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Abstract In suspension-cultured rice cells, diterpenoid phyto-
alexins are produced in response to exogenously applied elicitors.
We isolated a cDNA encoding a diterpene cyclase, OsDTC2,
from suspension-cultured rice cells treated with a chitin elicitor.
The OsDTC2 cDNA was overexpressed in Escherichia coli as a
fusion protein with glutathione S-transferase, and the recombi-
nant OsDTC2 was indicated to function as stemar-13-ene
synthase that converted syn-copalyl diphosphate to stemar-13-
ene, a putative diterpene hydrocarbon precursor of the
phytoalexin oryzalexin S. The level of OsDTC2 mRNA in
suspension-cultured rice cells began to increase 3 h after addition
of the elicitor and reached the maximum after 8 h. The
expression of OsDTC2 was also induced in UV-irradiated rice
leaves. In addition, we indicated that stemar-13-ene accumulated
in the chitin-elicited suspension-cultured rice cells and the UV-
irradiated rice leaves.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

When plants are attacked by pathogenic microorganisms,

they respond by a variety of defense reactions, including pro-

duction of phytoalexins that are low-molecular weight com-

pounds serving as plant antibiotics [1,2]. Four structurally

distinct types of polycyclic diterpenoid phytoalexins, oryzal-

exins A–F [3–5], ())-phytocassanes A–E [6–8], momilactones

A and B [9,10], and oryzalexin S [11], have been identified in

extracts of the leaves of rice plants that were either infected

with the rice leaf blast pathogen, Magnaporthe grisea, or ex-

posed to ultra-violet (UV)-irradiation. The proposed pathways

for biosynthesis of diterpenoid phytoalexins in rice are illus-
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trated in Fig. 1. Diterpene cyclases catalyzing conversion of

ent-copalyl diphosphate (ent-CDP) or syn-copalyl diphosphate

(syn-CDP) to the four diterpene hydrocarbons play key roles

in the biosynthesis of diterpenoid phytoalexins in rice. Previ-

ously, we reported that two species of mRNA encoding pu-

tative diterpene cyclases, OsDTC1 and OsDTC2, were

expressed in chitin-elicited suspension-cultured rice cells, and

that OsDTC1 functions as ent-cassa-12,15-diene synthase, a

diterpene cyclase involved in the biosynthesis of ())-phyto-
cassanes [12]. Here, we show the isolation and characterization

of OsDTC2 cDNA. This gene product functioned as stemar-

13-ene synthase that possibly plays a key role in the biosyn-

thesis of oryzalexin S. We also indicated that stemar-13-ene

accumulated in the chitin-elicited rice cells and UV-irradiated

rice leaves.
2. Materials and methods

2.1. Cell culture
Calli of Oryza sativa L. cv. BL-1 and O. sativa L. cv. Nipponbare

were cultured as described previously [12]. The rice cells, 6 days after
the transfer to the fresh culture medium, were used for treatment with
a chitin elicitor (N-acetylchitoheptaose, 10 ppm).
2.2. Isolation of a cDNA encoding the full-length ORF of OsDTC2
Previously, we reported the isolation of a 549 bp cDNA fragment

encoding a putative diterpene cyclase gene, OsDTC2 [12]. A cDNA en-
coding the full-length ORF of OsDTC2 was cloned by PCR using
primers designed based on the information from a rice genome database
(RiceBlast.dna.affrc.go.jp), 50-CAACGGATCCATGATGCTGCTG-
AGTTCCTC-30 (forward, BamHI site is underlined) and 50-
CAACGAATTCTTACTCTTGCAGGTGCAGTG-30 (reverse, EcoRI
site is underlined). A cDNA library from elicitor-treated rice cells (cv.
Nipponbare), constructed by using HybriZAP-2.1 XR Library Con-
struction kit (Stratagene), was used as a template. PCR was carried out
using KOD-Plus-DNA polymerase (Toyobo, Tokyo, Japan) with the
following program: 5 min at 94 �C, followed by 30 cycles of 1 min at 94
�C, 1min at 52 �C, and 3min at 72 �C, followed by cooling down to 4 �C.
2.3. Expression of OsDTC2 cDNA in Escherichia coli
The OsDTC2 ORF was subcloned into the pGEX-6P-2 vector

