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Background/objectives: Cardiovascular (CV) risk is increased in patients with rheumatoid arthritis (RA), but not
fully explained by traditional risk factors such as LDL and HDL cholesterol concentrations. The cholesterol efflux
capacity of HDL may be a better CV risk predictor than HDL concentrations. We hypothesized that HDL's choles-
terol efflux capacity is impaired and inversely associated with coronary atherosclerosis in patients with RA.
Methods: We measured the net cholesterol efflux capacity of apolipoprotein B depleted serum and coronary
artery calcium score in 134 patients with RA and 76 control subjects, frequency-matched for age, race and sex.
The relationship between net cholesterol efflux capacity and coronary artery calcium score and other clinical
variables of interest was assessed in patients with RA.
Results:Net cholesterol efflux capacity was similar among RA (median [IQR]: 34% removal [28, 41%]) and control
subjects (35% removal [27%, 39%]) (P = 0.73). In RA, increasing net cholesterol efflux capacity was not signifi-
cantly associated with decreased coronary calcium score (OR = 0.78 (95% CI 0.51–1.19), P = 0.24, adjusted for
age, race and sex, Framingham risk score and presence of diabetes). Net cholesterol efflux capacity was not sig-
nificantly associatedwith RA disease activity score, C-reactive protein, urinary F2-isoprostanes, or degree of insu-
lin resistance in RA.
Conclusions: Net cholesterol efflux capacity is not significantly altered in patients with relatively well-controlled
RA nor is it significantly associated with coronary artery calcium score.

Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Rheumatoid arthritis (RA) is associated with increased cardiovascu-
lar (CV) risk and mortality, independent of traditional CV risk factors
[1–3]. In most populations, increased low density lipoprotein cholester-
ol (LDL-C) and decreased high density lipoprotein cholesterol (HDL-C)
concentrations are among the strongestmodifiable CV risk factors iden-
tified [4]. However, HDL-C concentrationmay not be a good predictor of
atherosclerosis in all populations. For example, cholesterol
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concentrations, including HDL-C, are not substantially altered and do
not account for increased CV risk in patients with RA [3,5].

Recentwork suggests that HDL functionmay be a better predictor of
atherosclerotic risk than HDL-C concentrations. The anti-atherogenic
functions of HDL include its ability to mediate removal of cholesterol
from macrophages (termed cholesterol efflux, the first step of reverse
cholesterol transport) aswell as anti-inflammatory and anti-oxidant ef-
fects [6]. Of these functions, HDL-mediated cholesterol efflux is consid-
ered critical to its anti-atherosclerotic effect [6,7]. Indeed, cholesterol
efflux capacity was inversely associated with subclinical atherosclerosis
measured by carotid intima–media thickness in healthy subjects and
with obstructive coronary artery disease in patients undergoing cardiac
catheterization, independent of HDL-C concentrations [8]; however, not
all studies have found this relationship. For example, in another study
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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higher cholesterol efflux capacity was paradoxically associated with in-
creased risk of non-fatal MI or stroke and major adverse cardiovascular
events [9].

The observations that the usual inverse relationship between HDL-C
concentration and atherosclerosis is altered in RA [10,11] suggest that
HDL function may be altered. We have shown previously that high
HDL-C concentrations in the setting of high oxidative stress were asso-
ciated paradoxicallywith greater risk of atherosclerosis in RA [10]. Thus,
oxidative stress and inflammationmay impair HDL's function. However,
the relationship between cholesterol efflux capacity and atheroscle-
rosis in RA is not known.We hypothesized that net cholesterol efflux
capacity is impaired in RA and inversely associated with coronary
atherosclerosis.

2. Methods

2.1. Study population

Fromaprevious cross-sectional study of 169 patientswith RA and 92
control subjects focusing on CV risk factors [3], we used samples from
134 patients with RA and 76 control subjects. Recruitment and study
procedures for the original study have been described previously [3].
All subjects were older than 18 years of age and patients with RA ful-
filled American College of Rheumatology 1987 classification criteria
for RA [12]. RA and control groups were frequency-matched for age,
race and sex; control subjects did not have RA or other inflammatory
disease. The study was approved by the Vanderbilt Institutional Review
Board, and all subjects gave written informed consent.

