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a b s t r a c t

In this paper, we study a fractional differential equation model of the single species
multiplicative Allee effect. First we study the stability of equilibrium points. Further we
give some sufficient conditions ensuring the existence and uniqueness of integral solution.
In the last section we perform several numerical simulations to validate our analytical
findings.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The growth equation of single species with multiplicative Allee effect is governed by the following nonlinear ordinary
differential equation

dx(t)
dt

= rx(t)

1 −

x(t)
k


(x(t) − m), (1.1)

subjected to non-negative initial condition x0 ≥ 0. In the abovemodel system ‘r ’, ‘m’ and ‘k’ are positive constants and stand
for per-capita growth rate, Allee effect threshold and carrying capacity, respectively. In ordinary logistic growth model it is
assumed that the growth rate is positive below the threshold level ‘k’ and is negative above it. In reality, it is observed that a
minimum population density is required for the growth of certain species and below which population goes to extinction.
Hence growth rate of the population is positive only within the rangem < x < k and is negative outside this interval. Based
upon this assumption theper capita logistic growth rate r


1 −

x
k


ismodified to ‘r


1 −

x
k


(x−m)’ and results in themodel as

we have presented in (1.1). Model system (1.1) is said to have multiplicative Allee effect [1–4]. One can easily prove that the
solutions of model (1) are always positive when starting from a point in R+. There are only three equilibria, x1 = 0, x2 = m
and x3 = k. Among these three, x2 is always locally unstable, x1 is locally stable from right and all trajectories converge to
x3 starting from the initial points x0 > x2. We illustrate these results with help of numerical simulations in Section 4.

In this work we consider the fractional counterpart of Eq. (1.1)

dαx(t)
dtα

= rx(t)

1 −

x(t)
k


(x(t) − m), t > 0 (1.2)

for 0 < α < 1 and x(0) = x0. This work is motivated by work done in El-Sayed et al. [5].
Now we describe the definitions of fractional integral and derivative in the sense of Reimann–Liouville. For more details

on the geometric and physical interpretation for the Reimann–Liouville fractional derivative and integral see [6].
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Definition 1.1. The Reimann–Liouville fractional integral of order α > 0 of a function f : R+
→ R is defined by

Iα0 f (t) =
1

Γ (α)

∫ t

0
(t − s)α−1f (s)ds,

provided the right side exists pointwise on R+. Γ is the gamma function. For instance, Iα f exists for all α > 0, when
f ∈ C0(R+) ∩ L1loc(R

+); note also that when f ∈ C0(R+

0 ) then Iα f ∈ C0(R+

0 ) and moreover Iα f (0) = 0.

Definition 1.2. The Reimann–Liouville fractional derivative of order α ∈ (0, 1) of a function f : R+
→ R is given by

dα

dtα
f (t) =

1
Γ (1 − α)

d
dt

∫ t

0
(t − s)−α f (s)ds =

d
dt

I1−α
0 f (t).

Fractional differential equations are generalizations of ordinary differential equations to arbitrary non-integer orders.
The origin of fractional calculus goes back to Newton and Leibniz in the seventeenth century. It is widely and efficiently
used to describemany phenomena arising in engineering, physics, economy, and science. Recent investigations have shown
that many physical systems can be represented more accurately through fractional derivative formulation [7,8]. Fractional
differential equations, therefore find numerous applications in the field of visco-elasticity, feed back amplifiers, electrical
circuits, electro analytical chemistry, fractional multipoles, neuron modeling encompassing different branches of physics,
chemistry and biological sciences [9,6]. Magin [10] used fractional calculus to model some complex dynamics in biological
tissues. There have been many excellent books and monographs available on this field [6,11–17]. In [14], the authors gave
the most recent and up-to-date developments on fractional differential and fractional integro-differential equations with
applications involvingmany different potentially useful operators of fractional calculus. Recentlymanymathematicians and
scientists worked on the problem of existence and uniqueness of solutions of fractional differential equations, see [18–22].
In this work, we discuss the existence and uniqueness of solution for our model system (1.2).

2. Stability analysis

Consider the function

f (x(t)) = rx(t)

1 −

x(t)
k


(x(t) − m).

To evaluate the equilibrium points, consider dαx(t)
dtα = 0, which implies that f1(x∗) = 0. Now we first discuss the stability

analysis of the model system (1.2). Let us perturb the equilibrium point by adding a positive term ϵ(t), that is

x(t) = x∗
+ ϵ(t).

