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The dominant conceptual framework for understanding innate immunity has been that host cells respond to
evolutionarily conserved molecular features of pathogens called pathogen-associated molecular patterns
(PAMPs). Here, we propose that PAMPs should be understood in the context of how they are naturally pre-
sented by pathogens. This can be experimentally challenging, since pathogens, almost by definition, bypass
host defense. Nevertheless, in this review, we explore the idea that the immune system responds to PAMPs in
the context of additional signals that derive from common ‘‘patterns of pathogenesis’’ employed by patho-
gens to infect, multiply within, and spread among their hosts.
Introduction
The mammalian innate immune system provides an early and

important response to microbial attack. Over the past decade,

compelling evidence has accumulated that the response

to invading microorganisms is stimulated by recognition of

several distinct microbial structures by germline-encoded host

receptors of the innate immune system (Beutler et al., 2006;

Kawai and Akira, 2008; Medzhitov, 2007). In this review, we

consider evidence that the response to pathogens is not

limited to recognition of these structures. We suggest that, in

addition, hosts may recognize distinct pathogen-induced

processes that contribute to the progression of disease. The

reason for thinking along these lines is that recognition of path-

ogen-induced events would provide the host with strategies for

distinguishing a virulent organism from one that has lower

disease-causing potential. The host could then escalate immune

responses to a level commensurate with the attack being

mounted.

As proposed by Janeway (Janeway, 1989), we will refer to the

distinct microbial structures recognized by the host as path-

ogen-associated molecular patterns (PAMPs) and the host

receptors that recognize them as pattern-recognition receptors

(PRRs), despite some widely recognized problems with this

nomenclature (see below). The details of the PRRs and their

cognate PAMPs have been extensively reviewed elsewhere

(Beutler et al., 2006; Kawai and Akira, 2008; Medzhitov, 2007).

Examples of PAMPs of particular relevance to bacterial patho-

gens include lipid A, an essential constituent of the lipopolysac-

charide in the Gram-negative outer membrane, which is sensed

by Toll-like receptor 4 (TLR4); bacterial flagellin, a protein subunit

that polymerizes to form the flagellum, which is a ligand for TLR5;

bacterial lipoproteins, from Gram-positive and Gram-negative

bacteria, which are recognized by TLR2; bacterial DNA contain-

ing particular CpG motifs that stimulate TLR9; and fragments of
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bacterial PGN that are sensed in the host-cell cytosol by the

NOD1 and NOD2 receptors.

In addition to recognition of PAMPs, it has been suggested

that the immune system responds to other signals commonly

associated with infection. In particular, it has been proposed

that cells dying of a ‘‘messy’’ necrotic death, as opposed to a

programmed apoptotic death, may release molecules such as

DNA, ATP, uric acid, and DNA binding proteins (HMGB1) into

the extracellular milieu (Kono and Rock, 2008; Matzinger,

1994). These molecules have been variously termed DAMPs

(damage-associated molecular patterns), alarmins, or endoge-

nous adjuvants, and there is evidence that these host-derived

molecules can stimulate immune responses, perhaps explaining

the sterile inflammation in models such as ischemia-reperfusion

injury (Kono and Rock, 2008). There is also evidence that DNA

damage stimulates innate immune responses mediated by the

NKG2D receptor (Gasser et al., 2005). What remains unclear,

however, is whether damage-induced responses play a signifi-

cant role in the host response to pathogens. One major issue

is that much of the damage that occurs in an infection may be

due to the host response rather than the pathogen. This self-in-

flicted damage may amplify immune responses, but cannot be

used to explain the initiation of immune responses to pathogens,

which is our primary concern here. In fact, many pathogens

appear to go to considerable lengths to avoid host damage.

Another unresolved question with damage-based models is

whether or how hosts can distinguish sterile damage from path-

ogen-induced damage in order to initiate appropriate healing or

inflammatory responses to each (Barton, 2008).

The plant immunity literature has long discussed a model

conceptually related to the damage model, termed the ‘‘guard

hypothesis’’ (Chisholm et al., 2006; Jones and Dangl, 2006),

which proposes that specific kinds of cellular disruption—for

example, of certain host signaling pathways—may trigger host
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Figure 1. Dual Recognition of PAMPs
A highly simplified schematic of the responses to three PAMPs is shown. PAMPs are often sensed in different subcellular compartments or in different cell types,
leading to distinct responses. Thus, host cells not only sense whether a PAMP is present but also sense when and where the PAMP is present.
defense responses. In contrast to the damage-based models, in

which generic cellular injury initiates immune responses, the

Guard Hypothesis focuses immune responsiveness on the

specific disruptions caused by pathogens. It remains unclear

whether mammalian cells utilize a similar ‘‘guard’’ strategy. In

this review, we attempt to extend these ideas and ask whether

there are signals specifically associated with living, pathogenic

microbes that could play a role in the initiation of innate immune

responses. We focus exclusively on bacterial pathogens and

consider two main questions: (1) Do living and dying bacteria

produce distinct PAMPs, i.e., PAMPs-postmortem (PAMPs-

PM) and PAMPs-per vita (PAMPs-PV), and if so, are they differ-

entially recognized by the immune system? (2) Does the immune

system initiate responses based not only on whether PAMPs are

present, but on where and under what cellular context the

PAMPs are presented? Our overall hypothesis is that PAMPs

are delivered along with additional information that can be

used by the host to distinguish pathogenic from nonpathogenic

microbes and thereby guide the ensuing innate immune

response.

