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The elegant predictions of loop quantum gravity are obscured by the free Immirzi parameter (γ ). Dreyer 
(2003), considering the asymptotic quasinormal modes spectrum of a black hole, proposed that γ may 
be fixed by letting the j = 1 transitions of spin networks as the dominant processes contributing to the 
black hole area, as opposed to the expected j = 1/2 transitions. This suggested that the gauge group of 
the theory might be SO(3) rather than SU(2). Corichi (2003), maintaining SU(2) as the underlying gauge 
group, and invoking the principle of local fermion-number conservation, reported the same value of γ
for j = 1 processes as obtained by Dreyer. In this note, preserving the SU(2) structure of the theory, and 
considering j = 1 transitions as the dominant processes, we point out that the value of γ is in fact twice 
the value reported by these authors. We arrive at this result by assuming the asymptotic quasinormal 
modes themselves as dynamical systems obeying SU(2) symmetry.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Loop quantum gravity (LQG) has produced results from first 
principle that geometry is discrete. LQG uses spin networks as a 
basis for its Hilbert space. Spin networks are graphs with edges 
that carry labels as j = 0, 1/2, 1, 3/2, . . . , that is, the representa-
tions of SU(2) group that serves as the gauge group of the theory. 
In LQG the area of a given region of space has a discrete spectrum 
in such a way that if a surface is punctured by an edge of the spin 
network carrying a label j, the surface acquires an area element 
[1–3]

A j = 8π l2P γ
√

j( j + 1). (1)

Here l2P is the Planck area and γ is the free undetermined Immirzi
parameter [4] in the theory that remains obscured. The remarkable 
predictions of the theory are ambiguous up to this all-time present 
unfixed parameter. Nevertheless, indirect tools are used to fix the 
value of γ .

In [5,6], it was shown that γ can be fixed by the require-
ment that the quantum gravity results reproduce the Bakenstein–
Hawking entropy [7,8]

S = A

4l2P
. (2)
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A systematic approach to quantum black hole entropy was used to 
fix the value of γ as

γ = ln(2 jmin + 1)√
jmin( jmin + 1)

, (3)

where jmin is the minimum (semi-integer) label for the represen-
tations of SU(2), responsible for the black hole entropy. Taking 
into consideration that statistically the most important contribu-
tion should come from jmin = 1/2, γ is fixed as

γ = ln 2

π
√

3
. (4)

Dreyer [9], following a clue uncovered by Hod [10], fixed the 
value of γ in an independent way by using a semi-classical ar-
gument based on the quasinormal mode (QNM) spectrum of a 
Schwarzschild black hole [11,12]. Dreyer’s approach was based on 
Hod’s conjecture that the real part of the highly damped (QNM) 
frequencies ωQNM asymptotically tends to a fixed quantity

ωQNM = ln 3

8π M
. (5)

This conjecture was proved analytically by Motl [13]. The argument 
used by Hod and also by Dreyer goes as follows: If we assume that 
the Bohr’s correspondence principle is applicable to black holes, 
the radiation or absorption of such an asymptotic frequency of 
the quasinormal modes should be consistent with the variation in 
mass �M of the black hole, i.e.
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�M = h̄ωQNM = h̄ ln 3

8π M
. (6)

Since the area A of the event horizon and the mass M of a 
Schwarzschild black hole are related by

A = 16π M2, (7)

the variation in mass causes change �A in the quantized area of 
the event horizon. With the help of (5) and (6), Eq. (7) readily 
gives

�A = 4l2P ln 3. (8)

Dreyer considered that the most natural candidate for a transition 
of the quantum black hole, as described above, is the appearance 
or disappearance of a puncture with spin jmin. The area of the 
black hole would then change by an amount given by Eq. (1), 
where j = jmin, i.e.

�A = A jmin = 8πγ l2P
√

jmin( jmin + 1). (9)

Comparison of (8) and (9) then yields the value of the Immirzi
parameter as

γ = ln(2 jmin + 1)

2π
√

jmin( jmin + 1)
. (10)

This value also sets the result for the black hole entropy as

S = A

4l2P

ln(2 jmin + 1)

ln 3
. (11)

In order to comply with the Bakenstein–Hawking entropy, Dreyer 
was forced to fix jmin = 1, and consequently, the Immirzi parame-
ter as

γ = ln 3

2π
√

2
. (12)

At this point, in the absence of any other explanation why 
jmin = 1/2 does not comply with the correct entropy formula, 
Dreyer proposed that the true gauge group of the theory might 
be SO(3) rather than SU(2).