2.2. Clinical and laboratory information

Clinical information, laboratory measurements, and coronary artery
calcium scores were obtained as described previously [3]. RA disease
activity was determined by the 28 joint count disease activity score
(DAS28) [13]. Body mass index (BMI) was calculated and expressed
as kg/m2. Patients were categorized as having the metabolic syn-
drome based on the modified World Health Organization criteria
[14]. The degree of insulin resistance was measured by the homeo-
static model of insulin resistance (HOMA) calculated as: [[fasting
glucose (mmol/l) × fasting insulin (μU/ml)] ∕ 22.5] [15,16]. Framing-
ham risk score was calculated based on age, total and HDL-C, blood
pressure and smoking [17,18].

Fasting lipid and high-sensitivity C-reactive protein (CRP) concen-
trations were measured by the Vanderbilt University Medical Center
Clinical Laboratory or enzyme-linked immunosorbent assay (ELISA)
(Millipore). Urinary F2-isoprostane excretion, a robust indicator of oxi-
dative stress, was measured as previously described [10,19,20]. Fasting
insulin and serum amyloid A (SAA) were measured by multiplex
ELISA (Lincoplex Multiplex Immunoassay Kit, Millipore Corp., Billerica
MA, USA).

Coronary artery calcium scorewasmeasured by electron beamcom-
puted tomography (EBCT)with an Imatron C-150 scanner (GE/Imatron,
South San Francisco, CA, USA) as described previously [3] and quantified
in Agatston units [21].

2.3. Measurement of net cholesterol efflux capacity of HDL enriched serum

Net cholesterol efflux capacity was measured as we have previously
described [22] with minor modifications. Humanmonocyte THP-1 cells
were plated in 12 multi-well plates (1 × 106 cells/1 ml RPMI1640 with
10% fetal bovine serum and 0.1% phorbol myristate acetate). After
72 h, the cells were incubated with 100 μg/ml acetylated LDL (Intracel,
#RP-045) for 72 h, resulting in foam cell formation. Medium was
changed to RPMI containing 4 mg/ml fatty acid free bovine serum al-
bumin (Sigma, #A6003) for 1 h. Patient serum (250 μl) was added to
100 μl of polyethylene glycol (PEG) solution (20% PEG 8000 in
200 mM glycine) and incubated at room temperature for 15 min
and then centrifuged at 1900g. The supernatant was removed and
used as apolipoprotein B (apoB) depleted serum or HDL enriched
serum [23]. Cells were then washed and incubated with medium
containing apoB depleted serum (18 μg/ml cholesterol concentration).
Acetylated LDL exposed cells exposed to medium only were used as a
comparator. After 24 h of incubation, cells were washed twice and air
dried. Cellular lipids were extracted with high performance liquid chro-
matography grade isopropanol. Total cellular cholesterolwas determined
by gas liquid chromatography [24,25]. Cholesterol content was corrected
for total cellular protein for each well. Cholesterol efflux capacity was
defined as the % change in total cellular cholesterol content (in μg/mg
protein) between wells exposed to medium and apoB depleted serum
[26,27]. Samples were run in duplicate in batches. The mean intra-
assay and inter-assay coefficient of variation was 14.9% and 16.5%,
respectively.

2.4. Statistical analysis

Given our sample size of 134 patients with RA and 76 control sub-
jects and a standard deviation of 12% within each group, we had over
80% power to detect a difference in cholesterol efflux between RA and
control subjects of 5% cholesterol removal.

Descriptive statistics were calculated as median with interquartile
range (median [IQR: 25th, 75th]) for continuous variables and frequen-
cy and proportions for categorical variables. To compare variables be-
tween RA and control subjects, Wilcoxon's rank sum tests were used
to compare continuous variables and Pearson's chi-square test to com-
pare categorical variables.

