E; justifying the notations.

Let C be a subspace of GðX ;Y Þ: Using the duality of BðH1;H2Þ and GðX ;YÞ we

denote by C> the subspace of all operators TABðH1;H2Þ such that /T ;FS ¼ 0 for

any FAC: Clearly, if C is invariant then C> is a ðD1;D2Þ-bimodule.

Theorem 4.3. Let EDX � Y be a pseudo-closed set. Then

F0ðEÞ> ¼ MmaxðEÞ:

Proof. We begin by showing the inclusion MmaxðEÞDF0ðEÞ>: Let AAMmaxðEÞ;
FAF0ðEÞ: By [ErKSh, Lemma 3.4], E is e-compact, so that, for any e40; there exist
XeDX ; YeDY with mðXeÞoe; nðYeÞoe such that

Feðx; yÞ ¼ Fðx; yÞwX c
e
ðxÞwY c

e
ðyÞ

vanishes on an open-closed neighbourhood of E (D the union of a finite number of
rectangles). Clearly, Fe-F as e-0: It remains to show that /A;FeS ¼ 0: Choose

measurable sets fXjgN
j¼1; fYigM

i¼1 in a way that

X ¼
[N
j¼1

Xj; Y ¼
[M
i¼1

Yi and null Fe+
[

ði;jÞAJ

Xj � Yi+E

for some index set J: If ði; jÞAJ then /QYi
APXj

;FeS ¼ /A;FewXj
wYi

S ¼ 0: If ði; jÞeJ

then QYi
APXj

¼ 0 since supp ADE: Therefore, /QYi
APXj

;FeS ¼ 0 for any pair ði; jÞ
and hence /A;FeS ¼ 0:

Let A be an operator in BðH1;H2Þ such that /A;FS ¼ 0 for any FAF0ðEÞ:
Consider UDX ; VDY such that ðU � VÞ-E ¼ | (up to a marginally null set).
Then Fðx; yÞwUðxÞwV ðyÞAF0ðEÞ for any FAGðX ;YÞ and

/QV APU ;FS ¼ /A;F 
 wVwUS ¼ 0;

which implies QV APU ¼ 0: &
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Let Dþ
i denote the set of positive functions in Di: Operators AABðl2Þ %#D1 and

BABðl2Þ %#D2 can be identified with operator-valued functions AðxÞ : X-Bðl2Þ and
BðyÞ : Y-Bðl2Þ: If A; B are projections then AðxÞ; BðyÞ are projection-valued

functions. We say that a pair of projections ðP;QÞAðBðl2Þ %#D1Þ � ðBðl2Þ %#D2Þ is an
E-pair if PðxÞQðyÞ vanishes on E: If, additionally, P and Q take only finitely many
values then the pair ðP;QÞ is said to be a simple E-pair.

Lemma 4.1. Let E be a pseudo-closed subset of X � Y : Then

Conv SE ¼ fðaðxÞ; bðyÞÞADþ
1 �Dþ

2 j aðxÞ þ bðyÞp1; m:a:e on Eg;

FSE
¼ fðA;BÞAðBðl2Þ %#D1Þþ � ðBðl2Þ %#D2Þþ j AðxÞ þ BðyÞp1; m:a:e on Eg;

and

S̃E ¼ fðP;QÞ j ðP;QÞ is an E-pairg:

Proof. The first statement follows easily from Lemma 3.2. To see the second equality
take xAl2 and ðA;BÞAFSE

; identifying the operators with the corresponding
operator-valued functions. Set now aðxÞ ¼ ðAðxÞx; xÞ and bðyÞ ¼ ðBðyÞx; xÞ: It is
easy to see that ðLxðAÞf ÞðxÞ ¼ aðxÞf ðxÞ and ðLxðBÞgÞðyÞ ¼ bðyÞgðyÞ: By the

definition of FSE
and the first statement, we have ðAðxÞ þ BðyÞx; xÞ ¼ ðAðxÞx; xÞ þ

ðBðyÞx; xÞ ¼ aðxÞ þ bðyÞp1 (m.a.e.) on E and therefore AðxÞ þ BðyÞp1 (m.a.e.) on
E: If, additionally, A and B are projections, the inequality gives AðxÞBðyÞ ¼ 0
(m.a.e.) on E; completing the proof. &

Theorem 4.4. Let EDX � Y be a pseudo-closed set. Then

FðEÞ> ¼ MminðEÞ:

Proof. Let ðP;QÞAS̃E and let ~xxðxÞ ¼ PðxÞx and ~yyðyÞ ¼ QðyÞZ for some x; ZAl2: By
Lemma 4.1, ðPðxÞ;QðyÞÞ is an E-pair which implies ð~xxðxÞ;~yyðyÞÞ ¼ 0 m.a.e. on E:
Clearly, the function F : ðx; yÞ/ð~xxðxÞ;~yyðyÞÞ belongs to GðX ;YÞ and therefore

FAFðEÞ: For any TABðH1;H2Þ we have /T ;FS ¼ ðð1#TÞ~xx;~yyÞ and if TAFðEÞ>
we obtain ðð1#TÞ~xx;~yyÞ ¼ 0 and Qð1#TÞP ¼ 0; i.e. TAMminðEÞ:

To see the converse we observe that any function FAFðEÞ can be written as
ð~xxðxÞ;~yyðyÞÞ; where ~xxðxÞ; ~yyðyÞAl2 and ~xxðxÞ>~yyðyÞ if ðx; yÞAE m.a.e. Denoting by
PðxÞ and QðyÞ the projections onto the one-dimensional spaces generated by ~xxðxÞ
and ~yyðyÞ yields PðxÞQðyÞ ¼ 0 m.a.e. on E and ðP;QÞAS̃E : For any TAMminðEÞ we
have

/T ;FS ¼ ðð1#TÞ~xxðxÞ;~yyðyÞÞ ¼ ðQð1#TÞP~xxðxÞ;~yyðyÞÞ ¼ 0:

This implies TAFðEÞ>: &
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Corollary 4.1.

bil MminðEÞ ¼ SE :

Proof. It suffices to show that QVMminðEÞPU ¼ 0 with measurable UDX ; VDY

implies that ðU � VÞ-E is marginally null. In fact, this would imply
SE+bil MminðEÞ which together with SE ¼ bil MmaxðEÞDbil MminðEÞ gives us the
statement. The last inclusion holds since MminðEÞDMmaxðEÞ:

Assume that E0 ¼ ðU � VÞ-E is not marginally null. Then FðE0Þ does not
contain wU�V and therefore is not equal to GðU ;VÞ: Since FðE0Þ is closed in
GðU ;VÞ; there exists an operator A0ABðPU H1;QV H2Þ such that 0aA0>FðE0Þ:
Extend A0 to an operator AABðH1;H2Þ so that QV APU jL2ðUÞ ¼ A0 and A ¼
QV APU : Then A>FðEÞ and, by Theorem 4.4, AAMminðEÞ: Since QV APUa0; we
obtain a contradiction. &

Corollary 4.2. Let MDBðH1;H2Þ be an ultraweakly closed bimodule, E be a pseudo-

closed set. Then supp M ¼ E iff

MminðEÞDMDMmaxðEÞ:

Proof. It follows from Theorem 3.1, Corollaries 3.1, 4.1 and the fact that bil M ¼ SE

if and only if supp M ¼ E: &

Proof of Theorem 2.1. Let E ¼ supp A>: By Corollary 4.2,

MminðEÞDA>DMmaxðEÞ

and therefore, by Theorems 4.3, 4.4,

F0ðEÞDADFðEÞ

which also implies null A ¼ E: &

The next corollary is an analogue of Wiener’s Tauberian Theorem.

Corollary 4.3. If CDGðX ;YÞ and null CD| then C is dense in GðX ;Y Þ:

Proof. Follows from Theorem 2.1, since F0ð|Þ ¼ GðX ;Y Þ: &

Corollary 4.4.

bil 1#MminðEÞ ¼ S̃E ¼ fðP;QÞ : ðP;QÞ is an E-pairg;
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Proof. By Corollary 4.1, bil MminðEÞ ¼ SE which together with Theorem 3.2 implies

bil 1#MminðEÞDS̃E : On the other hand, bil 1#MminðEÞ+S̃E by the definition of
MminðEÞ: The second equality is proved in Lemma 4.1. &

Remark 4.1. For sets that are graphs of preoders (that is for lattices) the result was,
in fact, proved in [A, Corollary 1 of Theorem 2.1.5].

Theorem 4.5. Let E be a pseudo-closed set. Then

bil 1#MmaxðEÞ ¼ fðP;QÞ : ðP;QÞ is a simple E pairgs
;

where ‘‘s’’ indicates the strong operator topology closure.