There have been various attempts to formulate a convincing ex-
planation about why j = 1 processes contribute dominantly to the 
black hole entropy. Corichi [14] has argued that one should main-
tain SU(2) as the gauge group of the theory if fermions are to be 
included in the theory. However, the jmin = 1/2 processes has to 
be highly suppressed. Corichi’s argument goes as follows. Losing a 
j = 1/2 representation would mean the edge becomes open in the 
bulk. In order to keep the local gauge invariance intact one has 
to attach a fermion to the open end; and this is not allowed if 
the fermion number is to be conserved locally. On the other hand, 
if an edge carries j = 1, one could attach a fermion–antifermion 
pair to the open end of the detached edge, preserving the local 
gauge invariance. Thus, even though punctures with j = 1/2 edges 
are allowed kinemetically, the dominant contribution comes from 
processes for which the minimum allowed value of j is 1. Swain 
[15] proposed a generalized version of Pauli’s exclusion principle 
applied to spin networks, which stated that “no more than two 
punctures of j = 1/2, each with differing m values, may puncture 
a given surface”. In this perspective, even though j = 1/2 punc-
tures are not forbidden, the dominant contribution appears to be 
coming from j = 1 punctures. Astonishingly, exact agreement with 
correct entropy formula was achieved for j = 1/2 as the domi-
nant contributing processes by invoking supersymmetric extension 
of spin networks [16].

In the present note, working in the framework of SU(2) spin 
networks, we propose that the dynamics of an asymptotic QNM 
frequency be described by the Hamiltonian of a two-dimensional 
isotropic oscillator. It looks a natural choice because the 2D os-
cillator possesses the same group structure and symbols as those 
of the edges in loop quantum gravity. This picture clearly explains 
how the conversion of the quanta of geometry to matter quanta, 
and vice versa, at the horizon takes place in a consistent way. Fur-
ther, as we will see, for SU(2) as the gauge invariance, and j = 1
as the dominant processes, the value of the Immirzi parameter ex-
plicitly turns out to be twice the value reported by Dreyer and 
Corichi based on SO(3) and SU(2), respectively.

For relevance, we start in Section 2 with a brief review of the 
Schwinger’s scheme [17] of realizing a 2D isotropic oscillator as 
SU(2) system. In Section 3 we work out the value of γ for j = 1
transitions in the SU(2) framework. The conclusions are presented 
in Section 4.

2. 2D isotropic oscillator and SU(2) symmetry

In this section we briefly review Schwinger’s method of estab-
lishing the relationship between a two-dimensional isotropic oscil-
lator and the SU(2) symmetry. Consider a 2D isotropic oscillator 
described by the Hamiltonian (assuming h̄ = 1 in this section)

Ĥ = (
a†

1a1 + a†
2a2 + 1

)
ω, (13)

where ω is the frequency of the oscillator and the algebra

[
ai,a†

j

] = δi j, [ai,a j] = [
a†

i ,a†
j

] = 0, i, j = 1,2, (14)

holds. The Hilbert space of the system is spanned by the vectors

|n1,n2〉 = |n1〉|n2〉 = (a†
1)

n1(a†
2)

n2

√
n1!√n2!

|0,0〉, (15)

where |0, 0〉 is the vacuum state such that â1|0, 0〉 = â2|0, 0〉 = 0
and n1, n2 are nonnegative integers. The energy eigenvalue are

En1n2 = (n1 + n2 + 1)ω = (n + 1)ω,

n = n1 + n2 = 0,1,2, . . . . (16)

All the states |r, n − r〉 with r = 0, 1, 2, . . . ,n have the same energy, 
i.e. the energy eigenvalue En is (n + 1)-fold degenerate. Degener-
acy in energy spectra indicate that there are symmetries associ-
ated with the system. In this case, the symmetry in question is 
SU(2), that allows for transforming eigenstates with the same en-
ergy among themselves. It is worthwhile to work it out in some 
detail.

Let us construct new operators

Ĵ0 = 1

2

(
â†

1â1 − â†
2â2

); Ĵ+ = â†
1â2; Ĵ− = â1â†

2. (17)

These are conserved quantities as one can readily verify

i
∂ Ĵk

∂t
= [ Ĵk, Ĥ] = 0, k = 0,±. (18)

The operators so defined in (17) close the familiar SU(2) algebra

[ Ĵ+, Ĵ−] = 2 Ĵ0, [ Ĵ0, Ĵ±] = ± Ĵ±. (19)

The expressions (17) are known as Schwinger’s bosonic realization 
of the usual angular momentum operators. One can interpret the 
action of the operators Ĵ+ and Ĵ− in the following way. The mo-
tion of the system on a plane surface is composed of oscillations 
in two directions, say, x and y. The operator Ĵ+ increases the os-
cillation amplitude in the x-direction and decreases the oscillation 
in the y-direction. It can continue doing so until the state of the 
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particle consists only of oscillation in the x-direction. On the other 
hand, the operator Ĵ− just does the opposite; it squeezes the orbit 
of the particle towards oscillation in the y-direction.