To assess the adjusted association of disease status onnet cholesterol
efflux capacity, multiple linear regressionwas used with net cholesterol
efflux capacity as dependent variable and disease status as an indepen-
dent variable with adjustment for age, race and sex.

For patients with RA, the relationship between coronary artery calci-
um score and net cholesterol efflux capacity was assessed by propor-
tional odds logistic regression with coronary artery calcium score as
dependent variable and net cholesterol efflux capacity as the indepen-
dent variable was performed with adjustment for age, race and sex.
Also, these models were adjusted additionally for Framingham risk
score and diabetes.

An exploratory analysis was performed to determine factors that in-
fluence net cholesterol efflux capacity in RA. Multiple linear regressions
were used with net cholesterol efflux capacity as dependent and vari-
ables of interest as independent with adjustment for age, race and sex.

CRP, SAA, HOMA, and urinary F2-isoprostanes were natural
logarithm-transformed to improve normality of residuals. Statistical
analyses were performed using R version 2.15.1 (http://www.r-
project.org) and IBM SPSS Statistics version 22. Two-sided P values
less than or equal to 0.05 were considered statistically significant.

3. Results

3.1. Clinical characteristics

Patients with RA and controls were of similar age, race and sex
(Table 1). In patients with RA the median [IQR] DAS28 score was
3.9 units [2.6, 4.9 units], 73% were rheumatoid factor positive, and the
majority (73%) were receiving methotrexate. As noted previously (3),
LDL-C concentrations were lower in patients with RA than controls
(P = 0.02), but HDL-C concentrations were similar (P = 0.32).

3.2. Net cholesterol efflux capacity by HDL enriched serum in RA vs controls
and relationship to coronary artery calcium score in RA

Net cholesterol efflux capacity of HDL enriched serum did not differ
significantly among patients with RA (34% removal [28, 41%]) and
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Table 1
Clinical characteristics of RA patients and control subjects.

RA (N = 134) Control
(N = 76)

P value

Demographics/anthropomorphic measures
Age, years 54 [45, 64] 54 [46, 59] 0.67
Race, % Caucasian 90% (120) 83 (63) 0.34
Sex, % female 72% (96) 63% (48) 0.20
Body mass index, kg/m2 28.5 [23.9,

33.3]
27.2 [24.8,
32.3]

0.51

RA disease related
DAS28, units 3.9 [2.6, 4.9] – –
Rheumatoid factor positivity, % 73% (93)a – –
Disease duration, years 3 [2, 17.8] – –

CV risk factors
Hypertension, % 54% (72) 38% (29) 0.03
Diabetes, % 12% (16) 4% (3) 0.05
Metabolic syndrome, % 37% (50) 12% (9) b0.001
Total-C, mg/dl 184 [155, 210] 195 [168, 216] 0.07
HDL-C, mg/dl 43 [37, 54] 46 [39, 54] 0.32
LDL-C, mg/dl 110 [87, 134] 122 [104, 145] 0.02
Triglycerides, mg/dl 113 [80, 158] 108 [75, 130] 0.21
Smoker, % 22% (29) 9% (7) 0.02
CRP, mg/dl 4.0 [1.2, 10.0] 0.6 [0.2, 1.9] b0.001
Known CAD, % 10% (14) 11% (8) 0.99
Coronary calcium score, Agatston units 0 [0, 137.5] 0 [0, 11.8] 0.02

Medication use
Methotrexate, % 73% (98) – –
Leflunomide, % 19% (26) – –
Hydroxychloroquine, % 28% (38) – –
Anti-TNF, % 21% (28) – –
Corticosteroid, % 54% (72) – –
Statin, % 13% (18) 15% (11) 0.85
NSAIDs, % 33% (44) 33% (25) 0.98

a Available for 127 RA patients.

Table 2
Association between increasing net cholesterol efflux capacity and variables of interest in
RA.