Pathogen-Associated Molecular Patterns
Dual Recognition of PAMPs

A relatively select group of bacterial molecules are able to func-

tion as PAMPs, and importantly, several PAMPs are recognized

by at least two different sensors, often in different contexts

(Figure 1). For example, flagellin is a ligand for TLR5 at the cell

surface but is also recognized cytosolically by an entirely distinct

sensor, the Naip5/Ipaf inflammasome. The two flagellin sensors

appear to have evolved independently, as they recognize distinct

domains of the flagellin molecule (Lightfield et al., 2008). Like-

wise, DNA is recognized in a specialized intracellular compart-

ment by TLR9 (Ahmad-Nejad et al., 2002; Hacker et al., 1998;

Honda et al., 2005) but is also sensed in the cytosol by several

distinct sensors, some of which remain to be identified (Burck-

stummer et al., 2009; Fernandes-Alnemri et al., 2009; Hornung

et al., 2009; Ishii et al., 2006; Muruve et al., 2008; Stetson and

Medzhitov, 2006). RNA is recognized by TLR3 within a vacuole

and by RIG-I and Mda5 in the cytosol. The cytosolic nucleic

acid sensors recognize features of their ligands distinct from

the features recognized by TLRs (Yoneyama and Fujita, 2008).
Importantly, the multiple receptors involved in recognizing

a single PAMP do not appear to be redundant but instead often

lead to unique signaling outcomes.

Two major categories of responses elicited by PAMPs are

transcriptional and posttranslational. TLRs signal through

several signaling adaptors, notably MyD88 and Trif, leading to

a transcriptional response primarily dependent on the NF-kB

and IRF-3/7 families of transcription factors (Kawai and Akira,

2008). Several cytosolic PRRs, on the other hand, appear to

stimulate the inflammasome, a multiprotein complex that trig-

gers a posttranslational response, the cleavage and activation

of the cysteine protease caspase-1 (Franchi et al., 2009; Petrilli

et al., 2007a). Caspase-1 in turn cleaves and activates the secre-

tion of a variety of substrates, including pro-IL-1b and pro-IL-18.

Caspase-1 is also required for a rapid, nonapoptotic death

termed pyroptosis (Bergsbaken et al., 2009). Examples of

PAMPs that activate the inflammasome include flagellin and

DNA, but these PAMPs activate the inflammasome only upon

delivery to the cytosol and not from the cell surface (Franchi

et al., 2006; Lightfield et al., 2008; Miao et al., 2006; Molofsky

et al., 2006; Muruve et al., 2008; Ren et al., 2006). Thus, the

immune system can initiate responses based not only on

whether PAMPs are present, but on where those PAMPs are

presented.

The dual transcriptional and posttranscriptional responses

downstream of PAMP recognition can be collaborative in impor-

tant ways. For example, TLR signaling is required for the tran-

scription of pro-IL-1b and pro-IL-18, and the posttranslational

inflammasome response is then required for subsequent

cleavage and secretion of the active cytokine (Franchi et al.,

2009; Petrilli et al., 2007a). Such dual control may be an impor-

tant regulatory mechanism to limit inappropriate or unnecessary

production of cytokines that trigger potent responses that are

potentially damaging to the host.

It is important to acknowledge that there is not always a clear-

cut distinction between signals originating from extracellular,

vacuolar, or cytosolically detected PAMPs. For example, nucleic

acid ligands can induce expression of type I IFNs from a phago-

some or the cytosol, and cell-surface TLRs and the cytosolic

Nod1/2 sensors both activate NF-kB (Ishii et al., 2008). Never-

theless, there may be important differences in the kinetics,
Cell Host & Microbe 6, July 23, 2009 ª2009 Elsevier Inc. 11
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intensity, or cell types involved in cytosolic versus TLR signaling,

even if the fundamental signaling pathways are similar. For

example, most cell types can produce type I IFNs, primarily via

cytosolic sensing pathways, but the rapid and potent release

of type I IFNs into the serum by plasmacytoid dendritic cells

occurs uniquely downstream of TLR signaling. Both cytosolic

and TLR-mediated production of type I IFNs appear to play

essential roles in distinct contexts (Delale et al., 2005; Kato

et al., 2005; Krug et al., 2004). Taken together, numerous obser-

vations support the idea that single PAMPs can trigger dual

responses. Moreover, host cells appear to assess the context

in which PAMPs are sensed, and this contextual information is

used to generate distinct responses.

Issues that Complicate the PAMP Hypothesis

One oft-heard criticism of the PAMP hypothesis is that PAMPs

are not restricted to pathogens but are instead produced by all

microbes. Thus, one suggestion has been that PAMPs should

really be renamed microbe-associated microbial pathogens

(MAMPs) (Benko et al., 2008; He et al., 2007; Mackey and

McFall, 2006; Sirard et al., 2006). Indeed, the PAMP model

cannot by itself explain how pathogens and nonpathogens might

be distinguished by the innate immune system and might even

lead to the view that pathogens and nonpathogens are indistin-

guishable. Our view is that pathogenic and nonpathogenic

microbes are distinguishable, but the challenge is to understand

how they are distinguished.

The PAMP model is also complicated by the extent to which

pathogens can modify their PAMPs to avoid host recognition.