(Amersham Bioscience, Piscataway, NJ, USA) and this vector was
transformed into E. coli BL21. This was grown in 2� YT medium
(tryptone 16 g l�1, yeast extract 10 g l�1, NaCl 5 g l�1; pH 7.0) [13]
ation of European Biochemical Societies.
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Fig. 1. Proposed pathways for biosynthesis of diterpenoid phytoalexins in rice.
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containing ampicillin (50 lgml�1) at 37 �C. When the optical density
at 600 nm reached 0.6, isopropyl-1-thio-b-DD-galactoside was added to
a final concentration of 0.1 mM and the cells were incubated at 30 �C
for another 15 h. The collected cells were re-suspended in the 20 mM
Tris–HCl buffer and disrupted by mild sonication on ice. After cen-
trifugation at 15 000· g for 30 min, the supernatant was purified by
Glutathione–Sepharose 4B (Amersham Bioscience) affinity column
chromatography with the elution buffer containing 10 mM glutathione
(Sigma–Aldrich, St. Louis, MO, USA) according to the manufacturer’s
instructions. The affinity-purified GST-OsDTC2 was analyzed by 10%
SDS–PAGE with Coomassie brilliant blue staining [14].

2.4. Enzyme assays of the GST-OsDTC2 fusion protein
The substrate of OsDTC2 is possibly ent-CDP or syn-CDP that is

converted from geranylgeranyl diphosphate (GGDP) with ent-CDP
synthase (ent-CPS) or syn-CPS, respectively. Since OsCyc1 and Os-
Cyc2 cDNAs encoding syn-CPS and ent-CPS in rice, respectively, were
cloned and characterized by our group [15], functional analysis of
OsDTC2 was carried out using GGDP as a substrate in the concom-
itant presence of OsDTC2 and OsCyc1 or OsCyc2 as described below.
The assay solution (0.5 ml) consisted of 2 lg of the substrate GGDP
(Sigma–Aldrich) in a solution of dithiothreitol (2 mM), EDTA (0.5
mM), proteinase inhibitor cocktail (1/100 tablet; Complete�, Roche,
Basel, Switzerland), MgCl2 � 6H2O (5 mM), and Tris–HCl buffer (100
mM, pH 7.5). After the affinity-purified protein (GST-OsDTC2 with
or without GST-OsCyc1; GST-OsDTC2 with GST-OsCyc2; and GST
with GST-OsCyc1) was added to the assay solution, the assay mixture
was incubated at 30 �C for 1 h. The solution was extracted with n-
hexane and subjected to gas chromatography-mass spectrometry (GC-
MS) analysis. When GGDP was incubated with GST-OsDTC2 and
GST-OsCyc2, production of ent-CDP was indicated as follows. The
assay mixture, after incubation at 30 �C for 1 h, was dephosphorylated
by incubation with bacterial alkaline phosphatase (6 unit, Toyobo) at
37 �C for 1 h. The resultant solution was extracted with n-hexane and
subjected to GC-MS to identify ent-copalol that was the dephospho-
rylated form of ent-CDP.

2.5. Expression analysis of OsDTC2 mRNA in elicited suspension-
cultured rice cells

Reverse transcription was performed with SuperScript II RT
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
instructions using poly(A)þ RNA (1 lg) prepared from suspension-
cultured rice cells (cv. BL-1) 0, 3, 6, 8, 10, and 12 h after adding the
chitin elicitor (10 ppm). PCR was carried out using Ex Taq DNA
polymerase (TaKaRa, Ohtsu, Japan) with the following program: 5
min at 94 �C, followed by 30 cycles of 1 min at 94 �C, 1 min at 56
�C, and 1 min at 72 �C, followed by cooling down to 4 �C. A pair of
the gene-specific primers, 50-ATGATGCTGCTGAGTTCCTCCT-30

(forward) and 50-CGCTGCTGTTGTGGAAGGCGA-30 (reverse),
was used to amplify a 786-bp OsDTC 2 cDNA fragment. As an in-
ternal standard, the rice actin gene ACT1 was amplified by RT-PCR
using the gene-specific primers ACT1-P1 (50-CATGCTATCCCTC-
GTCTCGACCT-30) and ACT1-P2 (50-CGCACTTCATGATGGAG-
TTGTAT-30) [16].