β (95% CI) P value

DAS28 −1.18 (−4,21, 1.86) 0.45
CRP 0.91 (−1.95, 3.78) 0.53
SAA 2.64 (−0.61, 5.89) 0.11
F2-isoprostanes 0.59 (−2.47, 3.65) 0.71
HDL-C 0.49 (−2.52, 3.49) 0.75
LDL-C −0.18 (−3.03, 2.66) 0.90
HOMA 1.53 (−1.04, 4.10) 0.25
Metabolic syndrome 0.90 (−3.56, 5.36) 0.69
Diabetes 0.15 (−6.37, 6.68) 0.96
Smoking −4.40 (−9.63, 0.83) 0.10

Assays were performed using standardized concentrations of HDL-C (apoB depleted
serumwith a cholesterol concentration of 18 μg/ml). Beta-coefficients presented for con-
tinuous variables are per increase in interquartile range and adjusted for age, race and sex.
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controls (35% removal [27, 39%]) (P = 0.73) (Fig. 1). Among patients
with RA, net cholesterol efflux capacity was not significantly inversely
associated with coronary artery calcium score in patients with RA (OR
per IQR increase in net cholesterol efflux capacity = 0.74 (95% CI:
0.52–1.05; P = 0.10)). Similarly, there was no significant protective as-
sociation between net cholesterol efflux capacity and coronary artery
Fig. 1. Net cholesterol efflux capacity of HDL enriched serum in patients with RA and
control subjects. Net cholesterol efflux of HDL enriched serum was measured in 134
patients with RA and 76 control subjects. In RA, the median [IQR] net cholesterol efflux
capacity was 34% [28%, 41%], which was similar to controls (35% [27%, 39%], P = 0.73).
calcium score in models that adjusted for age, race and sex, (OR =
0.78 (95% CI: 0.51–1.17; P = 0.23)) and additionally for Framingham
risk score and presence of diabetes (OR = 0.78 (95% CI 0.51, 1.18;
P = 0.24)).

3.3. Relationship between clinical factors and net cholesterol efflux in RA

In exploratory analyses to determine the factors that influence
net cholesterol efflux capacity in RA (Table 2), RA disease activity
(DAS28), CRP, SAA, and oxidative stress (urinary F2-isoprostane excre-
tion)were not significantly associatedwith net cholesterol efflux capac-
ity (all P N 0.05). Moreover, net cholesterol efflux capacity did not differ
significantly between those with high disease activity (DAS28 N 5.1)
(median [IQR] net cholesterol efflux capacity 32% [26%, 41%]) and
those with the very low/clinical remission (DAS28 b 2.6) (35% [28%,
43%], P = 0.52). Insulin resistance (measured as HOMA), presence of
metabolic syndrome or diabetes, and smoking status were not signifi-
cantly associated with net cholesterol efflux capacity (Table 3) (all
P N 0.05). Additionally, there was no significant relationship between
use of any particular diseasemodifying anti-rheumatic drug, corticoste-
roids, or statins and net cholesterol efflux capacity (Table 3) (all
P N 0.05).

4. Discussion

The main results of this study are that the net cholesterol efflux
capacity of HDL enriched serum did not differ significantly among
patients with RA and controls and was not significantly associated
with coronary artery calcium score in RA. We also found that net
cholesterol efflux capacity was not associated significantly with sys-
temic inflammation, oxidative stress (urinary F2-isoprostanes), or
disease activity in RA.
Table 3
Relationship between net cholesterol efflux capacity and medication use among patients
with RA.

Current use No current use Adjusteda

P value
N Net cholesterol

efflux,
% [IQR]

N Net cholesterol
efflux,
% [IQR]

Methotrexate 98 34% [27, 41%] 36 34% [29, 41%] 0.41
Leflunomide 26 34% [29, 42%] 108 34% [27, 41%] 0.27
Hydroxychloroquine 38 32% [26, 37%] 96 35% [28, 43%] 0.15
Anti-TNF 28 34% [26, 41%] 106 34% [28, 40%] 0.79
Corticosteroid 72 35% [29, 41%] 62 34% [28, 39%] 0.34
NSAID 44 36% [25, 44%] 90 34% [28, 39%] 0.98
Statin 18 32% [27, 37%] 116 34% [28, 43%] 0.27