Although PAMPs are usually portrayed as invariant or highly con-

strained structures that are extremely difficult for microbes to

alter, the extent of PAMP plasticity is appreciable and is often

neglected in discussions of the PAMP model. Almost by defini-

tion, a pathogen is a microorganism that causes disease by

avoidance or manipulation of host innate immunity, and it is

presumed that pathogens must be able to avoid innate immunity

to some extent (Hedrick, 2004; Hornef et al., 2002). LPS provides

several striking examples of variants that appear to confound the

host. For example, the oral pathogen Porphyromonas gingivalis

can produce an astonishing variety of at least 12 different

lipid A molecules (Reife et al., 2006), which can be stimulatory,

invisible (R. Darveau, personal communication), or antagonistic

to TLR4 (Coats et al., 2007). As an additional example, Yersinia

pestis modifies its LPS via altered acylation, rendering it a poor

ligand for TLR4 (Kawahara et al., 2002; Montminy et al., 2006;

Rebeil et al., 2006). Avoidance of PAMP recognition is not limited

to LPS. The flagellin of Helicobacter pylori, for example, is not effi-

ciently recognized by TLR5 (Andersen-Nissen et al., 2005;

Gewirtz et al., 2004; Lee et al., 2003); moreover, several bacterial

pathogens have efficient mechanisms for downregulating

flagellin expression within hosts (Akerley et al., 1995; Shen and

Higgins, 2006; Wolfgang et al., 2004). Pathogens are also able

to manipulate downstream signaling pathways to prevent

responses downstream of PAMP recognition (Bhavsar et al.,

2007). The selective pressure for certain pathogens to circum-

vent responses to PAMPs is evidence in favor of the model that

PAMP recognition plays an important role in stimulating host

innate immunity. Further supporting this idea is the evidence

that mutations in PRRs often (but do not always) lead to increased

host susceptibility (Ishii et al., 2008; Puel et al., 2005). Although it
12 Cell Host & Microbe 6, July 23, 2009 ª2009 Elsevier Inc.
is unlikely that any pathogen is able to render its PAMPs entirely

invisible to the immune system, we suspect that, to the extent

required for their replication and transmission, pathogens can

avoid recognition of their PAMPs. This is one important consider-

ation that leads us to consider whether additional mechanisms of

pathogen sensing may complement PAMP sensing. These addi-

tional mechanisms might, for example, permit specific recogni-

tion of microorganisms that have high pathogenic potential.

The barcode hypothesis is one model that has been proposed

to explain how responses could be tailor-made to certain

microbes (Aderem, 2003). This model suggests that the different

combinations of PAMPs found on different microbial species

could be interpreted in a way that would allow for unique

responses to distinct classes of pathogens. For example,

a Gram-negative (but not a Gram-positive) pathogen would stim-

ulate TLR4, leading to the unique transcriptional response, domi-

nated by production of IFNb, that is downstream of TLR4.

However, many pathogens defy strict categorization in this

way, indicating that more factors may come into play. For

example, many Gram-negative pathogens lack LPS that is stim-

ulatory for TLR4 (Munford and Varley, 2006), and while Gram-

positive bacteria lack LPS, many still potently induce IFNb via

a cytosolic immunosurveillance pathway that remains to be fully

defined (Perry et al., 2005). Thus, while a PAMP barcode

provides some useful information to the immune system,

it seems likely that PAMP signals are interpreted in the context

of other cues that occur in the course of infection.

Patterns of Pathogenesis
Concept Defined

The PAMP framework has been useful because it provides a rela-

tively straightforward system for categorizing responses to

microbes based on the PAMPs that are expressed. However,

the idea that the innate immune system views pathogens as

mere ‘‘bags of PAMPs’’ ignores important contextual information

that accompanies PAMPs when they are delivered by virulent

microorganisms. Here, we propose a complementary framework

for understanding innate responses to pathogens that we call

‘‘patterns of pathogenesis’’ (Figure 2). This proposal is based

on decades of research that has led to the recognition that path-

ogens use a few common strategies to cause disease (Finlay and

Falkow, 1997). As each strategy is found in a broad swath of

pathogens, each can be considered conceptually similar to

a common molecular pattern recognized by PRRs. Below is

a broad and nonexhaustive description of some of these

patterns. Later, we will explore whether immune recognition of

the events that result from these patterns potentiates innate

immune signaling.

Pattern I: Growth

With the exception of a very small subset of toxin-producing

organisms, the most common pattern associated with pathogens

is their ability to grow in their hosts upon invasion. It should be

beneficial for the immune system to distinguish growing and

dying bacteria, especially in the context of an acute infection, in

order to organize the appropriate response. Here, we ask if there

are bacterial molecules that signify growing versus dead and

dying bacteria. We propose that a PAMP signifying life be named

PAMP-PV (per vita) and one that signifies death as PAMP-PM

(postmortem). Molecules potentially associated with bacterial
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death and lysis would include any large macromolecule that is

only released during bacteriolysis, such as DNA or RNA. Small

molecules that could be associated with growth include those

that could be secreted by living bacteria, such as PGN fragments,

quorum-regulating autoinducers (Zimmermann et al., 2006),

bacterial pyrophosphates such as HMB-PP (Hintz et al., 2001),

or perhaps bacterial nucleotide-based second messengers

such as c-di-GMP (Karaolis et al., 2007; McWhirter et al., 2009).

Below, in the section on innate immune recognition, we will

attempt to illustrate the concept of molecules generated during

growth and death by examining the factors that control the

production of PGN fragments recognized by PRRs.