Proof. Consider the commutative lattice, L; of all projections p
0

0
1�q

� �
APBðH1"H2Þ;

where ðp; qÞASE : By [Sh1],

PBðl2Þ#L ¼ latð1#alg LÞ; ð4Þ

where the tensor product on the left hand side denotes the smallest (strongly closed)
lattice containing the elementary tensors A#B; AAPBðl2Þ; BAL: Moreover, it is

shown in [Sh1] that

latð1#alg LÞ ¼ lim
n

PBðl2Þ#Ln;

where fLng is a sequence of finite sublattices of L: It is easy to check that for a finite
sublattice LnDL; PBðl2Þ#LnDfP"ð1 � QÞ : ðP;QÞ is a simple E-pairg; whence

PBðl2Þ#L ¼ fP"ð1 � QÞ : ðP;QÞ is a simple E-pairgs
:

Since

alg L ¼ fT ¼ ðTijÞ2
i;j¼1ABðH1"H2Þ j T11AD1;T22AD2;T21AMmaxðEÞ;T12 ¼ 0g

(see the proof of Theorem 3.1), one can easily check that P
0

0
1�Q

� �
APBðl2#H1"l2#H2Þ;

where ðP;QÞAbilð1#MmaxðEÞÞ; belongs to latð1#alg LÞ: By (4) we have

bil 1#MmaxðEÞDfðP;QÞ : ðP;QÞ is a simple E pairgs
: The reverse inclusion is

obvious. &

In the following theorem we list several possible definitions of a set of operator
synthesis.

Theorem 4.6. Let EDX � Y be a pseudo-closed set. Then the following are equivalent:

(i) E is a set of synthesis;
(ii) MminðEÞ ¼ MmaxðEÞ;
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(iii) /T ;FS ¼ 0 for any TABðH1;H2Þ and FAGðX ;YÞ; supp TDEDnull F ;
(iv) any E-pair can be approximated in the strong operator topology of Bðl2#H1Þ �

Bðl2#H2Þ by simple E-pairs;
(v) any E-pair can be approximated by simple E-pairs almost everywhere in the

strong operator topology of Bðl2Þ:

Proof. ðiÞ 3 ðiiÞ: obviously follows from the definition and Theorems 4.3, 4.4.
ðiiÞ ) ðiiiÞ: if TAMminðEÞ then, by Theorem 4.4, /T ;FS ¼ 0 for any

FAGðX ;Y Þ; such that EDnull F ; which shows the implication.
ðiiiÞ ) ðiiÞ: Let TAMmaxðEÞ: Then supp TDE and, therefore, /T ;FS ¼ 0 for

any FAFðEÞ: By Theorem 4.4, TAMminðEÞ; which gives us the necessary inclusion
MmaxðEÞDMminðEÞ:

ðiiÞ ) ðivÞ: if MminðEÞ ¼ MmaxðEÞ then bil 1#MminðEÞ ¼ bil 1#MmaxðEÞ and
by Corollary 4.4 and Theorem 4.5 we obtain that any E-pair can be s-approximated
by simple E-pairs.

ðivÞ 3 ðvÞ: We prove that the approximation of operator-valued functions in the
strong operator topology in Bðl2#L2ðX ; mÞÞ is equivalent to the approximation
almost everywhere in the strong operator topology in Bðl2Þ: In fact, let PnðxÞ;
PðxÞABðl2#L2ðX ; mÞÞ; PnðxÞ-PðxÞ almost everywhere on ðX ; mÞ in the strong

operator topology in Bðl2Þ and take j ¼
PN

k¼1 ekðxÞ~xxk ; where ekð
Þ is the

characteristic function of a set of finite measure and ~xxkAl2: It easily follows from
the Lebesgue theorem that jjPnj� Pjjj-0 as n-N: Since the measure m is sigma-
finite, the set of all such j is dense in l2#L2ðX ; mÞ: Therefore jjPnj� Pjjj-0;
n-N; for any jAl2#L2ðX ; mÞ:

If now a sequence, fPng; of projection-valued functions converges to P in the
strong operator topology in Bðl2#L2ðX ; mÞÞ; then there exists a subsequence
converging almost everywhere on ðX ; mÞ in the strong operator topology in Bðl2Þ: To

see this choose a dense set of vectors, f~xxng; in l2: Then

Z
A

jjPnðxÞ~xxk � PðxÞ~xxk jj dmðxÞ-0; n-N

for each k and each measurable set A of finite measure. Let A1DA2D?DAnD? be

a sequence of sets of finite measure such that X ¼
S

N

j¼1 Aj: By the Riesz

theorem there exists a subsequence fPk1gNk¼1 such that limk-N Pk1ðxÞ~xx1 ¼ PðxÞ~xx1

a.e. on A1: Then choose a subsequence fPk2gNk¼1 of fPk1gNk¼1 such that

limk-N Pk2ðxÞ~xx1 ¼ PðxÞ~xx1 a.e. on A2: Proceeding in this fashion we obtain a series
of sequences

fPngNn¼1*fPk1gNk¼1*fPk2gNk¼1*?*fPkjgNk¼1*?;

such that limk-N PkjðxÞ~xx1 ¼ PðxÞ~xx1 almost everywhere on Aj:
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Consider now the diagonal sequence fPkkgNk¼1: Clearly limk-N PkkðxÞ~xx1 ¼ PðxÞ~xx1

a.e. on each Aj and therefore on X : Set Pl1 ¼ Pll ; l ¼ 1; 2;y : Using the same

arguments we can find a subsequence, fPl2gNl¼1; of fPl1gNl¼1 such that

liml-N Pl2ðxÞ~xx2 ¼ PðxÞ~xx2 a.e. on X and then fPlkgNl¼1; of fPl1gNl¼1 such that

liml-N PlkðxÞ~xxm ¼ PðxÞ~xxm a.e. on X for any mpk so that liml-N PllðxÞ~xxk ¼
PðxÞ~xxk a.e. on X for any k: Since f~xxkg is dense in l2 and the sequence fPllgNl¼1 is

bounded,

lim
l-N

PllðxÞ~xx ¼ PðxÞ~xx a:e: on X for any ~xxAl2:

ðivÞ ) ðiiÞ: if TAMmaxðEÞ; we have

bil 1#T+fðP;QÞ : ðP;QÞ is a simple E pairgs
;

due to Theorem 4.5; (iv) implies now bil 1#T+S̃E and hence TAMminðEÞ: &

Remark 4.2. The equivalence ðiÞ 3 ðiiiÞ was essentially proved in [A] and
ðiÞ 3 ðiiÞ in [Da1] but using some other methods.

We use the equivalence ðiÞ 3 ðvÞ to obtain the following result.

Theorem 4.7 (Inverse Image Theorem). Let ðX ; mÞ; ðY ; nÞ; ðX1; m1Þ and ðY1; n1Þ be

standard Borel spaces with measures, j : X/X1; c : Y/Y1 Borel mappings. Suppose

that the measures j�m; c�n are absolutely continuous with respect to the measures m1

and n1 respectively. If a Borel set E1DX1 � Y1 is a set of m1 � n1-synthesis then

ðj� cÞ�1ðE1Þ is a set of m� n synthesis.

Proof. To prove the theorem we will need to prove first an auxiliary lemma.

Lemma 4.2. Let ðX ; mÞ; ðY ; nÞ be standard Borel spaces with measures and f : X-Y

be a Borel map. Then there exists a n-measurable set NCf ðXÞ; nðNÞ ¼ 0; such that

f ðX Þ \N is Borel and if u : X-R is a bounded Borel function then for any e40 there

exists a Borel map g : f ðXÞ \N-X such that f ðgðyÞÞ ¼ y for every yAf ðXÞ \N and

uðgð f ðxÞÞÞ4uðxÞ � e a.e. on X :

Proof. Assume first that the map f : X-Y is surjective. For any such map there
exists a Borel section, i.e., a map g : Y-X which satisfies f ðgðyÞÞ ¼ y; yAY (see, for
example, [Ta]). Since u : X-R is bounded, uðXÞD½a; b�: Let a ¼ a0oa1o?oan ¼ b

be a partition of ½a; b� such that aiþ1 � aioe: Set

Xj ¼ u�1ð½aj; ajþ1ÞÞ; Yj ¼ f ðXjÞ; Y 0
j ¼ Yj

[
k4j

Yk

 !-
:
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Then each Y 0
j is the image of X 0

j ¼ Xj \ð
S

k4j f �1ðYkÞÞ: We have also that
S

j Y 0
j ¼ Y ;

Y 0
i -Y 0

j ¼ |; iaj; and since every Y 0
i is an analytic space, we obtain that Y 0

i must

be Borel (see, for example, [Ta, Theorem A.3]). Let gj : Y 0
j-X 0

j be a Borel section

for f jX 0
j
: Then the functions gj determine a Borel section, g; for f : Clearly,

gðYjÞD
S

iXj Xi so that uðgðyÞÞXaj for each yAYj and therefore uðgð f ðxÞÞÞXaj for

any xAXj: As uðxÞA½aj; ajþ1Þ for xAXj; we obtain uðgð f ðxÞÞÞ4uðxÞ � e for each

xjAXj and therefore for each xAX :

For the general case consider the image f ðXÞ which is an analytic subset of Y : By
[Ta, Theorem A.13] there exists a n-measurable set NCf ðX Þ of zero measure such

that f ðX Þ \N is Borel. Set X̃ ¼ f �1ð f ðX Þ \NÞ: Then f is a Borel map from the Borel

set X̃ onto f ðXÞ \N: Thus, given e40; there exists a Borel map g : f ðX Þ \N-X such

that f ðgðyÞÞ ¼ y for every yAf ðXÞ \N and uðgð f ðxÞÞÞ4uðxÞ � e on X̃: Since

X \X̃Df �1ðNÞ; we have that mðX \X̃Þ ¼ 0 and the inequality holds almost
everywhere on X : &

Set E ¼ ðj� cÞ�1ðE1Þ: By Theorem 4.6, we shall have established the theorem if
we prove that any E-pair can be approximated a.e. in the strong operator topology
of Bðl2Þ by simple E-pairs. Since, by Theorem 4.5, the approximated pairs form a
bilattice it would be enough to prove that any E-pair is majorized by an
approximated pair.

