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We prove that for a given operator in the Standard Model (SM) with baryon number �B and lepton 
number �L, that the operator’s dimension is even (odd) if (�B −�L)/2 is even (odd). Consequently, this 
establishes the veracity of statements that were long observed or expected to be true, but not proven, 
e.g., operators with �B − �L = 0 are of even dimension, �B − �L must be an even number, etc. These 
results remain true even if the SM is augmented by any number of right-handed neutrinos with �L = 1.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The Standard Model (SM) has been remarkably successful at 
providing accurate expectations for experimental results, but it 
remains agnostic regarding a number observations, e.g., neutrino 
masses, dark matter, baryon asymmetry, etc. The SM must be ex-
tended in order to account for these shortcomings, but not at 
the expense of undoing the predictive power provided by the 
SU (3)c ⊗ SU (2)L ⊗U (1)Y group symmetries in the SM. An interest-
ing peculiarity among operators in the renormalizable Lagrangian 
of the SM is that baryon number �B and lepton number �L ap-
pear as accidental global symmetries, which are not violated in 
perturbation theory. A phenomenological implication of the baryon 
asymmetry of the universe and nonzero neutrino masses may be 
that there are additional degrees of freedom that violate �B and 
�L, beyond those already present in the SM.

To date, no compelling evidence exists for new particles with 
mass � 1 TeV, and there are strong experimental constraints on 
the scale for new degrees of freedom that could mediate �B and 
�L processes, like nucleon decay and neutrinoless double beta de-
cay. Given these facts, the simplest way to parameterize �B- and 
�L-violating processes is via effective field theory, where heavy 
degrees of freedom are integrated out, and the SM can be aug-
mented with effective operators of mass dimension d > 4. If so, 
one can parameterize processes that violate �B and �L with ef-
fective operators while still preserving the gauge symmetries of the 
SM. Such a parameterization ignores details of physics high ener-
gies and permits a democratic treatment of operators that can be 
used to extend the SM.

Some surveys of the effective operators in the SM notice that 
there are distinct patterns between the mass dimension d of the 
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effective operator and its value of �B and �L [1–17]. The most 
prominent observation is that for a given value of �B and �L, 
there is a minimum value of d. For example, given an operator 
with |�L| = 2 and �B = 0, the lowest value of d (when there 
are no right-handed neutrinos) is 5, specifically, the Weinberg op-
erator, (LH)2, and consequently other operators with |�L| = 2, 
�B = 0 have odd dimension, since a tower of higher-dimensional 
operators can be constructed by adding on the dimension-2 SM 
operator (H∗H). However, it remains to be proven deductively 
that |�L| = 2, �B = 0 operators cannot have even mass dimen-
sion. Other well-known observations are that d = 6 operators have 
�B −�L = 0 [1–3,7,10,13,16], operators with odd dimension must 
violate �B or �L [6,11,15,16], etc. General statements like these 
about expectations regarding the dimension of the operators that 
give rise to processes that violate baryon and lepton number can 
greatly simplify the process of model building and effective opera-
tor analysis.

It may be useful to go beyond noticing patterns after writing 
down every operator in the SM for a fixed value of d, as done in 
Refs. [3,7,10,13,15–17], and instead deduce what relationships be-
tween d, �B , and �L must hold, given only the requirements of 
invariance under SM gauge symmetries and Lorentz transforma-
tions. There have been some attempts at deriving a relationship 
between �B , �L, and d [6,11,14], but none so far have been suffi-
ciently general in order to prove all possible statements about any 
operator dimension d and any value of �B or �L. Here, we pro-
vide a proof that for a given operator in the SM, that d is even 
(odd) if |�B − �L|/2 is even (odd), which follows directly from 
Lorentz invariance and U (1)Y hypercharge invariance. These re-
sults remain valid even if there are any number of right-handed 
neutrinos with �L = 1 added to the particle content of the SM.
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All operators in the SM are built out of matter fields (Q , uc , 
dc , L, ec , Q †, uc†, dc†, L†, ec†),1 covariant derivatives Dμ , Higgs 
fields (H , H∗), and field strength tensors (Bμν , Wμν , Gμν ). In 
addition to the known SM degrees of freedom, there may exist an-
other chiral neutrino: νc (along with its complex conjugate, νc†), 
which is often utilized, though it is not absolutely necessary, to 
explain the observation that neutrinos have nonzero mass. When 
these building blocks are put together to form an operator of any 
mass dimension in the SM, one must conserve Lorentz invari-
ance and ensure that the operator transforms trivially under the 
SU (3)c ⊗ SU (2)L ⊗ U (1)Y group symmetries.