Pattern II: Cytosolic Access

A primary characteristic of many pathogens is the ability to

deliver microbial molecules into the host cell cytosol. One of

the best-characterized versions of this strategy is the deploy-

ment of AB toxins, in which a B subunit mediates binding and

translocation of the enzymatic A subunit into the host cytosol

(Finlay and Falkow, 1997). For example, the B subunit of anthrax

toxin, called protective antigen (PA), mediates the delivery of the

A subunits (lethal factor and edema factor) from an acidified

endosome into the host cell cytosol (Young and Collier, 2007).

This is not the only means by which pathogens access the host

cell cytosol. In fact, other mechanisms, suchasdedicatedsystems

for secretion of bacterial proteins into the host cell cytosol, are

even more closely linked with the presence of viable bacteria.

The best characterized of these auxiliary secretion systems

are the type III secretion systems (T3SSs) encoded by numerous

Gram-negative bacterial pathogens (Galán and Wolf-Watz,

2006). These secretion systems are often described as molec-

ular syringes that deliver bacterial proteins, usually enzymes,

into the host cell cytosol. The secreted proteins are referred to

as ‘‘effectors’’ and are analogous to the A subunit of AB toxins.

Indeed, one can consider auxiliary secretion systems as elabo-

rate B subunits that deliver toxins directly into target cells.

Once in host cells, the effectors perform a variety of functions

Figure 2. Patterns of Pathogenesis
Live pathogens commonly employ a small number of strategies to infect, repli-
cate within, and spread among their hosts. These strategies appear to be
detected as unique patterns by the host, leading to specific immune responses
that discriminate pathogenic and nonpathogenic microbes.
that contribute to pathogenesis. Extracellular pathogens such

as Yersinia can utilize T3SSs to deliver effectors that block

uptake of bacteria into cells; conversely, intracellular pathogens

such as Salmonella can utilize T3SSs to enter cells and establish

intracellular compartments that support replication (Galán and

Wolf-Watz, 2006). It is worth noting that while the apparatus of

the T3SS itself is conserved across species, the effectors and

their activities are distinct and sometimes encode unusual

biochemical functions (Bhavsar et al., 2007). A T3SS is thus

a flexible scaffold that is compatible with a highly diverse set of

pathogenic lifestyles. Bacterial pathogens lacking T3SSs often

encode evolutionarily unrelated systems that nevertheless fulfill

the same basic function. Examples include type IV secretion

systems (T4SSs) (e.g., of Legionella, Coxiella, and Brucella)

and the more recently discovered type VI secretion system

(T6SS) (e.g., in Pseudomonas and Vibrio) (Pukatzki et al.,

2006). What all these systems have in common is that they

promote cytosolic access of microbial molecules.

The use of dedicated secretion systems is not limited to Gram-

negative bacteria. In Gram-positive microorganisms, including

Mycobacteria, functionally similar mechanisms appear to exist.

The ESX-1 secretion system of Mycobacterium tuberculosis

(Simeone et al., 2009) is evolutionarily distinct from those

described above, but it fulfills the same basic function of deliv-

ering bacterial products to the cytosol of host cells. In the case

of Gram-positive organisms, some pore-forming toxins such

as streptolysin O may serve as portals for the injection of bacte-

rial molecules into the host cell cytosol (Madden et al., 2001).

Again, in its natural setting, the pore-forming toxin appears to

function as an elaborate B subunit. Some pore-forming toxins

deliver not just a few effectors to the cytosol but are also involved

in phagosome disruption, allowing an entire pathogen to access

the cytosol. This is the case for listeriolysin O, a pore-forming

toxin required for Listeria monocytogenes to escape the phago-

some, replicate in the cytosol, and cause disease in hosts

(Schnupf and Portnoy, 2007). A key point is that pathogens

that access the cytosol require cytosolic access as a critical

component of their virulence strategy, and thus, mutants lacking

auxiliary or pore-forming systems are typically avirulent.

Pattern III: Hijacking and Disrupting Normal Host

Cytoskeleton Function

Several highly divergent species of bacteria, including Listeria,

Shigella, Mycobacterium marinum, and Rickettsial species, not

only access but also replicate in the host cytosol (Gouin et al.,

2005). The events associated with cytosolic replication empha-

size that a third major pattern may mark a pathogen for recogni-

tion by the host: many microorganisms can either hijack or

disrupt host cytoskeletal function. These four bacterial species,

as well as poxvirus, exploit the host cell system of actin-based

motility, allowing their movement within cells and from cell to

cell, thereby spreading the infection without exiting the cells

(Gouin et al., 2005). In each case, proteins associated with the

surface of the pathogen recruit key regulators of the cytoskel-

eton to initiate novel rounds of actin polymerization within the

host cell.

A large number of additional pathogens disrupt the host cyto-

skeleton for completely distinct purposes. Some pathogens,

such as Salmonella, manipulate host actin in order to invade cells

(Galán and Wolf-Watz, 2006), whereas other pathogens disrupt
Cell Host & Microbe 6, July 23, 2009 ª2009 Elsevier Inc. 13
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host actin in order to block phagocytosis (Viboud and Bliska,