Let ðP;QÞ be an E-pair. Choose a dense sequence xn in l2 and a sequence en40;
en-0: Set unðxÞ ¼ ðPðxÞxn; xnÞ: By Lemma 4.2, there are null sets NnCX1; MnCX

and a Borel map gn : jðX Þ \Nn-X ; such that jðgnðx1ÞÞ ¼ x1; for x1AjðX Þ \Nn; and
unðgnðjðxÞÞÞ4unðxÞ � en; for xAX \Mn:

For x1AjðX Þ \N; where N ¼
S

N

n¼1 Nn; set

P̂ðx1Þ ¼
_

n

Pðgnðx1ÞÞ:

Then for any xAX \M; where M ¼
S

N

n¼1 Mn; one has

ðPðxÞxn; xnÞ ¼ unðxÞounðgnðjðxÞÞÞ þ en

¼ðPðgnðjðxÞÞÞxn; xnÞÞ þ enpðP̂ðjðxÞÞxn; xnÞ þ en:

It easily follows that

PðxÞpP̂ðjðxÞÞ; xAX \M: ð5Þ

Similarly, we construct null sets M 0CY ; N 0CY1; functions g0
n : cðY Þ \N 0-Y and set

Q̂ðy1Þ ¼
W

n Qðg0
nðy1ÞÞ so that

QðyÞpQ̂ðcðyÞÞ; yAY \M 0: ð6Þ
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Thus ðP;QÞ is majorized by ðP̂3j; Q̂3cÞ:
Setting P̂ ¼ 0 and Q̂ ¼ 0 on the complements of jðXÞ \N and cðYÞ \N 0

respectively, we have that ðP̂; Q̂Þ is an E1-pair. Indeed, let ðx1; y1ÞAE1;
x1AjðX Þ \N; y1AcðYÞ \N 0; then

Pðgnðx1ÞÞ>Qðg0
mðy1ÞÞ

for any n; m: Hence

P̂ðx1Þ>Q̂ðy1Þ:

It follows that there are simple E1-pairs ðP̂n; Q̂nÞ with P̂nðx1Þ-P̂ðx1Þ a.e. (x1eS),

Q̂nðy1Þ-Q̂ðy1Þ a.e. (y1eS0). Let

PnðxÞ ¼ P̂nðjðxÞÞ; QnðyÞ ¼ Q̂nðcðyÞÞ:

Then PnðxÞ-P̂ðjðxÞÞ a.e., QnðyÞ-Q̂ðcðyÞÞ a.e. Indeed, let t ¼ fx : jðxÞASg; then

mðtÞ ¼ mðfx : jðxÞASgÞ ¼ j�mðSÞ ¼ 0;

because j�m is absolutely continuous with respect to m1: Similarly, nðt0Þ ¼ 0; where

t0 ¼ fy : cðyÞAS0g: This shows that the pair ðP̂3j; Q̂3cÞ is approximable by simple
pairs. The proof is complete. &

Corollary 4.5. Let EDX � Y be a set of synthesis with respect to a pair of measures

ðm1; n1Þ; m1AMðXÞ; n1AMðY Þ: Then E is a set of ðm; nÞ-synthesis for any mAMðX Þ;
nAMðYÞ such that mpm1; npn1:

Proof. Follows from Theorem 4.7 applied to the identity mappings j and c: &

Suppose that fi and gi; i ¼ 1;y; n; are Borel maps of standard Borel spaces
ðX ; mÞ and ðY ; nÞ into an ordered standard Borel space ðZ;pÞ: Then the set
E ¼ fðx; yÞ j fiðxÞpgiðyÞ; i ¼ 1;y; ng is called a set of width n:

Theorem 4.8. Any set of finite width is synthetic with respect to the measures m; n:

Proof. Let E be a set of width n; i.e. E ¼ fðx; yÞAX � Y j fiðxÞpgiðyÞ; i ¼ 1;y; ng;
where fi : X-Z; gi : Y-Z are Borel functions. We define mappings F : X-Zn and
G : Y-Zn by setting FðxÞ ¼ ð f1ðxÞ;y; fnðxÞÞ; GðyÞ ¼ ðg1ðyÞ;y; gnðyÞÞ: Put m1 ¼
F�m; n1 ¼ G�n: Let E1 ¼ fðx; yÞAZn � Zn j xipyi; i ¼ 1;y; ng: By [A], E1 is a set of
m1 � n1-synthesis if the measures m1 and n1 are equal. In general, consider the
measure l ¼ m1 þ n1; then we can conclude that E1 is a set of l� l-synthesis and
applying now Corollary 4.5 we obtain that E1 is a set of synthesis with respect to

m1; n1: It follows now from Theorem 4.7 that ð F � GÞ�1ðE1Þ ¼ E is a set of m� n-
synthesis. &
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Remark 4.3. Arveson [A], introduced the class of finite width lattices as those which
are generated by a finite set of nests (linearly ordered lattices). He proved that all
finite width lattices are synthetic. Todorov [T], defined a subspace map (see [Er]) of
finite width and proved that such subspace maps are synthetic. This result is in fact
equivalent to our, actually a subspace map is a counterpart of a bilattice.
Synthesizability of special sets of width two (‘‘nontriangular’’ sets) was proved in
[KT,Sh2].

In [A, Problem, p. 487] Arveson also posed a question whether or not the lattice
generated by a synthetic lattice and a lattice of finite width is synthetic. Next result
shows that the answer is no. The example we construct is inspired by the Varopoulos

example [V2] of a set of spectral synthesis for the Fourier algebra AðR2Þ whose
intersection with a subgroup does not admit synthesis.

Let F denote the Fourier transform in Rn and let AðRnÞ be the Fourier algebra
FL1ðRnÞ which is a Banach algebra with the norm jjFf jjA ¼ jj f jjL1

: Recall that a

closed set KDRn admits spectral synthesis for AðRnÞ if for every fAAðRnÞ vanishing
on K there exists a sequence fnAAðRnÞ such that fn vanishes on an open set
containing K and jj fn � f jjA-0 as n-N:

A commutative lattice L is called synthetic if the only ultra-weakly closed algebra

A satisfying lat A ¼ L and L0DA is the algebra alg L: If L1; L2 are two lattices
we will denote by L13L2 the lattice generated by L1 and L2:

Theorem 4.9. There exist a synthetic lattice L1 and a lattice L2 of finite width such

that L13L2 is not synthetic.

Proof. Let GCR be a set which does not admit spectral synthesis for AðRÞ: Set

E ¼ fðx; tÞ : dðx;GÞptgCR2:

Here dðx;GÞ denotes the distance between x and G: Then E is a set of spectral

synthesis for AðR2Þ: Indeed, if f ðx; tÞAAðR2Þ vanishes on E then fnðx; tÞ ¼ f ðx; t þ
1=nÞAAðR2Þ vanishes on En ¼ fðx; tÞ j dðx;GÞot þ 1=ng containing E and jj fn �
f jjA-0 as n-N:

The intersection E-ðR� f0gÞ ¼ G � f0g does not admit spectral synthesis.

In fact, otherwise, given f ðx; tÞAAðR2Þ; f ðx; 0Þ ¼ 0 for xAG; there exists a

sequence fnðx; tÞAAðR2Þ such that fnðx; tÞ ¼ 0 on nbhd of G � f0g and
jj fnðx; tÞ � f ðx; tÞjjA-0; n-N: Now it is enough to see that fnðx; 0Þ;
f ðx; 0ÞAAðRÞ; each fnðx; 0Þ vanishes on a nbhd of G and jj fnðx; 0Þ �
f ðx; 0ÞjjA-N as n-N; contradicting the assumption that G is not a set of spectral

synthesis.

If m denotes the Lebesgue measure on R2; by [F] we have that

E� ¼ fðx; yÞAR2 � R2 j x � yAEg
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is a set of m � m-synthesis while

ðG � f0gÞ� ¼ fðx; yÞAR2 � R2 j x � yAG � f0gg ¼ E�-L;

where L ¼ fðx; yÞAR2 � R2 j x2 ¼ y2g; is not m � m-synthetic.
Let L and L1 be the lattices of projections P"ð1 � QÞ; where ðP;QÞ belongs to

the bilattices SðG�f0gÞ� and SE� respectively. Then L1 is synthetic while L is not. In

fact, if A is an ultra-weakly closed algebra such that lat A ¼ L and L0DA

(lat A ¼ L1 and L0
1DA) then A ¼ A11

0
A21

A22

� �
where Aii ¼ LNðR2Þ; A21 is an

ultra-weakly closed LNðR2Þ � LNðR2Þ-bimodule such that bil A21 ¼ SðG�f0gÞ�

(bil A21 ¼ SE�). The statement now follows from the synthesizability of E� and

the non-synthesizability of ðG � f0gÞ�:
Let PS denote the multiplication operator by the characteristic function of the set

S and let L2 be the lattice of projections PS"PS; where S ¼ R� K and K is a Borel

subset of R (S is an increasing set for the partial ordering xpy; x; yAR2 iff x2 ¼ y2).