These requirements for an SM operator can be easily imposed 
by noting that they can be interpreted as global constraints on 
the number N of fermion fields, Higgs fields, covariant derivatives, 
and field-strength tensors in the operator. For example, the re-
quirement that the operator is invariant under the U (1)Y weak 
hypercharge symmetry (hypercharge henceforth) can be stated as2

0 = 1

3

(
N Q − N Q †

) − 4

3

(
Nu − Nu†

) + 2

3

(
Nd − Nd†

)
− (

NL − NL†

) + 2
(
Ne − Ne†

) + (NH − NH∗) (1)

Interestingly, the constraints placed on an SM operator by requir-
ing SU (3)c ⊗ SU (2)L invariance are, in fact, contained in Eq. (1). 
To see how, note that because all N ’s must be a positive integer, 
and the last three terms in Eq. (1) sum to an integer, it immedi-
ately follows that the sum of the first three terms in Eq. (1) must 
also be an integer, which can be rewritten as

1

3

(
N Q + Nd† + Nu†

) − 1

3

(
N Q † + Nd + Nu

) − (Nu − Nu†)

+ (Nd − Nd†) ∈ Z, (2)

and it immediately follows that

1

3

(
N Q + Nd† + Nu†

) − 1

3

(
N Q † + Nd + Nu

) ∈ Z. (3)

Eq. (3) is exactly the requirement that the effective operator is 
invariant under SU (3)c transformations. Likewise, we can begin 
again with Eq. (1), and rewrite it as

0 = (
N Q − N Q †

) − 3
(
NL − NL†

) + 3 (NH − NH∗)

− 4
(
Nu − Nu†

) + 2
(
Nd − Nd†

) + 6
(
Ne − Ne†

)
. (4)

Since the last three terms in Eq. (4) must sum to an even integer, 
the sum of the first three terms must also sum to an even integer. 
To show this will always hold, here we can note that the require-
ment of invariance under the SU (2)L transformations is no more 
than the requirement that there are an even number of SU (2)L
doublets:

even = N Q + N Q † + NL + NL† + NH + NH∗ . (5)

Since an even number of fields can be added to both sides of 
Eq. (5), it implies that

1 Of course, there are three generations of matter fields, though because anomaly 
cancellation is required for each generation independently, we can consider here 
only a single family without loss of generality. Also, it is convenient for our pur-
poses, and somewhat conventional, to leave implicit the identifications of the color 
charges, i.e., red, blue, green, for the quark fields. As long as there is the correct 
number of quark fields, then we presume that a specific assignment of color charges 
can be picked to form an SU (3)c singlet. This is a common simplification, because 
only the number of colors, and not specific colors themselves, is physically observ-
able.

2 The hypercharge assignments in Eq. (1) are twice the value of the assignments 
typically seen in the literature. This is purely convention, and the hypercharge nor-
malization used in this analysis is chosen just for the purposes of algebraic simpli-
fication.
even = (
N Q − N Q †

) − 3
(
NL − NL†

) + 3 (NH − NH∗) (6)

should also hold. Therefore, Eq. (1) also contains the SU (2)L con-
straint. This shows that the hypercharge assignments for the fields 
in the SM contain all the necessary information needed when de-
termining whether a given operator is a SM singlet under SU (3)c ⊗
SU (2)L ⊗ U (1)Y group transformations. Thus, we only make use of 
only the U (1)Y hypercharge constraint to ensure gauge invariance.

We now turn to the discussion of Lorentz invariance. If there 
are no σμ matrices in the operator, then the number of right-
and left-handed fields must each be even in order for the oper-
ator to be Lorentz invariant. Because there must be at least one 
right- and left-handed field each for every σμ matrix in the oper-
ator to form a Lorentz singlet, it implies that if there are an even 
(odd) number of σμ matrices in the operator, then there are an 
even (odd) number of right-handed fields and an even (odd) num-
ber of left-handed fields. Additionally, we can note that the only 
way to contract a Lorentz index associated with a derivative is 
to contract it with either a σμ matrix or a field strength tensor. 
Because a σμ matrix has one Lorentz index and a field strength 
tensor has two, an even (odd) number of Lorentz indices associ-
ated with derivatives must correspond to an even (odd) number 
of σμ matrices in the operator. If the operator has an odd num-
ber of derivatives, then the operator must have an odd number 
of σμ matrices. Therefore, from these observations, Lorentz invari-
ance can be stated as: if ND is even (odd), then

(N Q + Nu + Nd + NL + Ne + Nν) is even (odd), (7)

and

(N Q † + Nu† + Nd† + NL† + Ne† + Nν†) is even (odd). (8)

Here, ND stands for the number of covariant derivatives, and Nν

(Nν† ) counts the total number of left-handed antineutrinos (right-
handed neutrinos). Together, the constraint of hypercharge invari-
ance, Eq. (1), and Lorentz invariance, Eqs. (7) and (8), constitute 
the necessary and sufficient conditions for operators in the SM.