The quadratic Casimir of the algebra

Ĵ 2 = Ĵ 2
0 + 1

2
( Ĵ+ Ĵ− + Ĵ− Ĵ+) (20)

can be expressed as

Ĵ 2 = 1

4

(
â†

1â1 + â†
2â2

)(
â†

1â1 + â†
2â2 + 2

)
. (21)

In the basis {|n1, n2〉} both the commuting operators Ĵ0 and Ĵ 2 are 
diagonal, that is,

Ĵ0|n1,n2〉 = 1

2
(n1 − n2)|n1,n2〉, (22)

Ĵ 2|n1,n2〉 = n

2

(
n

2
+ 1

)
|n1,n2〉. (23)

Making correspondence with the usual SU(2) representation, let 
n = 2 j, n1 = j +m and n2 = j −m, where j = 0, 1/2, 1, 3/2, . . . and 
m = − j, − j + 1, . . . , j − 1, j. One identifies

|n1,n2〉 = | j + m〉| j − m〉 ≡ | j,m〉, (24)

such that

Ĵ0| j,m〉 = m| j,m〉, (25)

Ĵ 2| j,m〉 = j( j + m)| j,m〉. (26)

The energy eigenvalues become

E j = (2 j + 1)ω. (27)

Each E j is (2 j + 1)-fold degenerate. The set of states {| j, m〉} for 
each j forms a basis of the standard representation space of SU(2). 
Thus we conclude that the dynamics of a 2D isotropic oscillator 
are governed by the SU(2) symmetry.

3. Fixing the Immirzi parameter

It is apparent from the above discussion that both the isotropic 
oscillator and edges of loop quantum gravity share the same SU(2)

symmetry. One is thus naturally tempted to represent a QNM fre-
quency on the horizon as a 2D isotropic oscillator, i.e. ωQNM = ω. 
The following correspondence between the QNM and the SU(2)

edges of loop quantum gravity can then be observed. The ground 
state of QNM ( j = 0) having energy h̄ωQNM corresponds to the 
zero eigenvalue ( j = 0) of the area operator in loop quantum grav-
ity. It is worth noticing that a double quantum jump of the QNM 
from j = 1 to j = 0 corresponds to the detachment of an edge 
with j = 1 from the surface, leaving no puncture ( j = 0) behind. 
Note that the energy released in the transition is equal to 2h̄ωQNM . 
This would amount to the release of a fermion–antifermion pair 
in Corichi’s approach [14], each particle carrying energy h̄ωQNM . It 
can also be noticed that, in the reverse process, the excitation of 
QNM from the ground state to the j = 1 state corresponds to the 
attachment of a j = 1 edge to the horizon. We immediately ob-
serve that if SU(2) is the relevant gauge group and that if jmin = 1
processes dominate, the change in mass of the black hole in this 
transition should be �M = 2h̄ωQNM instead of h̄ωQNM , as in the 
case of SO(3) [9]. This implies that Eq. (6) is to be replaced by

�M = 2h̄ωQNM = 2h̄ ln 3

8π M
. (28)

Following the same steps, as in Section 1, we obtain the modified 
Immirzi parameter
γ = ln 3

π
√

2
, for jmin = 1. (29)

This is the main result of the present paper which differs from the 
value reported in [9] and [14] based on SO(3) and SU(2), respec-
tively, by a factor of 2. Remarkably, this value is reminiscent of the 
fact that even though the two groups are locally isomorphic, SU(2)

is a double-covering map of SO(3), that is, a homomorphism that 
map two points in SU(2) to one point in SO(3). Notably, our value 
matches with the one obtained in [16] on the basis of supersym-
metric spin networks, but for jmin = 1 rather than jmin = 1/2.

4. Conclusion

We emulated an asymptotic quasinormal mode on the horizon 
with a 2D oscillator which carries the same symbols and transfor-
mation properties as those of the edges in loop quantum gravity. 
This realization appeared to be meaningful for at least two reasons. 
On one hand, it made explicit how the conversion of areal quanta 
to matter quanta, and vice versa, takes place in a consistent way. 
On the other hand, it led us to work out the correct value of γ
when j = 1 processes in the SU(2) framework are taken as domi-
nant.

In [14], it was noted that in order to have fermions in the-
ory, one has to stick to SU(2) as the gauge group. If this is the 
case, then j = 1/2 punctures are not forbidden in principle, but 
they must be suppressed and would be something like “primor-
dial punctures”. Therefore, one must look for the exact dynamical 
mechanism that explains how the dominant contribution to the 
black hole entropy comes from j = 1 transitions. The results ob-
tained in [16] by supersymmetric extension of the gauge group is 
surprising. Does this imply that the underlying theory is in fact 
supersymmetry? Again, the real answer will come from a deeper 
understanding of the dynamic processes.

The realization of the asymptotic QNM frequencies as SU(2)

systems is within the framework of the black hole spectroscopy 
initiated by Bakenstein [18]. It clearly allows for the mass (and 
hence the area) of a Schwarzschild black hole to have an equally 
spaced discrete spectrum, each level having (2 j + 1)-fold degen-
eracy. As ωQNM is characteristic of the black hole by virtue of (5), 
no frequency emitted by the black hole can be expected as smaller 
than ωQNM . Furthermore, the ground state of a QNM with energy 
h̄ωQNM contributes nothing to the area and hence to the entropy 
of a black hole. But, as in any quantum theory, the ground state 
is important in a complete description of a quantum black hole; 
a quantum black hole is built up from the ground state.
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