Then L2 is a set of width 2 generated by the nests C and C>; where C ¼
fPSt

"PSt
j St ¼ R� ½t;þNÞ; tARg:

What is left to prove is that L ¼ L13L2: Since ðG � f0gÞ� ¼ E�-L; one easily
sees that L1; L2DL and therefore L13L2DL: For the reverse inclusion we use
the reflexivity of the CSL L13L2: Direct verification shows that

alg L13L2 ¼ fðTijÞ2
i;j¼1 j T11;T22ALNðR2Þ;T12 ¼ 0; supp T21DE�-Lg:

Therefore if P"ð1 � QÞAL; i.e. P ¼ Pa; Q ¼ Pb for some Borel sets a; b such

that ða� bÞ-ðE�-LÞ ¼ |; we have P"ð1 � QÞAlat alg L13L2 ¼ L13L2 and
LDL13L2: &

5. General bilattices

Let h0 be a function on ½0; 1� defined by h0ð0Þ ¼ 0 and h0ðtÞ ¼ 1 for ta0;
and let h1ðtÞ ¼ 1 � h0ð1 � tÞ: It is clear that for any positive contraction
A; h0ðAÞ is the projection onto the range of A; h1ðAÞ is the projection onto the
subspace of invariant vectors. It is easy to see (for example, approximating h1ðtÞ by
ta; a-0) that hi are operator monotone, i.e., if A; BABðHÞ; 0pApBp1; then
hiðAÞphiðBÞ:

Recall, given a commutative D1 �D2-bilattice S;

FS ¼ fðA;BÞAðBðl2Þ %#D1Þ � ðBðl2Þ %#D2Þ : ðLjðAÞ;LjðBÞÞAConv S for any jg:

Lemma 5.1. Let D1; D2 be commutative von Neumann algebras on Hilbert spaces H1;
H2 and let S be a D1 �D2-bilattice. Then, for any ðA;BÞAFS; ðh0ðAÞ; h1ðBÞÞAFS and

ðh1ðAÞ; h0ðBÞÞAFS:
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Proof. If D1; D2 are masas in separable spaces H1; H2; then the assertion follows
from Lemma 4.1. Indeed, if AðxÞ þ BðyÞp1; then

h0ðAðxÞÞph0ð1 � BðyÞÞ ¼ 1 � h1ðBðyÞÞ

and ðh0ðAÞ; h1ðBÞÞAFS: Similarly, ðh1ðAÞ; h0ðAÞÞAFS:
Assume now that D1;D2 are arbitrary commutative von Neumann algebras acting

on separable Hilbert spaces. Let x1 and x2 be separating vectors for D1 and D2; and

let Ki ¼ ½Dixi�; i ¼ 1; 2: Then the restriction of Bðl2Þ %#Di to l2#Ki is injective. Now,
since the restriction of Di to Ki is a masa and the restriction of ðA;BÞAFS to

ðl2#K1Þ � ðl2#K2Þ belongs to F %S; where %S is the restriction of S to K1 � K2; the

problem is reduced to the above.
Furthermore, the statement is true when D1; D2 are countably generated. To see

this it is enough to prove that if x1;y; xn and y1;y; yn are vectors in l2#H1 and
l2#H2; then there exist a pair ðC;DÞAFS such that h0ðAÞxi ¼ Cxi and h1ðBÞyi ¼
Dyi; i ¼ 1;y; n: If xk ¼ ðxkjÞ; yk ¼ ðykjÞ; xkjAH1; ykjAH2; we define K1 and K2 to be

the closed linear spans of vector Xxkj; XAD1; and Yykj ; YAD2; respectively. Then

K1 and K2 are separable and we come to the previous case.
Now, to prove the assertion in general situation, it is sufficient to show that each

Di contains a countably generated von Neumann algebra, #Di; such that ðA;BÞAF
Ŝ
;

where Ŝ is the intersection of S with #D1 � #D2: For this take a dense sequence of unit
vectors, fxng; in l2: For each pair ðLxn

ðAÞ;Lxn
ðBÞÞ there exists a sequence, ðAn

k;Bn
kÞ;

from the convex linear span, conv S; of S; which converges to the pair uniformly. Let
S0 be the set of all pairs of projections ðp; qÞAS which participate in the linear

combinations for ðAn
k;Bn

kÞ: Then #D1 and #D2 can be defined as von Neumann algebras

generated by p1ðS0Þ and p2ðS0Þ; pi being the projection onto the ith coordinate. &

Lemma 5.2. S̃ is a bilattice.

Proof. Let ðP;QÞAS̃ and P1APBðl2Þ %#D1
; Q1APBðl2Þ %#D2

; P1pP; Q1pQ: Then

LjðP1ÞpLjðPÞ; LjðQ1ÞpLjðQÞ for each state j on Bðl2Þ so that

ELjðP1Þð½a; 1�ÞpELjðPÞð½a; 1�Þ and ELjðQ1Þð½b; 1�ÞpELjðQÞð½b; 1�Þ

for any 0pa; bp1: Applying now Lemma 3.2 we obtain ðP1;Q1ÞAS̃:

That S̃ is closed under the operations ð3;4Þ; ð4;3Þ follows from

ðP13P2;Q14Q2Þ ¼ ðh0ððP1 þ P2Þ=2Þ; h1ððQ1 þ Q2Þ=2Þ;

ðP14P2;Q13Q2Þ ¼ ðh1ððP1 þ P2Þ=2Þ; h0ððQ1 þ Q2Þ=2Þ

and the previous lemma. &
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Our next goal is to show that S̃ is reflexive. We will deduce this from a general
criteria of reflexivity. To formulate it we need some definitions and notations.

Let S be an R�R-bilattice, where R is a von Neumann algebra on a Hilbert
space H; and let M be a von Neumann algebra on H: Denote by IðMÞ the
semigroup of all isometries in M: We say that S is M-invariant if

* S contains all pairs ðP; 1 � PÞ; PAPM:
* If UAIðMÞ then a pair ðP;QÞAR�R belongs to S if and only if ðUPU�;UQU�Þ

belongs to S:

For any bilattice S we set

OS ¼ fðx; yÞAH � H j (ðP;QÞAS with Px ¼ x;Qy ¼ yg:

If S is clear we write O instead of OS: A bilattice S is called stable if OS is norm-
closed in H"H:

Theorem 5.1. Any R�R-bilattice which is stable and invariant with respect to a

properly infinite von Neumann algebra is reflexive.

Proof. Suppose that S is stable and M-invariant, where M is properly infinite. Note

first that MðSÞDM0: Indeed, if TAMðSÞ then ð1 � PÞTP ¼ 0 for any PAPM; and

similarly PTð1 � PÞ; hence TP ¼ PT and TAM0; because PM generates M:

Claim 1. Let UAIðMÞ: If ðU�x; yÞAO then ðx;UyÞAO:

Indeed, let ðP;QÞAS such that PU�x ¼ U�x; Qy ¼ y: Consider P1 ¼ UPU�; Q1 ¼
UQU�: Then P1x ¼ UU�x; Q1Uy ¼ Uy and thus UyAQ1H-UU�H: Set

P2 ¼ P13ð1 � UU�Þ; Q2 ¼ Q14UU�:

Then P2H contains UU�x and ð1 � UU�Þx; hence P2H contains x; i.e. P2x ¼ x: On
the other hand Q2H contains Uy: So Q2Uy ¼ Uy: Clearly, ðP2;Q2ÞAS and we get
ðx;UyÞAO:

Now we prove the converse statement.

Claim 2. If ðx;UyÞAO; UAIðMÞ then ðU�x; yÞAO:

Indeed, let ðP;QÞAS; Px ¼ x; QUy ¼ Uy: Set

P1 ¼ P3ð1 � UU�Þ; Q1 ¼ Q4UU�:

Then P1x ¼ x; Q1Uy ¼ Uy; P1X1 � UU�; Q1pUU�: It follows that P1; Q1

commute with UU�: Hence P2 ¼ U�P1U and Q2 ¼ U�Q1U are projections.
To see that ðP2;Q2ÞAS note that ðUP2U�;UQ2U�Þ ¼ ðUU�P1;UU�Q1ÞAS;
since UU�P1pP1; UU�Q1pQ1: It remains to show that P2U�x ¼ U�x and
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Q2y ¼ y: Indeed,

P2U�x ¼ U�P1UU�x ¼ U�UU�P1x ¼ U�UU�x ¼ U�x;

Q2y ¼ U�Q1Uy ¼ U�Uy ¼ y:

Our claim is proved.

For ðx; yÞAH � H; we denote by vx;y the restriction of the vector state wx;y to M0:

Claim 3. If ðx; yÞAO; vx;y ¼ vx;z then ðx; zÞAO:

To show this set t ¼ y � z: Then vx;t ¼ 0; M0x>M0t: Defining R to be the

projection onto M0x we have RAM; Rx ¼ x and ð1 � RÞt ¼ t:
Let now ðP;QÞAS; Px ¼ x; Qy ¼ y: Set P1 ¼ P4R; Q1 ¼ Q3ð1 � RÞ: Then

ðP1;Q1ÞAS; P1x ¼ x; Q1z ¼ Q1ðy � tÞ ¼ y � t ¼ z: We proved that ðx; zÞAO:
Since M is properly infinite there are U1; U2AIðMÞ with U1H>U2H: We fix such

a pair of isometries.