We get out system for any f

dα

dtα
(x∗

+ ϵ) = f (x∗
+ ϵ),

which gives

dαϵ(t)
dtα

= f (x∗
+ ϵ).

Using a Taylor series expansion, we get

f (x∗
+ ϵ) = f (x∗) + f ′(x∗)ϵ + · · · ,

which implies

f (x∗
+ ϵ) ≃ f ′(x∗)ϵ.

Thus we have
dαϵ(t)
dtα

≃ f ′(x∗)ϵ(t), t > 0 ϵ(0) = x0 − x∗.

Thus we can easily deduce that if the solution exists for the above systems, then as ϵ(t) increases the equilibrium point x∗

becomes unstable. The equilibrium point is locally asymptotically stable if ϵ(t) is decreasing.
It is also to note that if we replace x by x + x∗, in Eq. (1.2), then the linear part is given by

dαx
dtα

= r

2


1 +

m
k


x∗

−
3
k
x∗

2
− m


x, t > 0. (2.3)
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One can easily check that the above expression is the same as

dαx
dtα

= f ′(x∗)x, t > 0. (2.4)

Thus, in order to check the stability of the equilibrium points, we need to check the nature of f ′ at that point.
It is easy to see that the Eq. (1.2) has three equilibrium points x1 = 0, x2 = m and x3 = k. In order to study the stability,

we calculate

f ′(x(t)) = r

1 −

x(t)
k


(x(t) − m) + rx(t)


1 −

x(t)
k


−

r
k
x(t)(x(t) − m).

Now we get

f ′(0) = −rm, f ′(m) = rm

1 −

m
k


, f ′(k) = −r(k − m).

For the first equilibrium point, consider the problem,
dαϵ(t)
dtα

= f ′(x∗
= 0)ϵ(t) = −rmϵ(t), t > 0 ϵ(0) = x0.

The solution of the problem is given by

ϵ(t) =

∞−
0

(−rm)ntnα

Γ (nα + 1)
x0.

As r,m, k are positive constants andm < k, we have

f ′(0) < 0, f ′(m) > 0, f ′(k) < 0.

Thus x1 = 0 is asymptotically stable. For x2 = m, we have
dαϵ(t)
dtα

= f ′(x∗
= m)ϵ(t) = rm


1 −

m
k


ϵ(t), t > 0 ϵ(0) = x0 − m.

The solution of the problem is given by

ϵ(t) =

∞−
0


rm


1 −

m
k

n tnα
Γ (nα + 1)

(x0 − m).

Hence the equilibrium point x2 = m is unstable. Now for the third equilibrium point we have
dαϵ(t)
dtα

= f ′(x∗
= k)ϵ(t) = −r(k − m)ϵ(t), t > 0 ϵ(0) = x0 − k.

The solution of the problem is given by

ϵ(t) =

∞−
0

(−r(k − m))ntnα

Γ (nα + 1)
(x0 − k).

Hence the equilibrium point x3 = k is asymptotically stable.

3. Existence and uniqueness of the solution

Define C(I) be the class of continuous functions on I = [0, T ] for T < ∞, with norm

‖x‖ = sup
t

|e−Ntx(t)|, N > 0.

It is easy to see that the norm ‖ · ‖ is equivalent to the supremum norm supt |x(t)|.
Now we prove the existence and uniqueness of the solution of problem (1.2). By a solution of (1.2), we mean that

• (t, x(t)) ∈ D, t ∈ I where D = I × B = {x ∈ R : |x| ≤ b},
• x(t) satisfies (1.2).

Theorem. The model (1.2) has a unique solution x ∈ C(I) provided

r
Nα−1


−m +


1 +

m
k


2b +

b2

k


< 1.

Proof. The model (1.2) can be written as

I1−α dx(t)
dt

= rx(t)

1 −

x(t)
k


(x(t) − m).
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By the operation Iα on both sides of the above equation, we get

x(t) − x0 = Iα

rx(t)


1 −

x(t)
k


(x(t) − m)


. (3.5)

Define the operator F : C(I) → C(I) by

Fx(t) = x0 + Iα

rx(t)


1 −

x(t)
k


(x(t) − m)


.