2.6. Expression analysis of OsDTC2 mRNA in the UV-irradiated rice
leaves (UV+)

Rice plants (cv. Nipponbare) were cultured in a greenhouse. At the
sixth-leaf stage, the fourth and fifth leaves were detached and UV-ir-
radiated as described previously [12]. Control rice leaves (UV)) were
handled similarly except that they were not exposed to UV irradiation.
Reverse transcription was performed with SuperScript III RT (Invit-
rogen) according to the manufacturer’s instructions using total RNA
prepared from these leaves. PCR was carried out using KOD-Plus-
DNA polymerase (Toyobo) with the following program: 2 min at 94
�C, followed by 35 cycles of 1 min at 94 �C, 1 min at 50 �C, and 1 min
at 68 �C, followed by cooling down to 4 �C. A pair of the gene-specific
primers, 50-TCGCCCTCCCTCTACTTAAG-30 (forward) and 50-
TTGCCCATCAATGGCAACCG-30 (reverse), was used to amplify a
619-bp OsDTC2 cDNA fragment. The rice actin gene ACT1 was
amplified as an internal standard as described in Section 2.5.

2.7. GC-MS
To analyze diterpene hydrocarbons produced in the enzyme assays

of the GST-OsDTC2 fusion protein and diterpene hydrocarbons in the
elicited rice cells (Figs. 2 and 4A), a JMS-Auto Mass 150 GC-MS
system (ionization voltage 70 eV; JEOL, Tokyo, Japan) was used,
fitted with a fused silica chemically bonded capillary column (DB-5;
0.25 mm in diameter, 15 m long, 0.25 lm film thickness; J&W Scientific
Inc., Folsom, CA, USA). Each sample was injected onto the column at
60 �C in the splitless mode. After a 2-min isothermal hold at 60 �C, the
column temperature was programmed at 20 �Cmin�1 to 180 �C, at 2
�Cmin�1 to 210 �C, and at 20 �Cmin�1 to 270 �C with a 3-min iso-
thermal hold at 270 �C. The head pressure of the helium carrier gas
was 65 kPa. To analyze reaction products in the incubation of GGDP
with GST-OsDTC2 and GST-OsCyc2, GC-MS was conducted as
reported previously [15]. To analyze diterpene hydrocarbons in the
UV-irradiated rice leaves (Fig. 4B), GC-MS was carried out using an
Agilent 6890 N GC-5973 N MSD system fitted with a fused silica
chemically bonded capillary column (DB-WAX; 0.25 mm in diameter,
60 m long, 0.25 lm film thickness; J&W Scientific Inc.). The column
temperature was programmed as follows: 80 �C for 2 min, from 80 to
250 �C at 2 �Cmin�1, and then 250 �C for 10 min. The flow rate of the
helium carrier gas was 1 mlmin�1.
For GC-MS analysis of the diterpene hydrocarbons, 9.9 g fresh

weight of the suspension-cultured rice cells treated with the chitin
elicitor (10 ppm) for 48 h (Fig. 2C), approximately 2 g fresh weight
each of the rice cells treated with the chitin elicitor (10 ppm) for 0, 8,
12, and 24 h (Fig. 4A), or 5.0 g fresh weight each of UV-irradiated and
control rice leaves (Fig. 4B) were extracted with methanol, and the
methanol extracts were purified as described previously [17].



Fig. 2. GC-MS analysis of diterpene hydrocarbons obtained by incu-
bation of GGDP with the recombinant OsDTC2 and OsCyc1 (A) or
the recombinant OsDTC2 and OsCyc2 (B), and diterpene hydrocar-
bons in the methanol extract from suspension-cultured rice cells 24 h
after addition of the elicitor N -acetylchitoheptaose (C). Diterpene
hydrocarbons were monitored at m=z 272. Full-scan mass spectra of
stemar-13-ene, X1, and X2 were as follows [m=z (relative abundance)]:
stemar-13-ene, 272 (Mþ, 32), 257 (100), 229 (39), 201 (21), 187 (32),
161 (60), 105 (96); X1, 272 (Mþ, 74), 257(58), 229(5), 201 (31), 177 (57),
148 (100), 105 (97); X2, 272 (Mþ, 48), 257 (29), 229 (28), 187 (61), 159
(53), 105 (100).
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3. Results and discussion

3.1. Isolation of a cDNA encoding a diterpene cyclase,

OsDTC2, from suspension-cultured rice cells treated with

a chitin elicitor

As already reported [12], we exhibited that at least two di-

terpene cyclase genes tentatively named OsDTC1 and OsDTC2

were expressed in the elicited rice (O. sativa L. cv. BL-1) cells.

A cDNA encoding the full-length ORF of OsDTC1 was cloned

and indicated to encode ent-cassa-12,15-diene synthase. With

regard to OsDTC2, a 549-bp cDNA fragment was amplified by

RT-PCR, but isolation of the cDNA encoding the full-length

ORF was not successful.