Claim 4. If ðx1; y1ÞAO and vx1;y1
¼ vx2;y2

then ðx2; y2ÞAO:

Indeed, set x ¼ U1x1 þ U2x2: Then x1 ¼ U�
1 x: Hence ðU�

1 x; y1ÞAO: By Claim 1,

ðx;U1y1ÞAO: Since

vx;U1y1
¼ vU�

1
x;y1

¼ vx1;y1
¼ vx2;y2

¼ vx;U2y2
;

we obtain from Claim 3 that ðx;U2y2ÞAO: Now by Claim 2, ðU�
2 x; y2ÞAO; that is

ðx2; y2ÞAO: The claim is proved.
Set now

W ¼ fvx;y j ðx; yÞAOg:

Claim 5. W is a linear subspace in the space ðM0Þ� of all s-weakly continuous

functionals on M0:

Indeed,

vx1;y1
þ vx2;y2

¼ vx;U�
1

y1
þ vx;U�

2
y2
¼ vx;y;

where x ¼ U1x1 þ U2x2: We know from the preceding claim that ðx;U�
1 y1Þ and

ðx;U�
2 y2Þ belong to O: Let ðP1;Q1ÞAS; ðP2;Q2ÞAS such that

P1x ¼ x; Q1U�
1 y1 ¼ U�

1 y1; P2x ¼ x; Q2U�
2 y2 ¼ U�

2 y2:

Then setting P ¼ P14P2; Q ¼ Q13Q2 we have Px ¼ x; Qy ¼ y: Thus ðx; yÞAO and
W þ WDW :
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Claim 6. W is norm-closed.

Let jn-j; jnAW : Since j is s-weakly continuous and M0 has a separating

vector, j ¼ vx;y for some xAH; yAH: Since M0 has the properly infinite commutant,

there are xn; ynAH such that jn ¼ vxn;yn
; jjxn � xjj-0; jjyn � yjj-0 [Sh1]. By Claim

4, ðxn; ynÞAO: Since S is stable, ðx; yÞAO and jAW : We proved that W is norm-
closed.

Recall that M0 is the dual of ðM0Þ�: So for ADM0; BDðM0Þ� we write

A> ¼ fjAðM0Þ� jADker jg; B> ¼ fTAM jjðTÞ ¼ 0; 8jABg:

By the usual duality argument, ðB>Þ> coincides with the norm closure of B; for any

linear subspace BDðM0Þ�:

Claim 7. W ¼ ðMðSÞÞ>:

Indeed, suppose that TAW>: Then for any ðP;QÞAS; QTP ¼ 0; because

ðQTPx; yÞ ¼ wPx;QyðTÞ ¼ 0:

Thus W> ¼ MðSÞ and, by duality, W ¼ MðSÞ>; since W is closed.

Now we can finish the proof of the theorem.
If ðP0;Q0ÞAbil MðSÞ then wP0x;Q0yðTÞ ¼ 0 for any TAMðSÞ: Hence

wP0x;Q0yAMðSÞ> ¼ W : On the other hand, for any xAP0H; yAQ0H there are

ðPx;y;Qx;yÞAS with xAPx;yH; yAQx;yH: Set

Px ¼
^

yAQ0H

Px;y; Qx ¼
_

yAQ0H

Qx;y:

Then xAPxH; Q0HDQxH: Let

P ¼
_

xAP0H

Px; Q ¼
^

xAP0H

Qx;

then ðP;QÞAS; P0pP; Q0pQ implying ðP0;Q0ÞAS: &

Let S be an R1 �R2-bilattice and let BS denote the ðR1"R2Þ � ðR1"R2Þ-
bilattice generated by all pairs ðP"ð1 � QÞ; ð1 � PÞ"QÞ; where ðP;QÞAS: It is easy
to see that BS consists of all pairs ðP1"P2;Q1"Q2Þ; where ðP1;Q2ÞAS and
Q1p1 � P1; P2p1 � Q2:

Proposition 5.1. An R1 �R2-bilattice S is reflexive if and only if the bilattice BS is

reflexive.
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Proof. Since S is a bilattice, ðP; 0Þ; ð0;QÞAS for any PAR1; QAR2: This implies

MðBSÞ ¼ fðTijÞ2
i;j¼1 j ð1 � PÞT11P ¼ QT22ð1 � QÞ ¼ QT21P ¼ 0;

ð1 � PÞT12ð1 � QÞ ¼ 0; 8ðP;QÞASg

¼fðTijÞ2
i;j¼1 j TiiAR0

i; i ¼ 1; 2;T21AMðSÞ;T12 ¼ 0g

and

bil MðBSÞ ¼ fðP1"P2;Q1"Q2Þ j QiTiiPi ¼ Q2T21P1 ¼ 0; 8T ¼ ðTijÞ2
i;j¼1AMðBSÞg

¼ fðP1"P2;Q1"Q2Þ j Q1P1 ¼ Q2P2 ¼ 0; ðP1;Q2ÞAbil MðSÞg

giving the statement. &

Let now S be again a commutative bilattice in D1 �D2 and let S̃ be the bilattice
defined above.

Theorem 5.2. The bilattice S̃ is reflexive.

Proof. By Proposition 5.1 and Theorem 5.1 it is sufficient to prove that the bilattice
BS̃ is stable and Bðl2Þ#1-invariant.

Let ðx1
n"x2

n; y1
n"y2

nÞAOB
S̃
; xi

n; yi
nAl2#Hi; i ¼ 1; 2; and xi

n-xi; yi
n-yi as n-N:

Then pi
nxi

n ¼ xi
n; qi

nyi
n ¼ yi

n for some ðp1
n"p2

n; q1
n"q2

nÞABS̃: We have ðp1
n; q2

nÞAS̃ and

q1
np1 � p1

n; p2
np1 � q2

n: We can also assume that the sequences fpi
ng; fqi

ng are weakly

convergent:

pi
n-ai; qi

n-bi:

Clearly, aixi ¼ xi; biyi ¼ yi and b1p1 � a1; a2p1 � b2: Let Pi ¼ h1ðaiÞ and Qi ¼
h1ðbiÞ be the projections onto invariant vectors of ai and bi; i ¼ 1; 2: It is easy to

check that ða1; b2ÞAFS̃: By Lemma 3.2, ðP1;Q2ÞAS̃: Moreover, Q1p1 � P1; P2p1 �
Q2: Thus ðP1"P2;Q1"Q2ÞABS̃; ðx1"x2; y1"y2ÞAOB

S̃
and BS̃ is stable.

In order to prove Bðl2Þ#1-invariance we note first that for any unit vector xAl2;

any uAIðBðl2ÞÞ and PABðl2Þ %#Di; i ¼ 1; 2;

LxðPÞ ¼ Luxððu#1ÞPðu#1Þ�Þ and Lxððu#1ÞPðu#1Þ�Þ ¼ Lu�xðPÞ

implying that

ðP;QÞAS̃ iff ððu#1ÞPðu#1Þ�; ðu#1ÞQðu#1Þ�ÞAS̃: ð7Þ

Since u is an isometry, we have also that for any PABðl2Þ %#Di

Pp1 � Q 3 ðu#1ÞPðu#1Þ�p1 � ðu#1ÞQðu#1Þ�
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From this and (7) it follows that ðP1"P2;Q1"Q2ÞABS̃ if and only if

ððu#1ÞðP1"P2Þðu#1Þ�; ðu#1ÞðQ1"Q2Þðu#1Þ�ÞABS̃:

Since for a state j on Bðl2Þ and pAPBðl2Þ;

ðLjðp#1Þ;Ljðð1 � pÞ#1Þ ¼ ðjðpÞ; 1 � jðpÞÞ

¼jðpÞð1; 0Þ þ ð1 � jðpÞÞð0; 1ÞAConv S;

we have also

ðp#1"p#1; ð1 � pÞ#1"ð1 � pÞ#1ÞABS̃:

We proved therefore that BS̃ is Bðl2Þ#1-invariant. &

Proof of Theorem 3.4. Since bil M0ðSÞ+S; we have only to prove the reverse

inclusion. Let ðP;QÞAbil M0ðSÞ: Then ð1#P; 1#QÞAbil MðS̃Þ: By Theorem 5.2,

ð1#P; 1#QÞAS̃ and therefore ðP;QÞAS: &

6. Operator synthesis and spectral synthesis

We recall first the definition of a set of spectral synthesis. Let A be a unital semi-
simple regular commutative Banach algebra with spectrum X ; which is thus a
compact Hausdorff space. We will identify A with a subalgebra of the algebra CðXÞ
of continuous complex-valued functions on X in our notation. If EDX is closed, let

IAðEÞ ¼ faAA : aðxÞ ¼ 0 for xAEg;

I0
AðEÞ ¼ faAA : aðxÞ ¼ 0 in a nbhd of Eg

and JAðEÞ ¼ I0
AðEÞ:

One says that E is a set of spectral synthesis for A if IAðEÞ ¼ JAðEÞ (this definition
is equivalent to the one given in the introduction).