We can easily see that

f (x(t)) − f (y(t)) = rx(t)

1 −

x(t)
k


(x(t) − m) − ry(t)


1 −

y(t)
k


(y(t) − m)

= −m(x(t) − y(t)) +


1 +

m
k


(x2(t) − y2(t)) −

1
k
(x3(t) − y3(t))

= (x(t) − y(t))


−m +


1 +

m
k


(x(t) + y(t)) −

1
k
(x2(t) + y2(t) + x(t)y(t))


= (x(t) − y(t))


−m +


1 +

m
k


(x(t) + y(t)) −

1
k
((x(t) − y(t))2 − x(t)y(t))


. (3.6)

For x, y ∈ B, we have

e−Nt(Fx(t) − Fy(t)) = re−Nt Iα(x(t) − y(t))


−m +


1 +

m
k


(x(t) + y(t)) −

1
k
((x(t) − y(t))2 − x(t)y(t))


×

r
Γ (α)

∫ t

0
(t − s)α−1e−N(t−s)(x(s) − y(s))

×


−m +


1 +

m
k


(x(s) + y(s)) −

1
k
((x(s) − y(s))2 − x(s)y(s))


e−Nsds. (3.7)

Hence by the definition of defining C(I), we have

‖Fx − Fy‖ ≤
r

Γ (α)


−m +


1 +

m
k


2b +

b2

k


‖x − y‖

∫ t

0
(t − s)α−1e−N(t−s)ds

≤
r

Γ (α)


−m +


1 +

m
k


2b +

b2

k


‖x − y‖

∫
∞

0
(s)α−1e−Nsds

≤
r

Nα−1


−m +


1 +

m
k


2b +

b2

k


‖x − y‖. (3.8)

Thus for N large enough, we have

r
Nα−1


−m +


1 +

m
k


2b +

b2

k


< 1.

Thus the operator F has a fixed point and hence the integral equation has a unique solution x ∈ C(I).

x(t) = x0 + r
[
tα−1

Γ (α)


x0


1 −

x0
k


(x0 − m)


+ Iα+1 d

dt
x(t)


1 −

x(t)
k


(x(t) − m)

]
= x0 + r

[
tα−1

Γ (α)


x0


1 −

x0
k


(x0 − m)


+ Iα+1


−mx′(t) + 2


1 +

m
k


x(t)x′(t) −

3
k
x2(t)x′(t)

]
. (3.9)

Thus

dx
dt

= r
[
tα−1

Γ (α)


x0


1 −

x0
k


(x0 − m)


+ Iα


−mx′(t) + 2


1 +

m
k


x(t)x′(t) −

3
k
x2(t)x′(t)

]
.

Applying e−Nt on both side of the above equation we get

e−Ntx′(t) = re−Nt
[
tα−1

Γ (α)


x0


1 −

x0
k


(x0 − m)


+ Iα


−mx′(t) + 2


1 +

m
k


x(t)x′(t) −

3
k
x2(t)x′(t)

]
which implies that x′

∈ C(Iσ ) for some σ > 0.
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Now we get
dx
dt

=
d
dt

Iα f (x(t))

I1−α dx
dt

= I1−α d
dt

Iα f (x(t))

I1−α dx
dt

=
d
dt

I1−α Iα f (x(t))

dαx
dtα

=
d
dt

I(f (x(t)))

dαx
dtα

= (f (x(t))) (3.10)

and

x(0) = x0 + Iα(f (x(t)))|t=0

which implies x(0) = x0. Thus the problem (1.2) is equivalent to corresponding integral equation (3.5). �

4. Numerical methods and results

In this section we use the Adams-type predictor–corrector method for the numerical simulations of nonlinear problems
(1.1) and (1.2). This is a very effective tool to give numerical solutions of fractional order differential equations [5,23,24]. It
may be used both for linear and for nonlinear problems. We first consider a nonlinear ordinary differential equation:

dx(t)
dt

= rx(t)(x(t) − m)


1 −

x(t)
K


, (4.11)

subjected to non-negative initial condition x0 ≥ 0. In equation the parameters ‘r ’, ‘m’ and ‘K ’ are positive constants and
satisfy the restrictionm < K . One can easily prove that the solution of model (4.11) is always positive starting from a point
in R+ based upon the following result

x(t) = x(0) exp
[∫ t

0
(x(s) − m)


1 −

x(s)
K


ds

]
.