In the course of this study, the rice (cv. Nipponbare) genome

database was opened to the public (http://RiceBLAST.dna.

affrc.go.jp/). In our search of the database, we found that the

nucleotide sequence of the 549-bp OsDTC2 cDNA fragment

from cv. BL-1 was completely identical to that of cv. Nip-

ponbare. We therefore changed the plant material from cv.

BL-1 to cv. Nipponbare, and succeeded in the isolation of a

cDNA containing the full-length ORF of OsDTC2 by PCR

using primers designed based on the information from rice

genome database and a cDNA library from elicitor-treated rice

(cv. Nipponbare) cells as a template. The nucleotide sequence

data of OsDTC2 cDNA reported in this paper will appear in

the Genome Sequence Data Base (GSDB), DNA Data Bank

of Japan (DDBJ), European Molecular Biology Laboratory

(EMBL), and National Center for Biotechnology Information

(NCBI) nucleotide sequence databases with the Accession No.

AB118056.

TheOsDTC2ORF encodes 820 amino acid residues. There is

a transit peptide-like sequence at the N-terminus of OsDTC2,

indicating that OsDTC2 protein would be targeted to plastids

[18]. It is thus suggested that OsDTC2 is localized in plastids, as
are OsDTC1 (ent-cassa-12,15-diene synthase) [12] and other

plant diterpene cyclases such as ent-CPS and ent-kaurene syn-

thase (ent-KS) [19,20]. Quite recently, it was suggested that

several diterpene cyclase genes found in the rice genome are

involved in the phytoalexin biosynthesis in rice [21], one of them

tentatively namedOsKS8 being identical toOsDTC2. However,

functional analysis of OsKS8 has not been carried out.

3.2. Sequence comparison with other plant diterpene cyclases

The amino acid sequence of OsDTC2 was compared with

those of other plant diterpene cyclases. Similarity was found

with OsDTC1 (ent-cassa-12,15-diene synthase) (48% identity),

ent-KS (39–41% identity) [22–24], abietadiene synthase (AS) [25]

(32% identity), and ent-CPS [26,27] (29% identity). AS has two

active sites responsible forKS-type andCPS-type activities. The

DDXXD motif responsible for KS-type activity is conserved in

OsDTC2, but the DXDDTA motif responsible for CPS-type

activity is not present in OsDTC2 as in the case of OsDTC1 [12].

Thus, the function of OsDTC2 is probably to catalyze the cy-

clization of ent-CDP or syn-CDP into a diterpene hydrocarbon

that is a key intermediate of the diterpenoid phytoalexins in rice.

3.3. Functional analysis of OsDTC2 protein

The OsDTC2 protein was overexpressed in E. coli as a

glutathione S-transferase (GST) fusion protein (GST-

OsDTC2). The fusion protein was affinity-purified as described

in Section 2.3 and a 116-kDa protein (GST-OsDTC2) was

detected by SDS–PAGE. Also, the E. coli BL21 harboring the

control plasmid pGEX-c yielded a 26-kDa protein (GST). We

used the affinity-purified GST-OsDTC2 fusion protein for

enzyme assays.

Enzyme assays of GST-OsDTC2 for diterpene cyclase ac-

tivity were performed with GGDP as a substrate. The identi-

fication of the reaction products was carried out by GC-MS

analysis. The incubation of GGDP with GST-OsDTC2 and

GST-OsCyc2, which catalyzes the conversion of GGDP into

ent-CDP, did not give any diterpene hydrocarbons (Fig. 2B).

However, the same reaction followed by dephosphorylation

using alkaline phosphatase gave ent-copalol (data not shown).

These results indicate that the incubation of GGDP with GST-

OsDTC2 and GST-OsCyc2 yielded ent-CDP but not any di-

terpene hydrocarbons. On the other hand, the incubation of

GGDP with GST-OsDTC2 and GST-OsCyc1, which catalyzes

the conversion of GGDP into syn-CDP, gave the diterpene

hydrocarbon stemar-13-ene, a putative precursor of oryzalexin

S, as a major product. Unknown diterpene hydrocarbon-like

compounds X1 and X2 were yielded as minor products

(Fig. 2A), which were also detected as minor components in

the elicited rice cells (Fig. 2C). The incubation of GGDP with

GST-OsCyc1 and the control GST gave no diterpene hydro-

carbon (data not shown), suggesting that the GST domain of

GST-OsDTC2 did not contribute to its diterpene cyclase ac-

tivity. In addition, we confirmed that GST-OsDTC2 without

GST-OsCyc1 did not convert GGDP into stemar-13-ene (data

not shown). It is thus concluded that OsDTC2 functions as

stemar-13-ene synthase in rice.
3.4. Expression levels of OsDTC2 mRNA

To analyze the expression levels of OsDTC2 mRNA in

chitin-elicited suspension-cultured rice cells (cv. BL-1), we

performed RT-PCR using a pair of gene-specific primers.