The Banach algebra we will mainly deal with is the projective tensor product

VðX ;YÞ ¼ CðXÞ ##CðYÞ; where X and Y are compact Hausdorff spaces. Recall
that VðX ;YÞ (the Varopoulos algebra) consists of all functions FACðX � YÞ which
admit a representation

Fðx; yÞ ¼
XN
i¼1

fiðxÞgiðyÞ; ð8Þ

where fiACðX Þ; giACðYÞ and

XN
i¼1

jj fijjCðXÞjjgijjCðY ÞoN:
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VðX ;YÞ is a Banach algebra with the norm

jjFjjV ¼ inf
XN
i¼1

jj fijjCðX ÞjjgijjCðYÞ;

where inf is taken over all representations of F in the form
P

fiðxÞgiðyÞ (shortly,P
fi#gi) satisfying the above conditions (see [V1]). We note that VðX ;YÞ is a semi-

simple regular Banach algebra with spectra X � Y :

For BAVðX ;Y Þ0 and FAVðX ;YÞ; define FB in VðX ;YÞ0 by /FB;CS ¼
/B;FCS: Define the support of B by

supp ðBÞ ¼ fðx; yÞAX � Y j FBa0 whenever Fðx; yÞa0g:

Then it is known that for a closed set EDX � Y ;

JVðX ;YÞðEÞ> ¼ fBAVðX ;YÞ0 j supp ðBÞDEg

and hence E is a set of spectral synthesis for VðX ;YÞ if IVðX ;Y ÞðEÞ> ¼
fBAVðX ;YÞ0 j supp ðBÞDEg; i.e., if

/B;FS ¼ 0

for any BAVðX ;YÞ0; supp ðBÞDE; and any FAVðX ;Y Þ vanishing on E: Any

element of VðX ;YÞ0 can be identified with a bounded bilinear form /B; f#gS ¼
Bð f ; gÞ on CðXÞ � CðYÞ which we also call a bimeasure.

We will need also to consider the class of all functions F on X � Y representable

in the form (8) (i.e. FðX ;Y Þ ¼
P

N

i¼1 fiðxÞgiðyÞ; where fiACðX Þ; giACðY Þ) with

sup
x

X
j fiðxÞj2oN; sup

y

X
j giðxÞj2oN

(with the pointwise convergence of the series). It is called the extended Haagerup

tensor product [EfKR] of CðXÞ and CðY Þ and we will denote it by CðX Þ ##ehCðY Þ:
Clearly VðX ;YÞCCðXÞ ##ehCðYÞ: The inclusion is strict, moreover CðXÞ ##ehCðYÞ
contains some discontinuous functions. Indeed, let f ðxÞACðRÞ such that j f ðxÞjp1;
f ðxÞ ¼ 0 for any xAð�N; 1�,½3=2;þNÞ and f ðxÞ ¼ 1 on the interval ½1 þ e; 3=2 �
e�; e being small enough. Setting fkðxÞ ¼ f ð2kxÞ and uðx; yÞ ¼

P
fkðxÞ %fkðyÞ; we

obtain sup
P

j fkðxÞj2 ¼ 1 and therefore uðx; yÞACðX Þ ##ehCðY Þ: However, uðx; xÞ ¼P
j fkðxÞj2 does not converge to zero as x-0 while uðx; 0Þ ¼ uð0; yÞ ¼ 0; i.e. uðx; yÞ

is not continuous in ð0; 0Þ: On the other hand any function in CðXÞ ##ehCðYÞ is
separately continuous and hence it is continuous at all points apart of a set of first
category.

The following theorem connects operator synthesis and synthesis with respect to
the Varopoulos algebra VðX ;YÞ: Let MðXÞ; MðYÞ be the spaces of finite Borel
measures on X and Y respectively.
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Theorem 6.1. If a closed set EDX � Y is a set of synthesis with respect to any pair of

measures ðm; nÞ; mAMðX Þ; nAMðYÞ; then E is synthetic with respect to VðX ;YÞ:

Proof. Assume that E is not a set of spectral synthesis for the algebra VðX ;YÞ: Then
there exists a bimeasure B; supp ðBÞDE and FAVðX ;YÞ; FwE ¼ 0; such that
/B;FSa0: By the Grothendieck theorem, there exist measures mAMðXÞ and
nAMðYÞ and a constant C such that

j/B; f#gSj ¼ jBð f ; gÞjpCjj f jjL2ðX ;mÞjjgjjL2ðY ;nÞ: ð9Þ

Since VðX ;Y Þ can be densely embedded into L2ðX ; mÞ ##L2ðY ; nÞ; it follows from (9)
that the linear functional F//B;FS defined on VðX ;YÞ can be extended to a

continuous linear functional on L2ðX ; mÞ ##L2ðY ; nÞ: Therefore, there exists an
operator TABðL2ðX ; mÞ;L2ðY ; nÞÞ such that

/B;FS ¼ /T ;FS;

the left-hand side being the pairing in the sense of duality between VðX ;YÞ and

VðX ;YÞ0 and the right-hand side is the pairing in the sense of duality between

L2ðX ; mÞ ##L2ðY ; nÞ and BðL2ðX ; mÞ;L2ðY ; nÞÞ:
We have to prove that T is supported in E: Since E is closed, for every closed sets

a; b such that ða� bÞ-E ¼ |; there exist open sets a0*a; b0*b such that a0 � b0

does not intersect E: For every functions fACðXÞ; gACðYÞ which are equal to zero
outside the set a0 and b0 respectively, we have ðTf ; gÞ ¼ /T ; f#gS ¼ /B; f#gS ¼
0: Since each function in L2ðX ; mÞ (L2ðY ; nÞ) which is zero a.e. outside a (b) can be
approximated by continuous functions vanishing outside a0 (b0 respectively), we
obtain QbTPa ¼ 0: By the regularity of measures m and n it follows that this is true

for any Borel sets a; b: &

Corollary 6.1. Suppose that ji : X/Z and ci : Y/Z; i ¼ 1;y; n; are continuous

functions from compact metric spaces X and Y to an ordered compact metric space Z:
Then the set E ¼ fðx; yÞ j jiðxÞpciðyÞ; i ¼ 1;y; ng is a set of synthesis with respect

to the algebra VðX ;YÞ:

Proof. This follows from Theorems 4.8, 6.1. &

This corollary yields the theorem of Drury on synthesizability of ‘‘non-triangular’’
sets, which are sets of width two (see [D]).

We will see that the converse of Theorem 6.1 is false in general.

Lemma 6.1. If EDX � Y is a set of synthesis with respect to a pair of finite measures

then so is its intersection with any measurable rectangle.

Proof. Let mAMðXÞ; nAMðYÞ; let K � S be a measurable rectangle in X � Y ;
let TABðL2ðX ; mÞ;L2ðY ; nÞÞ and FAGðX ;YÞ be such that supp TDE-ðK �
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SÞDnull F : Then T ¼ QSTPK and supp TDE: Moreover, the function F 0ðx; yÞ ¼
wKðxÞwSðyÞFðx; yÞ belongs to GðX ;YÞ and vanishes on E: Since E is a set of
synthesis, we obtain

/T ;FS ¼ /QSTPK ;FS ¼ /T ;F 0S ¼ 0;

finishing the proof. &

Proposition 6.1. There exist a closed set EDX � Y and a pair ðm; nÞ of finite measures

on X and Y such that E is set of synthesis in VðX ;YÞ; but not of m� n-synthesis.

Proof. It will be sufficient to find a closed set EDX � Y and a closed rectangle
K � S in X � Y such that E is synthetic with respect to VðX ;Y Þ but not E-ðK �
SÞ: In fact, if E were a set of synthesis with respect to any pair of finite measures we
would obtain, by Lemma 6.1, that so would be its intersection with any measurable
rectangle and, by Theorem 6.1, the intersection E-ðK � SÞ would be synthetic for
VðX ;YÞ: The construction of the set E is a modification of the Varopoulos example
described in the proof of Theorem 4.9.

Let X ; Y be compact metric spaces and let GCX � Y be a non-synthetic set with
respect to VðX ;YÞ: Let I denote the unit interval ½0; 1� and dððx; yÞ;GÞ be the
distance between ðx; yÞ and G: In ðX � IÞ � Y consider the set

E ¼ fððx; tÞ; yÞAðX � IÞ � Y j dððx; yÞ;GÞptg:

Then E is a set of synthesis with respect to VðX � I ;YÞ: To see this take a function

Fððx; tÞ; yÞ ¼
P

N

k¼1 fkðx; tÞgkðyÞ in VðX � I ;YÞ such that

XN
k¼1

sup j fkðx; tÞj2
XN
k¼1

sup jgkðyÞÞj2oN ð10Þ

and null F+E; and consider Fnððx; tÞ; yÞÞ ¼ Fððx; t þ 1=nÞ; yÞ; nAN: Clearly, Fn

vanishes on

En ¼ fððx; tÞ; yÞAðX � IÞ � Y j dððx; yÞ;GÞot þ 1=ng;

an open set containing the set E: Now

Fnððx; tÞ; yÞ � Fððx; tÞ; yÞ ¼
XN
k¼1

ð fkðx; t þ 1=nÞ � fkðx; tÞÞgkðyÞ

and

jjFnððx; tÞ; yÞ � Fððx; tÞ; yÞjjV

p
XN
k¼1

sup jð fkðx; t þ 1=nÞ � fkðx; tÞj2
XN
k¼1

sup jgkðyÞj2:
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Fix e40: By (10) one can find K40 such that
P