2005). The molecular mechanisms by which pathogens modu-

late host actin are also diverse. A common way to target the

cytoskeleton is to directly manipulate the function of Rho family

small GTPases that control cellular cytoskeletal processes

(Heasman and Ridley, 2008). Many bacterial pathogens disrupt

function of these proteins either by mimicking key regulators of

the cycle or chemically modifying Rho family members. For

instance, multiple bacterial pathogens translocate proteins that

cause GTP hydrolysis and inactivation of the Rho family member

(Black and Bliska, 2000; Fu and Galán, 1999; Goehring et al.,

1999; Von Pawel-Rammingen et al., 2000). There also exist AB

toxins or translocated substrates of specialized secretion

systems that change the activation state of Rho family members

by chemical alteration, usually disrupting protein function (Akto-

ries et al., 1989; Chardin et al., 1989; Just et al., 1995; Schmidt

et al., 1997; Yarbrough et al., 2009). Finally, some bacterial

proteins act more directly after they access the host cytoplasm

and target either actin itself or an actin-associated protein,

resulting in alterations of cytoskeletal dynamics (Fullner and

Mekalanos, 2000; Hayward and Koronakis, 1999; Zhou et al.,

1999). Despite the remarkably diverse ways that pathogens

affect the host cytoskeleton, the key point of emphasis here is

that disruption of the host cytoskeleton is a common ‘‘pattern’’

employed by many pathogens (but not nonpathogenic microbes)

and could therefore be an important cue to the host immune

system.

Recognition of Patterns of Pathogenesis by the Innate
Immune System
The above discussion presents the idea that although there are

numerous mechanisms of pathogenesis, there appears to be

a relatively select group of cellular targets, or hubs, that many

pathogens exploit as points of vulnerability. Just as relatively

few bacterial structures are targeted as PAMPs, perhaps it is

also the case that relatively few host pathways are suitable

points of vulnerability that can be exploited by pathogens. If

so, it would make sense for the host to monitor these host struc-

tures for signs of distress that could indicate the presence of

a pathogen. A similar model has been termed the guard hypoth-

esis in the plant innate immunity literature (Chisholm et al., 2006;

Jones and Dangl, 2006). Here, we extend this idea to consider

how PAMP sensing and other forms of immunosurveillance

might be coordinated.

Sensing Pathogen Replication and Death

It remains an open question whether there are molecules whose

structure signifies either growing or dying microbes. Clearly, it

might be helpful to the immune system if such discrimination

were possible. For example, the presence of dead bacteria might

indicate that the immune response has been successful and

therefore be a signal to begin contracting and resolving the

response, perhaps in conjunction with additional signals (Harty

and Badovinac, 2008). Pathogen growth or death could be

sensed by the host in a variety of ways. For example, pathogen

replication could alter local levels of host amino acids, other

nutrients, or oxygen (Rius et al., 2008). Here, we focus on just

one possible pathway in some detail by examining host

responses to the most ubiquitous of bacterial PAMPs, PGN, an

essential conserved and abundant structure that is shed during
14 Cell Host & Microbe 6, July 23, 2009 ª2009 Elsevier Inc.
bacterial growth. PGN is a well-characterized PAMP, but when

produced in the context of a natural infection, it may provide

more specific signals: for example, signifying the presence of

live pathogenic bacteria. In Gram-negative bacteria, approxi-

mately 60% of shed PGN is recycled (Park and Uehara, 2008),

whereas in Gram-positive bacteria, it is released (Cloud-Hansen

et al., 2006). Bacteria also remodel their PGN during assembly of

macromolecular structures such as flagella and auxiliary secre-

tion systems (Vollmer et al., 2008). To accommodate growth

and PGN remodeling, bacteria utilize a collection of PGN-

specific degrading enzymes called autolysins (Vollmer et al.,

2008). The term autolysin is misleading, because these enzymes

are essential for PGN remodeling, and their regulated activity

prevents autolysis. It is their deregulation, such as during treat-

ment with b-lactam antibiotics, which causes autolysis (bacteri-

olysis). Autolysins can be divided into families based on their site

of cleavage and precise enzymatic mechanisms. Bacteria often

express more than a dozen autolysins with many distinct activi-

ties. Animals also express enzymes that degrade PGN, although

with limited substrate specificity, including lysozyme (N-acetyl

muramidase) and PGRPs (amidase activity). Lysozyme and

PGRPs can be bacteriocidal and act to limit the inflammatory

properties of PGN (Ganz et al., 2003; Royet and Dziarski,

2007). Not surprisingly, PGN from many pathogens is resistant

to lysozyme (Boneca et al., 2007).

It is reasonable to suspect that PGN released by growing

bacteria may be structurally distinct from nongrowing bacteria

or those undergoing bacteriolysis. One example may be tracheal

cytotoxin (TCT) (Luker et al., 1995). TCT consists of a single

monomeric unit of PGN (GlcNAc, MurNAc, glutamic acid, diami-

nopimelic acid, and two alanines). The receptors for TCT include

murine Nod1 (Magalhaes et al., 2005) and some Drosophila

PGRPs (Aggarwal and Silverman, 2008; Chang et al., 2006).

Although TCT generation requires cleavage at a glycosidic

bond that is also targeted by lysozyme, active TCT is not gener-

ated by lysozyme but rather requires the activity of a bacterial-

specific lytic transglycosylase that leaves a 1,6-anhydro-bond

upon cleavage (Cloud-Hansen et al., 2008). Autolysins of this

class are used by bacteria to remodel PGN during biosynthesis

and assembly of macromolecular structures such as auxiliary

secretion systems (Koraimann, 2003) and are hence necessary

for pathogenesis. TCT is normally recycled by Gram-negative

bacteria, but its specific release is associated with the induction

of inflammation and pathogenesis of Bordetella pertussis and

Neisseria gonorrhoeae. Thus, TCT production signifies bacterial

growth and stimulates inflammation, fulfilling the requirements of

a PAMP-PV.