IQR = Interquartile range.
a Adjusted for age, race and sex.
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Among patients with RA, traditional lipoprotein measures, such as
LDL-C and HDL-C concentrations, are not as helpful as they are in the
general population for assessing CV risk. Moreover, several lines of evi-
dence suggest that the anti-atherosclerotic effect of HDL is impaired in
RA. For example, RA patients have what is termed a “lipid paradox”,
where in the setting of high inflammation, a low total-C to HDL-C
ratio is no longer protective against CVD [11]. We also have previously
made a similar observation; in the setting of increased oxidative stress
(measured as high urinary F2-isoprostane excretion), high HDL-C con-
centrations were paradoxically associated with increased coronary ath-
erosclerosis [10]. Thus,we hypothesized that cholesterol efflux capacity,
one of HDL's functions, would be impaired in RA.

We found that net cholesterol efflux capacity did not differ signifi-
cantly in patients with RA compared to a well-matched control group.
This finding is concordant with the results of a smaller study of compa-
rable design that included 40 patients with RA and 40 matched control
subjects [28]. Our findings were remarkably similar (HDL cholesterol
effluxwas 35%±12% (mean± standard deviation) in both RA and con-
trols in our study and 40.2% ± 11.1% for RA and 39.5% ± 8.9% for con-
trols in the previous report [28]). Another study compared cholesterol
efflux capacity in 38 patients with RA, 18 of whom had known cardio-
vascular disease, to that of 20 extremely healthy controls none of
whomsmoked, or had coronary artery disease, hypertensionor diabetes
and reported that cholesterol efflux capacity was decreased in RA,
though there was no difference between RA patients with and without
cardiovascular disease [29].

We also found that high RA disease activity andmeasures of system-
ic inflammation were not associated with impaired net cholesterol ef-
flux capacity. This lack of correlation with inflammation is consistent
with recent findings from a non-RA population including 2924 subjects
without cardiovascular disease in the Dallas Heart Study, where CRP
was not associated with cholesterol efflux capacity [30]. Moreover, it
is consistent with a small study which showed that neither disease ac-
tivity nor systemic inflammation measured as CRP or ESR was associat-
ed with cholesterol efflux capacity in RA [29]. Two studies reported an
inverse relationship between cholesterol efflux capacity and RA disease
activity and systemic inflammation [28,31]. In one, cholesterol efflux ca-
pacity was not different between RA and controls, yet efflux capacity
was inversely associated with RA disease activity and inflammation
[28]. In the other, the association between decreased cholesterol efflux
and inflammation in RA was found in only one of three cholesterol
transporters, ABCG1, in a Chinese hamster ovary (CHO-K1) cell line
[31]; studies suggest that ABCA1-mediated efflux is particularly impor-
tant in prevention of atherosclerosis [32–34], and this was not associat-
ed with inflammation and did not differ among patients with RA and
control subjects [31].

Several methods have been used to examine HDL-mediated choles-
terol efflux in the clinical setting and there is no gold-standard method.
Most studies use apoB depleted (HDL enriched) serum as we did, but
measured cholesterol efflux in different cell types by different methods
[8,28,30,31,35]. Our assay [22] to assess cholesterol efflux capacity has
some advantages. First, we used a human cell line to better reflect cho-
lesterol uptake and removal seen in humans. Second, because HDL has
the ability to not only remove cholesterol, but also to donate cholesterol
to cells [36,37], we measured net cellular cholesterol changes by gas
liquid chromatography. Although this method is more demanding, it is
considered to better represent physiology [37] than techniques using
radiolabeled cholesterol that only measure cholesterol removal from
the cell.

We found that net cholesterol efflux capacity, although trending
in the expected direction, was not a significant predictor of coronary
calcium score in patients with RA. This is similar to what was shown
in the Dallas Heart Study, where there was no significant relationship
between cholesterol efflux capacity and coronary calcium score in
2924 subjects [30]. Lower cholesterol efflux capacity was associated
with carotid intima thickness in 203 healthy subjects and with the
presence of coronary artery disease in 793 subjects undergoing cardiac
catheterization [8], suggesting that these measuresmay differ from cor-
onary calcium score regarding their relationshipwith cholesterol efflux.