N

k¼Kþ1 sup jð fkðx; t þ 1=nÞ �
fkðx; tÞj2oe: Since all fk; k ¼ 1;y;K ; are continuous on the compact X � I ; they are
uniformly continuous. Therefore there exists N40 such that, for any nXN; we have

sup j fkðx; t þ 1=nÞ � fkðx; tÞÞjo
ffiffiffiffiffiffiffiffiffi
e=K

p
; k ¼ 1;yK : This yields

PK
k¼1 sup jð fkðx; t þ

1=nÞ � fkðx; tÞj2oe and

XN
k¼1

sup jð fkðx; t þ 1=nÞ � fkðx; tÞj2o2e;

showing Fn-F as n-N in VðX � I ;Y Þ:
Consider now

E� ¼ E-ððX � f0gÞ � YÞ ¼ fðx; 0Þ; yÞAðX � IÞ � Y j ðx; yÞAGg:

Our goal is to show that E� is not synthetic in VðX � I ;YÞ: Given a function

Fðx; yÞ ¼
P

N

k¼1 fkðxÞgkðyÞAVðX ;YÞ; null F+G; consider Fððx; tÞ; yÞ ¼ Fðx; yÞ in

VðX � I ;YÞ: Assume that E� is synthetic. Then F can be approximated in VðX �
I ;YÞ by functions Fnððx; tÞ; yÞ which vanish on neighbourhoods of E�: This implies
that F can be approximated by Fnððx; 0Þ; yÞ in VðX ;Y Þ: Clearly, each Fnððx; 0Þ; yÞ
vanishes on a nbhd of G: By arbitrariness of F; we obtain that G is a set of synthesis,
contradicting our assumption. &

Thus the sets of universal (independent on the choice of measures) operator
synthesis form a more narrow class than the sets of spectral synthesis. It is of interest
to clarify which known classes it includes.

A closed set EDX � Y is called ‘‘a set without true bimeasure’’ (SWTB, for
brevity) if any bimeasure concentrated on E is a measure. It is clear that any such set
is a set of spectral synthesis in VðX ;YÞ:

Proposition 6.2. A closed set without true bimeasures is a set of universal operator

synthesis.

Proof. Let mAMðXÞ; nAMðY Þ and let E be a closed set without true bimeasure.
Consider TABðL2ðX ; mÞ;L2ðY ; nÞÞ such that T is supported in E: It defines a
bimeasure BT by ðTu; %vÞ ¼ BTðu; vÞ; where uACðX Þ and vACðY Þ: Moreover,
supp ðBTÞDE: By the condition of the theorem, there exists a measure mAMðX �
YÞ such that supp ðmÞDE and

ðTu; %vÞ ¼
Z

uðxÞvðyÞ dmðx; yÞ; ð11Þ

for every uACðXÞ; vACðYÞ:
Let Fðx; yÞ ¼

P
N

n¼1 unðxÞvnðyÞACðX Þ ##ehCðY Þ and let Fkðx; yÞ ¼Pk
n¼1 unðxÞvnðyÞ; Ekðx; yÞ ¼

P
N

n¼kþ1 junðxÞj2 þ jvnðyÞj2: Then Ekðx; yÞ-0; k-N;
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for every ðx; yÞAX � Y ;

jFðx; yÞ � Fkðx; yÞjpEkðx; yÞ

and therefore Fkðx; yÞ-Fðx; yÞ; k-N; everywhere on X � Y : Moreover,
jFkðx; yÞjpE0ðx; yÞ and E0ðx; yÞ is integrable over m; as m is finite. Thus, by the
theorem on majorized convergence,Z

Fkðx; yÞ dmðx; yÞ-
Z

Fðx; yÞ dmðx; yÞ:

On the other hand, jjF � FkjjGp
R

Ekðx; yÞ dmðxÞ dnðyÞ and
R

Ekðx; yÞ
dmðxÞ dnðyÞ-0; which imply jjF � FkjjG-0 and /T ;FkS-/T ;FS as k-N:

We now obtain the equality

/T ;FS ¼
Z

Fðx; yÞ dmðx; yÞ; FACðXÞ ##ehCðYÞ:

Since m is supported in E; this gives /T ;FS ¼ 0 with F vanishing on E:
Consider now FAGðX ;YÞ; null F+E: Then there exist fiAL2ðX ; mÞ; giAL2ðY ; nÞ

such that Fðx; yÞ ¼
P

N

i¼1 fiðxÞgiðyÞ (m.a.e.) and
P

N

i¼1 jj fijj2L2

P
N

i¼1 jjgijj2L2
oN: Given

e40; we can find compact sets XeDX ; YeDY such that mðX \XeÞoe; nðY \YeÞoe
and

XN
i¼1

j fiðxÞj2oCe; xAXe;
XN
i¼1

jgiðyÞj2oCe; yAYe;

Moreover, we can assume that fi; gi are continuous by the Lusin theorem so that the

restriction Fe of F to Xe � Ye belongs to CðXeÞ ##ehCðYeÞ: Clearly, if E is a set
without true bimeasure, so is E-ðXe � YeÞ: If now TABðL2ðX ; mÞ;L2ðY ; nÞÞ is
supported in E then supp QYeTPXeDE-ðXe � YeÞ and

/QYeTPXe ;FeS ¼ 0:

Letting e-0; we obtain /T ;FS ¼ 0: &

We can say even more about sets without true bimeasures: they are operator
solvable (see Definition 2.2). In the following lemma ðX ; mÞ; ðY ; nÞ are finite measure
spaces as in Section 2.

Lemma 6.2. Let EDX � Y be a pseudo-closed set. If for any e40; there exist XeDX ;
YeDY ; mðX \XeÞoe; nðY \YeÞoe such that E-ðXe � YeÞ is synthetic in Xe � Ye then

E is synthetic in X � Y :

Proof. Let FAGðX ;Y Þ vanish on E: Fix e40 and set Feðx; yÞ ¼ Fðx; yÞwXe
ðxÞwYe

ðyÞ:
Clearly, Fe vanishes on Ee ¼ E-ðXe � YeÞ: Since Ee is a set of synthesis in Xe � Ye
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there exists *FeAGðXe;YeÞ vanishing in a neighbourhood of Ee such that

jjFe � *FejjGoe:

Extending *Fe by zero to the whole space X � Y we get a function vanishing on a
neighbourhood of E and

jjFðx; yÞ � *Feðx; yÞjjG ¼ jjFðx; yÞ � Feðx; yÞ þ Feðx; yÞ � *Feðx; yÞjjG

p jjFðx; yÞðwXe
ðxÞwYe

ðyÞ � 1ÞjjG þ jjFeðx; yÞ � *Feðx; yÞjjG

o jjFjjGjjðwXe
wYe

� 1ÞjjG þ epjjFjjGðenðY Þ þ emðX ÞÞ þ e;

giving the statement. &

Proposition 6.3. If a closed set EDX � Y has a property that any its closed

subset is a set of operator synthesis with respect to a pair ðm; nÞ of regular finite

measures then E is operator solvable. In particular, any set without true bimeasure is

operator solvable.

Proof. Using the regularity of measures, one can easily show that for any pseudo-
closed subset KDE and any e40 there exists a Borel rectangle Xe � Ye with
mðX \XeÞoe; nðY \YeÞoe such that K-ðXe � YeÞ is closed. The statement now
follows from Lemma 6.2. &

Remark 6.1. In [V1], Varopoulos established a deep connection between the algebra

VðGÞ ¼ CðGÞ ##CðGÞ and the Fourier algebra AðGÞ of compact Abelian groups G:
Using the relationships he showed that a closed set EDG is a set of spectral synthesis
for AðGÞ if and only if the diagonal set E� ¼ fðx; yÞAG � G j x þ yAEg is a set of
spectral synthesis for VðGÞ: Recently the same result was proved for non-Abelian
compact groups in [ST] using the established there connection between AðGÞ and the

Haagerup tensor product CðGÞ ##hCðGÞ which is the Varopoulos algebra, renormed.
An analogous result for sets of operator synthesis in G � G was obtained in [F] for
locally compact Abelian groups G and in [ST] for compact non-Abelian groups G:
Namely, a closed set EDG is a set of spectral synthesis for AðGÞ if and only if E� is a
set of operator synthesis with respect to the Haar measure (for the reverse statement,
synthesizability with respect to all pairs of finite measures is not required, as in
Theorem 6.1). Using a method similar to one in Proposition 6.1 one can construct a
set of synthesis E and a pair of finite measures ðm; nÞ such that E� is not m� n-
synthetic.
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7. Operator-Ditkin sets and union of synthetic sets

In the classical harmonic analysis one studies special so-called Ditkin (or Wiener–
Ditkin or Calderon) sets. If A is a unital semisimple regular commutative Banach

algebra with spectrum X then a closed set EDX is called Ditkin set if uAuI0
AðEÞ for

every uAIAðEÞ (see the beginning of the previous section for the notations).