In order to discuss any relationships between �B , �L, and the 
operator mass dimension d, we begin by defining d as

d ≡ 3

2

(
N Q + N Q † + Nu + Nu† + Nd + Nd† + NL + NL†

+ Ne + Ne† + Nν + Nν†

) + NH + NH∗ + ND + 2N X , (9)

Here, N X indicates the number of field-strength tensors, i.e., Bμν , 
Wμν , or Gμν . Given the definitions of baryon number �B and lep-
ton number �L,

�L ≡ NL + Ne† + Nν† − (
NL† + Ne + Nν

)
, (10)

�B ≡ 1

3

(
N Q + Nu† + Nd†

) − 1

3

(
N Q † + Nu + Nd

)
, (11)

we know from its definition that �L is an integer (�L ∈ Z), and 
from Eq. (3) that hypercharge invariance implies that �B must be 
an integer (�B ∈ Z). From the definition of d in Eq. (9) and the 
fact that �B ∈ Z, we can note that for an operator with a given 
value of �B and �L, the minimum value of its mass dimension 
dmin is

dmin ≥ 9

2
|�B| + 3

2
|�L|. (12)

Eq. (12) is a weak lower bound, but is an exact equality when the 
operator contains only fermionic matter fields and when �B or 
�L are nonzero. While it is commonly noted that there is a value 
of dmin for a given value of �B and �L, e.g., when �B = 0 and 
|�L| = 2, dmin = 3 (5) if there are (no) right-handed neutrinos [1], 
it is not trivial to determine whether or not there is an analytical 
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function for dmin as a function of only �B and �L. Finding such 
a solution would require solving a discrete optimization problem, 
but with 16 free parameters subject to a few constraints, i.e., hy-
percharge invariance, Lorentz invariance, and definitions of �B and 
�L, it remains an open question whether there exists an analytical 
solution.

Since one may not be able to derive a closed analytical expres-
sion for dmin, the next best thing may be to determine whether d
is even or odd, given only values of �B and �L. Inserting the con-
straint of hypercharge invariance in Eq. (1) and the definitions of 
�B and �L in Eqs. (11) and (10) into the definition of d in Eq. (9)
gives:

d = 3

(
N Q † + 2Nu − Nu† + Nd† + NL† + Ne† + Nν†

+ 1

2
�B + 3

2
�L

)
− 2NH + 4NH∗ + ND + 2N X . (13)

At this point, determining whether d is even or odd requires de-
termining whether the number

3
(
N Q † − Nu† + Nd† + NL† + Ne† + Nν†

) + ND , (14)

is even or odd. The requirement of Lorentz invariance in Eq. (8)
proves, in fact, that Eq. (14) is always even. Because d is a positive 
integer (d ∈N), one therefore can conclude:
(

1

2
�B + 3

2
�L

)
∈ Z

{
even, d → even
odd, d → odd

(15)

Or, equivalently,

(�B − �L)

2
∈ Z

{
even, d → even
odd, d → odd

(16)

These statements can be further summarized succinctly by the fol-
lowing statements:

d is even ←→ |�B − �L| = 0,4,8,12, ... (17)

d is odd ←→ |�B − �L| = 2,6,10,14, ... (18)

There are some useful takeaways, that are direct consequences 
from Eq. (12) and Eqs. (15)–(18):

• |L| = 2 operators responsible for Majorana neutrino masses oc-
cur at odd mass dimension. This was observed to be true in 
Refs. [9,8,12] for those operators up to and including d = 11, 
but not including those that contain derivatives, gauge bosons, 
nor non-trivial Lorentz structure.

• If �B − �L = 0, the operator must be of even mass dimen-
sion. Specifically, operators with d = 6 and d = 8 must have 
�B − �L = 0. This is validated for all operators with d = 6 in 
Refs. [7,10,13,16] and d = 8 in Refs. [17,16].

• Operators in the SM with odd mass dimension have either 
nonzero �B or �L. This was proven in Ref. [11] and observed 
to be true when d = 7 in Refs. [15,16] for the SM without 
right-handed neutrinos.
• If an operator comprised of only N f number of fermion fields, 
where N f /2 is odd, then it has nonzero (�B − �L). This was 
proven in Ref. [6].

• Nucleon decays where �B = −�L can be described by opera-
tors with odd dimension. This was verified for d = 7 [3,4].

• If |�B| = 2, �L = 0, which is the case for n − n̄ oscillations, 
then d must be odd, and, specifically, dmin = 9 [5,6].

• An operator with even (odd) �B must also have even (odd) 
�L.

• Neither the value of (�B − �L) nor (�B + �L) can be an odd 
number for any operator in the SM.

To reiterate, these results are a direct consequence of only two 
assumptions: hypercharge invariance and Lorentz invariance, and 
remain true if any number of right-handed neutrinos augments the 
SM. Similar results were found for the small subset of SM opera-
tors that contain no covariant derivatives, no field strength tensors, 
and have trivial Lorentz structure, i.e., no σμ matrices [14].

These results only apply to extensions of the SM that utilize the 
SM particle content within operators invariant under the SM gauge 
symmetries, i.e., effective operators. Of course, there many in-
stances of model building beyond the SM that do not fall into this 
category, e.g., if the SM is expanded in a way that (1) introduces 
new particles that are charged under the SM gauge symmetries, 
(2) the SM gauge symmetries are embedded within a larger group, 
(3) contain particles with non-trivial �B or �L assignments, and 
the list goes on. These types of possibilities are necessary to con-
sider if one wishes to build a renormalizable model that can give 
rise to �B- or �L-violating processes.
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