This shows that R+ is invariant manifold for model (4.11). There are three equilibria for model (4.11) lying on R+ are
x1 = 0, x2 = m and x3 = K . Among these three, x2 is always unstable, x1 is stable from right and all trajectories converge to
x3 starting from the initial points x0 > x2. Depending upon initial conditions the asymptotic behavior of trajectories are as
follows

lim
t→+∞

x(t) = 0 for 0 < x0 < m,

lim
t→+∞

x(t) = K for x0 > m, and x0 ≠ K .

Before proceeding further we are interested in looking at the numerical simulation results of Eq. (4.11) for the chosen
parameter values r = 0.5,m = 1 and K = 10. For a numerical simulation we have chosen 1t = 0.01 and checked the
limiting behavior of solution trajectories for different choices of initial conditions with (0, 15]. From Fig. 1 it is clear that the
rate of convergence for the trajectories converging at x3 = K are faster compared to the trajectories converging at x1.

Nowwe consider the numerical solution of following fractional differential equation for different values of α and starting
from different initial conditions. We consider the specific equation

dαx(t)
dtα

= rx(t)(x(t) − 1)

1 −

x(t)
10


, t > 0,

for positive α and subjected to the initial condition x0 > 0. We start our numerical simulation with α = 0.5. Solution
trajectories starting from an initial point x0 converge to ‘0’ asymptotically for 0 < x0 < 1. On the other hand all trajectories
converge rapidly to the equilibrium level x3 = 10 starting from different initial points satisfying the restriction x0 > 1.
Hence the domain of attraction for x1 = 0 is x < 1 and that of x3 = 10 is x > 1. Further, time required to reach the
vanishing equilibrium point x1 = 0 is more than that required to reach x3 = 10. Fig. 1 clearly depicts the fact that all
trajectories reached x3 = 10 within the time interval [0, 2] but the trajectory starting from x(0) = 0.5 is unable to reach
the locally stable equilibrium x1 = 0 evenwithin the time interval [0, 3]. Thus we can conclude that the rate of convergence
of solution trajectories to different steady states are not same for a fractional order differential equation rather it depends
upon the initial point. A similar type of simulation with α = 0.8 is presented in Fig. 2. Now it is clear that the magnitude of
α is also a crucial parameter behind the convergence of solution trajectories to various equilibrium points.

Next we consider how the rate of convergence of solution trajectories towards their steady state depend upon the
magnitude of α. We fix the initial condition at x0 = 8 and perform the numerical simulation for α = 0.5, α = 0.75 and
α = 1. Simulation results are presented in Fig. 3 and it is clear that the time required for the convergence of solution
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0 0.5 1 1.5 2 2.5 3
0

5

10

15

t →
x(

t)
→

Fig. 1. Numerical simulation results of ordinary differential equation model. Green line and red line correspond to stable steady state x3 = 10 and
unstable steady state x2 = 1 respectively. Trajectories starting from x0 > 1 all converge to x3 . The trajectory starting from x0 = 0.5 converges to x1 = 0.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

t →

x(
t)

→

Fig. 2. Time evolution of solution trajectories starting from different initial conditions for α = 0.8.

Fig. 3. Solution trajectories converging to x3 = 10 starting from x0 = 8 and different values of α, α = 0.5 (red curve); α = 0.75 (green curve); and α = 1
(blue curve). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

trajectories to the stable steady-state x3 = 10 increases with the decreasing magnitude of α. The time required for
convergence to the steady-state x3 not only varies with α it also depends upon the initial conditions. To illustrate this issue
in Fig. 4 we have plotted the time required to reach x3 by the solution trajectories starting from x0 = 8 for different values
of α ∈ [0.8, 1]. As there are no transient oscillations for the solution trajectories before reaching the steady-state x3 = 10,
we have calculated the time point tf such that |x(tf ) − x3| < 10−8. In Fig. 4 we have plotted tf (correct up to 8th places of
decimals) for a range of values of α appearing as the range of α along the horizontal axis. It is clear that the time taken to
reach the steady-state x3 = 10 deceases gradually with the increasing magnitude of α.

Finally we consider the time required to converge to the steady-state x3 = 10 starting from a range of initial conditions
(x0 ∈ [7, 9]) and for a fixed value of α = 0.9. A plot of tf against x0 is presented in Fig. 5. Here we like to remark that the
distance of initial point from equilibrium level as well as the fractional order of the differential equation have significant
impacts on the time required to converge to the equilibrium level.
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Fig. 4. Plot of tf against a range of values of α.

  

 

Fig. 5. Plot of tf for a range of initial conditions x0 .
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