An analogue of such sets can be introduced for the space GðX ;Y Þ ¼
L2ðX ; mÞ ##L2ðY ; nÞ: Here we will make use of a space similar to CðX Þ ##ehCðY Þ: Let

VNðX ;YÞ ¼ LNðX ; mÞ#w�hLNðY ; nÞ

where #w�h denotes the weak� Haagerup tensor product of [BS]. VNðX ;YÞ can be
identified with a space of functions w : X � Y-C which admit a representation

wðx; yÞ ¼
P

N

i¼1 jiðxÞciðyÞ; where jiALNðX ; mÞ; ciALNðY ; nÞ and such that the

series
P

N

i¼1 jjij
2 and

P
N

i¼1 jcij
2 converges almost everywhere to functions in

LNðX ; mÞ and LNðY ; nÞ: As elements in VNðX ;Y Þ these functions are defined up
to a marginally null set.

We say that a complex valued function w on X � Y is a multiplier of GðX ;YÞ if
for any oAGðX ;YÞ; ðs; tÞ/wðs; tÞoðs; tÞ defines an element of GðX ;YÞ: One can
show that w defines a bounded linear operator mw on GðX ;Y Þ and two multipliers w

and w0 satisfy mw ¼ mw0 if w ¼ w0 marginally almost everywhere. We say that w and
w0 are equivalent if mw ¼ mw0 : It was proved in [ST] (and in other terms in [P,Sm])
that the space of multipliers of GðX ;YÞ coincides with VNðX ;Y Þ: If measures m; n
are finite, we also have VNðX ;Y ÞCGðX ;YÞ: For a pseudo-closed set E denote
C00ðEÞ ¼ f FAVNðX ;Y Þ : F ¼ 0 on a neighbourhood of Eg:

Definition 7.1. We say that a pseudo-closed set EDX � Y is m� n-Ditkin if

fAfC00ðEÞ for any fAFðEÞ; i.e. if for any fAFðEÞ there exists a sequence
fgngAC00ðEÞ such that

jjgn 
 f � f jjG-0 as n-N:

Clearly, every m� n-Ditkin set is m� n-synthetic.
We will now study a question how m� n-Ditkin and m� n-synthetic sets behave

under forming unions. If G is a locally compact abelian group it is known that the
union of two Ditkin sets in XðAðGÞÞ (the space of characters of the Fourier algebra
AðGÞ) is Ditkin. Whether the union of two spectral sets in AðGÞ is spectral is one of
the unsolved problems in harmonic analysis. If we knew that any spectral set is a
Ditkin set the question would be answered affirmatively since a union of two Ditkin
sets is again a Ditkin set (see [Be] for survey of this). Another known result about
unions is that if E; F are closed subsets in X ðAðGÞÞ such that their intersection is a
Ditkin set then their union is spectral if and only if so are the sets E; F (see [W]). The
result was also generalised to AðGÞ; where G is an arbitrary locally compact group
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(see [KL]). We will prove a similar statement for m� n-Ditkin and m� n-synthetic
sets. In what follows we write simply Ditkin and synthetic sets, if no confusion arise.

If fAGðX ;Y Þ denote by supp ð f Þ ¼ clofðx; yÞAX � Y : f ðx; yÞa0g; where clo
indicates the pseudo-closure.

Theorem 7.1. The union of two m� n-Ditkin sets is a m� n-Ditkin set. The union of

m� n-Ditkin set and a m� n-synthetic set is m� n-synthetic.

Proof. Suppose E1 and E2 are Ditkin sets, E ¼ E1,E2; e40; fAGðX ;YÞ vanishing
on E: By definition of Ditkin sets there exist functions giAC00ðEiÞ such that jj f �
fg1jjGoe=2 and jj fg1 � fg1g2jjoe=2: If g ¼ g1g2 then gAVNðX ;Y Þ; g vanishes on a

neighbourhood of E and jj f � fgjjGoe:
Let now E1 be a Ditkin set and E2 synthetic. Then, given e40 and fAFðE1,E2Þ;

there exist g1AC00ðE1Þ and g2AGðX ;YÞ vanishing on a nbhd of E2 such that jj f �
fg1jjGoe=2 and jj f � g2jjGoe=2jjg1jjVN ; where jjg1jjVN is the norm of the bounded

operator on GðX ;Y Þ corresponding to g1: We have that g1g2AGðX ;YÞ vanishes on a
nbhd of E1,E2 and jj f � g1g2jjGoe: &

Lemma 7.1. Let E1 and E2 be pseudo-closed subsets of X � Y whose intersection is a

Ditkin set and let E ¼ E1,E2: Then

F0ðEÞ ¼ F0ðE1Þ-F0ðE2Þ:

Proof. Clearly,

F0ðEÞDF0ðE1Þ-F0ðE2Þ:

Therefore, we have to prove the reverse inclusion. We work modulo marginally null
sets. Let fAF0ðE1Þ-F0ðE2Þ and let d40: Since K ¼ E1-E2 is a Ditkin set, there is

vAC00ðKÞ such that jjvf � f jjGod: If Ec ¼
S

N

i¼1 ai � bi then vf wai�bi
AF0ðEÞ: If

ðsupp ðvf ÞÞc ¼
S

N

i¼1 gi � di; we have vf wgi�di
¼ 0AF0ðEÞ:

Consider now E-supp ðvf Þ and set

C1 ¼ E1-supp ðvf Þ; C2 ¼ E2-supp ðvf Þ:

Then E-supp ðvf Þ ¼ C1,C2 and C1-E2 ¼ |: Hence C1DEc
2: Moreover, Ec

2 is

pseudo-open.

Let Ec
2 ¼

S
N

i¼1 a1
i � b1

i : We have wi ¼ wa1
i
�b1

i
AF0ðE2Þ vanishes on a nbhd of E2 and

vfwiAF0ðE1,E2Þ ¼ F0ðEÞ
Similarly,

C2DEc
1 ¼

[N
i¼1

a2
i � b2

i
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and vfuiAF0ðEÞ; where ui ¼ wa2
i
�b2

i
: We have therefore

X � Y ¼ Ec,ðsupp ðvf ÞÞc,C1,C2D
[N
i¼1

*ai � *bi

and vf w*ai� *bi
AF0ðEÞ: One can find AeDX and BeDY ; mðX \AeÞoe and nðY \BeÞoe;

such that ðX � YÞ-ðAe � BeÞ is the union of a finite number of f*ai � *big; say first n

([ErKSh] [Lemma 3.4]). Set vi ¼ w*ai� *bi
and let h1 ¼ v1; h2 ¼ v2 � h1v2;y; hk ¼

vk � vkðh1 þ?þ hk�1Þ: Then
Pn

i¼1 hi ¼ 1 on Ae � Be; vfhiAF0ðEÞ and

vf wAe
wBe

¼ vf
Xn

i¼1

hiwAe
wBe

¼
Xn

i¼1

vfhiwAe
wBe

AF0ðEÞ:

Taking now e-0 we get vfAF0ðEÞ and fAF0ðEÞ: &

Theorem 7.2. Let E1 and E2 be pseudo-closed subsets of X � Y whose intersection is a

Ditkin set, and let E ¼ E1,E2: Then E is m� n-synthetic if and only if both E1 and E2

are m� n-synthetic.

Proof. Assume first that E1 and E2 are synthetic. We have

FðEÞ ¼ FðE1Þ-FðE2Þ ¼ F0ðE1Þ-F0ðE2Þ ¼ F0ðEÞ:

The last equality is due to Lemma 7.1
To prove the reverse statement we note first that FðEÞ ¼ F0ðEÞ ¼

F0ðE1Þ-F0ðE2Þ: On the other hand FðEÞ ¼ FðE1Þ-FðE2Þ and we get

F0ðE1Þ-F0ðE2Þ ¼ FðE1Þ-FðE2Þ:

Take now fAFðE1Þ: Since fAFðE1-E2Þ and K ¼ E1-E2 is a Ditkin set, given d40
there exists vAC00ðKÞ such that jjvf � f jjGod: Arguing as in the proof of Lemma 7.1

we have

Ec
1,ðsupp ðvf ÞÞc ¼

[N
i¼1

ai � bi

so that vf wai�bi
AF0ðE1Þ: Let F ¼ E1-supp ðvf Þ: We have F-E2 ¼ | and FDEc

2:

Then for any e40 we can find XeDX ; YeDY ; mðX \XeÞoe and nðY \YeÞoe such that

F-ðXe � YeÞD
[n
i¼1

gi � diDEc
2:

We can choose the rectangles gi � di to be disjoint.
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Set w ¼
Pn

i¼1 wgi�di
: We have vf � vfw vanishes on

Sn
i¼1 gi � di: Then

Xe � YeDð F,Ec
1,ðsupp ðvf ÞÞcÞ-ðXe � YeÞD

[n
i¼1

gi � di

 !
,

[N
i¼1

ai � bi

 !

and vf ð1 � wÞwSn

i¼1
gi�di

¼ 0AF0ðE1Þ; vf ð1 � wÞwai�bi
AF0ðE1Þ: As before we can

conclude that

vf ð1 � wÞwXe�Ye
AF0ðE1Þ:

But vfwAF0ðE2ÞDFðE2Þ; so vfwAFðE2Þ-FðE1Þ ¼ F0ðE2Þ-F0ðE1Þ and therefore
vfwAF0ðE1Þ: Since ðvf � vfwÞwXe�Ye

belongs to F0ðE1Þ we get vf wXe�Ye
AF0ðE1Þ:

Since e and d are arbitrary, vfAF0ðE1Þ and fAF0ðE1Þ; i.e. F0ðE1Þ ¼ FðE1Þ:
Similarly, F0ðE2Þ ¼ FðE2Þ: &
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