In contrast, another bioactive PGN fragment may fulfill the

criteria of a PAMP-PM. Muramyl dipeptide (MDP), originally iso-

lated from killed M. tuberculosis and an active component of

Freund’s complete adjuvant (Ellouz et al., 1974), is recognized

by Nod2 (Benko et al., 2008). Generation of MDP requires the

activity of a bacterial-specific endopeptidase (Humann and

Lenz, 2008). Unlike TCT, its presence is not specific for growing

bacteria and, in fact, the PGN cleavage that generates MDP also

destroys TCT. Further emphasizing the connection between

MDP and lack of viability, generation of ligands for Nod2

(presumably MDP) occurs in the phagolysosomes of activated

macrophages, but only upon bacteriolysis (Herskovits et al.,
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2007). The immunological consequences of Nod2 stimulation are

still controversial and range from NF-kB stimulation (Ferwerda

et al., 2008; Hsu et al., 2008; Maeda et al., 2005; Marina-Garcı́a

et al., 2008; Pan et al., 2007) to suppression of TLR signaling

(Watanabe et al., 2004, 2006) to promotion of Th2-like polariza-

tion in the gut (Magalhaes et al., 2008) and downregulation

of PGN-induced colitis (Yang et al., 2007). Hence, it is conceiv-

able that the presence of MDP represents either harmless flora

or killed and degraded bacteria: exactly as expected for a

PAMP-PM.

TCT or MDP lead to RIP2 and NF-kB activation downstream of

Nod1 or Nod2, so it is not clear that host signaling distinguishes

one as a PAMP-PV and the other as a PAMP-PM (Benko et al.,

2008). Although TCT and MDP target Nod1 and Nod2 respec-

tively, either may have additional receptors and/or target other

responses, leading to differential readouts for these two mole-

cules. For example, MDP may activate the inflammasome (Hsu

et al., 2008; Martinon et al., 2004; Pan et al., 2007). Additional

contextual clues are likely to be critical for the immune system

to interpret Nod1/2 signals. As we have suggested here, it is

possible that, in different scenarios, specific PGN fragments

can differentially signify growing or dying bacteria, depending

on the infectious context in which the fragments are generated.

Another complication is that designating any PGN fragment

a PAMP-PM is difficult, as there is no easy way for material

from a dead organism to access the cytosol. However, a role

for peptide transporters has been suggested (Swaan et al.,

2008; Vavricka et al., 2004), and PGN fragments may enter intes-

tinal epithelial cells by normal cellular damage (Miyake et al.,

2006).

Sensing Cytosolic Access

Although secretion systems and AB/pore-forming toxins provide

pathogens with the ability to access the cytosol and thereby

control the inner workings of host cells, much recent evidence

supports the idea that ‘‘violation of the sanctity of the cytosol’’

also triggers significant host responses (Lamkanfi and Dixit,

2009). There are two mutually nonexclusive models that describe

how host cells sense cytosolic access by secretion systems. The

first is that secretion systems are detected via cytosolic recogni-

tion of specific translocated bacterial molecules (PAMPs) or their

activities. A central premise of this hypothesis is that the bacterial

molecules that are sensed cannot diffuse across the plasma or

phagosomal membrane and therefore only reach the cytosol by

active or inadvertent translocation by the secretion system. The

presence of such molecules in the cytosol is therefore a strong

indication that a secretion system (or B subunit) is present. A

second hypothesis is that secretion or pore-forming systems

are sensed by host cells via detection of the physical damage

associated with bacterial structures penetrating the plasma or

phagosomal membranes. For example, there has been the

suggestion that pore-forming toxins or the needles of type III

and type IV secretion systems cause damage or lead to ion efflux

when they insert into host membranes (Kirby and Isberg, 1998;

Shin and Cornelis, 2007; Viboud and Bliska, 2005). Both hypoth-

eses have some merit and are discussed in turn below.

Sensing of Translocated PAMPs as a Signal

for Cytosolic Access

One of the first pathogens shown to translocate a PAMP into the

cytosol was the extracellular pathogen Helicobacter pylori,
which delivers PGN-derived ligands for Nod1 via its T4SS (Viala

et al., 2004). The pore-forming toxin pneumolysin from Strepto-

coccus pneumoniae (Ratner et al., 2007) has also been shown to

allow fragments of bacterial PGN to access the host cell cytosol

and trigger Nod1.

Another well-characterized example of a translocated PAMP

that is sensed in the cytosol is flagellin. In order to assemble

a flagellum, flagellin monomers are normally secreted by the

flagellar secretion system, an apparatus that shares consider-

able homology with T3SSs (Chevance and Hughes, 2008). Inter-

estingly, and perhaps because of this homology, recent data

have demonstrated that flagellin can be translocated into the

host cell cytosol via T3SSs (Sun et al., 2007). Flagellin also

appears to reach the host cell cytosol via the T4SS of L. pneumo-

phila, though the mechanism of translocation remains unclear

(Molofsky et al., 2006; Ren et al., 2006). Once in the cytosol,

flagellin triggers the Naip5/Ipaf inflammasome, leading to

IL-1b/IL-18 release and pyroptotic cell death (Franchi et al.,

2006; Lightfield et al., 2008; Miao et al., 2006; Molofsky et al.,

2006; Ren et al., 2006). In this case, it is clear that the cytosolic

presence of flagellin is sufficient to activate the Naip5/Ipaf

inflammasome and that secretion-system-induced pores or

membrane damage do not appear to play an essential role

(Lightfield et al., 2008). Since delivery of flagellin to the host

cell cytosol is strictly dependent on type III or IV secretion

systems, the cytosolic presence of flagellin is a strong signal to

the immune system that a pathogen (as opposed to a

commensal) is present, since presumably only pathogens will

encode such secretion systems. Interestingly, recent work has

established that the Ipaf inflammasome is also capable of

responding to the conserved inner rod component of the T3SS

itself (E. Miao and A. Aderem, personal communication). This

conserved component is apparently translocated into host cells,

where it functions as a PAMP that directly indicates the presence

of a pathogen with a secretion system.