Similarly, studies of the relationships between cholesterol efflux
capacity and cardiovascular events have beenmixed. Higher cholesterol
efflux capacity, despite being associated with lower prevalent coronary
artery disease, was paradoxically associated with increased risk of non-
fatal MI or stroke and major adverse cardiovascular events [9]. In the
Dallas Heart Study, despite no significant association between choles-
terol efflux capacity and coronary artery calcification, there was a 67%
reduction in CV events in the lowest quartile of cholesterol efflux capac-
ity compared to the highest quartile [30]. Thus, despite our finding of
negligible relationship between net cholesterol efflux capacity and cor-
onary artery calcification in RA, we cannot exclude the possibility that
cholesterol efflux capacity may be related to cardiovascular events.

HDL is composed ofmany different lipids and proteinswith a variety
of functions. Changes to these protein constituentsmay contribute to
HDL dysfunction. For example, impaired anti-oxidant capacity of
HDL is linked to decreased paraoxonase-1 activity [38], and an en-
richment of acute phase proteins such as SAA on HDL [39,40]. More-
over, oxidation products such as 3-chlorotyrosine on HDL may
impair cholesterol efflux capacity [29]. We thus examined whether
systemic inflammation and oxidative stress affected cholesterol ef-
flux. We found no relationship between inflammation and oxidative
stress and cholesterol efflux in RA. A potential explanation is that
apoA1 on HDL may not to be decreased in RA, and in fact, may be in-
creased among those with HDL which cannot prevent LDL oxidation
(termed “proinflammatory” HDL) [38,39]. Such an increase in HDL-
apoA1 may compensate for other processes detrimental to HDL efflux
function that result from inflammation.

The anti-atherosclerotic functions of HDL are thought to include not
only cholesterol efflux and reverse cholesterol transport but also anti-
inflammatory and anti-oxidant functions. Studies that have focused on
the other putative anti-atherosclerotic functions of HDL have found
that approximately 20% of patients with RA, particularly those with
high disease activity have impaired anti-oxidant capacity (or “proin-
flammatory HDL”) [28,40,41]. The relationship between impaired HDL
anti-oxidant function and atherosclerosis in RA is currently not
known, but thismechanism appears to play a role in accelerated athero-
sclerosis in systemic lupus erythematosus [41–43]. Moreover, the anti-
oxidant effects of HDL appear to be closely linked to systemic inflamma-
tion and disease activity in RA [40], unlike our findings for cholesterol
efflux capacity. Lastly, the impact of HDL's anti-inflammatory capacity
(tested as the ability of HDL to decrease cytokine production) on athero-
sclerosis in RA is also not known. Considering our findings, altered anti-
oxidant and anti-inflammatory effects of HDLmaybemore important to
risk of CV disease in patients with RA than altered cholesterol efflux.
However, specific studies will be required to address those questions.

Our study had some limitations. We performed a cross-sectional
study, thuswe do not have long term prospective outcome data on par-
ticipants to determine relationship between CV events or mortality and
cholesterol efflux capacity. Moreover, patients had relatively well-
controlled disease; however, this reflects the status of most treated RA
patients in modern practice. We used coronary artery calcium score as
a measure of atherosclerotic burden, which has the limitation of not
showing non-calcified plaque which may be more susceptible to rup-
ture. Lastly, we did not evaluate the amount of cholesterol efflux medi-
ated by individual receptors, however, our assay importantly measured
overall net cholesterol efflux as determined by changes in cellular cho-
lesterol mass, which is more clinically relevant.
5. Conclusion

We conclude that net cholesterol efflux capacity by HDL enriched
serum is not significantly altered in patients with relatively well-
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controlled RA nor is it associated with coronary artery calcium score,
disease activity or systemic inflammation.
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