http://RiceBLAST.dna.affrc.go.jp/
http://RiceBLAST.dna.affrc.go.jp/


Fig. 3. Expression levels of OsDTC2 (stemar-13-ene synthase) mRNA
in suspension-cultured rice cells treated with the elicitor N -acetylchi-
toheptaose (A) and UV-irradiated rice leaves (B). (A) RT-PCR was
performed using poly(A)þ RNA (1 lg) prepared from the rice cells
treated with the chitin elicitor (10 ppm) for the indicated period of time
and a pair of the gene-specific primers. As an internal standard, the rice
actin gene ACT1 was amplified by using the gene-specific primers. (B)
RT-PCR was performed using total RNA (1 lg) isolated from the UV-
irradiated (UV+) and control (UV)) rice leaves and a pair of the gene-
specific primers. As an internal standard, the rice actin gene ACT1 was
amplified by using the gene-specific primers.

Fig. 4. Accumulation of stemar-13-ene in the elicited suspension-cul-
tured rice cells (A) and the UV-irradiated rice leaves (B). (A) Sus-
pension-cultured rice cells treated with the chitin elicitor (10 ppm) for
the indicated time. The purified methanol extracts from the respective
materials were subjected to GC-MS. An aliquot of each sample,
equivalent to 20 mg fresh weight, was used for each scanning. The
content of stemar-13-ene in each material was estimated based on total
ion current (TIC). (B) The methanol extracts from the UV-irradiated
(UV+) and control (UV)) rice leaves were purified and subjected to
GC-MS. An aliquot of each sample, equivalent to 0.8 mg fresh weight,
was used for each scanning. Stemar-13-ene was identified by compar-
ison of the retention time on GC and the full-scan mass spectrum with
those of the authentic sample.
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Levels of OsDTC2 mRNA began to increase 3 h after addition

of the elicitor, and the level reached the maximum after 8 h,

and gradually decreased (Fig. 3A). On the other hand, stemar-

13-ene began to accumulate in suspension-cultured rice cells 8

h after addition of the elicitor and the levels continued to in-

crease for at least 16 h (Fig. 4A).

Rice leaves produce diterpenoid phytoalexins after UV ir-

radiation as well as infection with the blast fungus M. grisea

[4,5]. UV irradiation is a convenient method for obtaining

tissues for investigating rice phytoalexin biosynthesis. By RT-

PCR analysis, the induction of OsDTC2 mRNA after UV ir-

radiation in rice leaves was clearly indicated (Fig. 3B). The

induction of OsKS8 (OsDTC2) mRNA by UV irradiation was

also reported by Sakamoto et al. [21] quite recently. GC-MS

analysis indicated that the production of stemar-13-ene was

induced in the rice leaves after UV irradiation (Fig. 4B). It was

thus indicated that OsDTC2 functions as stemar-13-ene syn-

thase not only in the elicited suspension-cultured rice cells but

also in the UV-irradiated rice leaves.

In this study, we isolated a cDNA encoding a diterpene

cyclase from the chitin-elicited suspension-cultured rice cells,

and indicated that the gene product functioned as stemar-13-

ene synthase in the elicited suspension-cultured rice cells and

the UV-irradiated rice leaves. The stemar-13-ene synthase

cDNA isolated here will be a useful tool to investigate the

regulatory mechanisms of the biosynthesis of the diterpenoid

phytoalexin oryzalexin S in rice. Based on the information

from a rice genome database, at least 10 diterpene cyclase

genes are expressed in rice including genes encoding ent-cassa-

12,15-diene synthase [12], stemar-13-ene-synthase [this study],

OsCyc1 (syn-CPS), OsCyc2 (ent-CPS involved in phytoalexin

biosynthesis), and ent-CPS involved in gibberellin biosynthesis

[15,21]. Cloning and functional analysis of other diterpene

cyclase cDNAs are now under way.
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