Anthrax lethal factor (LF) is another example of a translocated

molecule that activates a host response in the cytosol. The host

sensor protein that responds to LF was recently identified as

Nalp1b (Boyden and Dietrich, 2006), but it remains unclear

how LF is sensed. The protease activity of LF appears to be

essential in order to trigger a host response, so it is likely that

the activity of LF is sensed as opposed to the molecule itself or

the pore formed by the lethal toxin B subunit (PA).

Another cytosolic pathway triggered in response to pathogen

access of the cytosol is a TLR-independent pathway leading to

the induction of IFNb and other coregulated genes. This pathway

is apparently activated by an extremely diverse group of Gram-

positive and Gram-negative pathogens (Charrel-Dennis et al.,

2008; Henry et al., 2007; O’Riordan et al., 2002; Roux et al.,

2007; Stanley et al., 2007; Stetson and Medzhitov, 2006). In

each case, it has been demonstrated that induction of IFNb

requires pathogen expression of an auxiliary secretion system,

but the variety of secretion systems is impressive, ranging from

multidrug-resistance transporters (Crimmins et al., 2008) to

type III (V. Auerbuch and R.R.I., unpublished data), IV (Roux

et al., 2007; Stetson and Medzhitov, 2006), VI (Henry et al.,

2007), and other secretion systems (Stanley et al., 2007). It

remains unclear whether the induction of type I IFN in all these

cases proceeds via the same basic mechanism. Although
Cell Host & Microbe 6, July 23, 2009 ª2009 Elsevier Inc. 15
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transfected DNA can recapitulate the response (Ishii et al., 2006;

Leber et al., 2008; Stetson and Medzhitov, 2006), and the addi-

tion of exogenous poly I:C can stimulate type I IFN induction

dependent on the type III system (V. Auerbuch and R.R.I.,

unpublished data), the identity of the actual ligand(s) sensed

and its receptor(s) is still not known. T4SSs are able to translo-

cate DNA (Hamilton and Dillard, 2006; Segal et al., 1998; Vogel

et al., 1998), but this has not been established for the other

secretion systems. What is clear is that, in all cases, the

responses are associated with auxiliary secretion systems of

live, growing bacteria that access the host cell cytosol and

may thus represent examples of host recognition of a PAMP-PV.

Sensing of Pores or Membrane Damage as a Signal

for Cytosolic Access

The idea that pores formed by bacterial secretion systems or

toxins can be sensed by the innate immune system is attractive,

because it could provide a unified mechanism by which diverse

bacterial pathogens could be sensed (Freche et al., 2007). As

mentioned above, the broader idea that the immune system

can respond to cellular damage (Matzinger, 1994) is supported

by some data (Kono and Rock, 2008), but there is surprisingly

little evidence that secretion systems themselves cause damage

when expressed by wild-type bacteria at physiologically relevant

multiplicities of infection. For example, the macrophage cell

death provoked by secretion-competent pathogens such as

Legionella and Salmonella, previously suspected to be due to

the damage induced by the pore-forming activity of secretion

systems, has turned out to be due primarily to a host response

triggered by a molecule (flagellin) translocated by the secretion

system (Franchi et al., 2006; Miao et al., 2006; Molofsky et al.,

2006; Ren et al., 2006). In cases where pore-forming toxins or

secretion systems apparently trigger host cell damage, it is often

difficult to know whether the apparent damage is directly in-

flicted by the toxin or secretion system or whether it results

from a host response, such as pyroptosis (Bergsbaken et al.,

2009; Fink and Cookson, 2005), that is triggered in response to

an unknown translocated PAMP.

Strains of Yersinia lacking expression of all known translo-

cated effectors still trigger host responses dependent on the

T3SS translocon (Bergsbaken and Cookson, 2007; Shin and

Cornelis, 2007; Viboud and Bliska, 2001; V. Auerbuch and

R.R.I., unpublished data), consistent with responses made to

the translocon itself or pores. However, it is very difficult to rule

out the existence of an unknown translocated effector or

PAMP. The apparent response to the Yersinia translocon does

not require very high multiplicities of infection. However, in other

cases, very high and possibly nonphysiological multiplicities of

infection seem to be required for bacterial secretion systems

to trigger pore formation. For example, although excessive

extracellular application of the pore-forming toxin listeriolysin O

can lead to activation of host caspase-1 and IL-1b secretion,

Listeria itself delivers listeriolysin O in a highly regulated

manner and appears to go to considerable lengths to avoid

damaging the host cell in which it must replicate (Schnupf and

Portnoy, 2007).

Nevertheless, under certain scenarios, membrane pore forma-

tion does seem to trigger specific host immune responses

(Aroian and van der Goot, 2007). For example, treatment of cells

with pore-forming toxins such as aerolysin, nigericin, or maito-
16 Cell Host & Microbe 6, July 23, 2009 ª2009 Elsevier Inc.
toxin led to activation of caspase-1 via an inflammasome that

contains the Nlrp3 protein (Freche et al., 2007; Gurcel et al.,

2006; Mariathasan et al., 2006). Nigericin comes from the

nonpathogenic soil organism Streptomyces and has therefore

presumably not evolved to target mammalian cells, so its phys-

iological significance and the mechanism by which it activates

Nlrp3 remain uncertain. Nigericin and other activators of the

Nlrp3 inflammasome, such as stimulation of cation-selective

P2X7 channels by millimolar concentrations of extracellular

ATP, induce K+ ion efflux from cells. Thus, one suggestion is

that K+ efflux is a common mechanism by which cells can

sense membrane pores and activate the Nlrp3 inflammasome

(Mariathasan et al., 2004; Petrilli et al., 2007b). However, other

studies have demonstrated that potassium efflux is not sufficient

to activate Nlpr3 (Pelegrin and Surprenant, 2006) and have iden-

tified a hemichannel pore protein, pannexin-1, as an essential

and more proximal activator of Nlrp3. Again, the large pores

formed by pannexin-1 do not seem to correlate with Nlrp3 acti-

vation (Pelegrin and Surprenant, 2007). Thus, there is little

evidence that most naturally delivered toxins activate the inflam-

masome via pore formation, and the physiological mechanism

by which the Nlrp3 inflammasome is activated in the context of

infection remains very poorly understood and may involve

lysosomal disruption (Hornung et al., 2008) and/or the generation

of reactive oxygen species (Cassel et al., 2008; Dostert et al.,

2008). Whatever the mechanism of Nlrp3 activation, there is

nevertheless considerable evidence that Nlrp3 can play an

important role in stimulating a variety of immune responses

in vivo (Eisenbarth et al., 2008; Kool et al., 2008; Li et al., 2008;

Sutterwala et al., 2006).

Sensing Actin Cytoskeleton Disruption

As discussed above, a common host target of many pathogens

is the actin cytoskeleton. Interestingly, agents that block actin

polymerization promote transcriptional activation mediated by

NF-kB (Kustermans et al., 2008). Cytoskeletal structures may

control NLR responses, as both Nod1 and Nod2 localize to

actin-rich regions near the plasma membrane (Kufer et al.,

2008; Legrand-Poels et al., 2007). Furthermore, stimulation of

the NOD1 pathway that leads to transcriptional responses is

enhanced by cytochalasin D (Magalhaes et al., 2005). There

are at least two models consistent with these observations.

Perhaps NODs are located at the plasma membrane, as this is

the site of bacterial attachment, invasion, and PGN release

(Kufer et al., 2008). Indeed, it was suggested that NOD1 is acti-

vated by PGN released through the Helicobacter pylori T4SS

(Viala et al., 2004). Alternatively, NODs may act as ‘‘guards’’ of

the actin cytoskeleton and may be released and activated

upon perturbations, such as those associated with bacterial

toxins and effectors (Legrand-Poels et al., 2007).

There may also be a link between the actin cytoskeleton

and inflammasome activation. Two proteins associated with

inflammation, pyrin and ASC, localize at the plasma membrane

at sites of actin polymerization (Waite et al., 2009). Even

more intriguingly, ASC and pyrin localized to the actin tails of

L. monocytogenes during intracellular actin-based motility

(Waite et al., 2009). It is not yet possible to make any conclusions

from this single observation, but it does suggest that compo-

nents of the inflammasome associate with regions of active actin

polymerization. Though not the focus of this review, there are
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suggestions that cytosolic sensors of viruses, such as RIG-I, are

also associated with the actin cytoskeleton (Mukherjee et al.,

2009), though the significance of this observation remains to

be fully elucidated.

Conclusions
Here, we have considered the hypothesis that, in addition to

sensing of PAMPs, the host innate immune system is able to

respond to patterns of pathogenesis—signals that derive from

the strategies that live pathogens use to invade, manipulate,

replicate within, or spread among their hosts. Our discussion

has clearly not been exhaustive, and we suspect that there

may be additional patterns that we have not discussed in detail

that might also be sensed by host cells. For example, adherence

of pathogens to host cells is a common pattern of pathogenesis

that may well trigger specific host responses. The production

of extracellular enzymes (e.g., proteases, phospholipases) is

another pattern of pathogenesis that may liberate host ligands

that are sensed by the innate immune system or produce cellular

damage that triggers host responses. Extracellular enzymes may

be especially central to the sensing of certain eukaryotic patho-

gens that lack PAMP-like molecules (Sokol et al., 2008).

Although sensing of PAMPs is central to the generation of

effective immune responses, it seems clear that PAMPs are

not sensed in a vacuum and that infection by live pathogens

provides additional contextual cues that shape the immune

response. We suggest that these cues may potentially allow

the immune system to distinguish living pathogens from dead

or otherwise harmless microbes. Because of the complexity of

many host-pathogen interactions, it can be experimentally chal-

lenging to use living pathogens to dissect immune responses,

but it is probably crucial to do so, and the availability of a variety

of host and pathogen genetic systems has made an analysis of

innate immunity to pathogens increasingly feasible (Persson

and Vance, 2007). One of the most striking observations that

underscores the notion that living pathogens induce unique

immune responses comes from the model of experimental liste-

riosis. In this model, immunization with live L. monocytogenes

provides potent protection against a subsequent challenge,

whereas immunization with killed L. monocytogenes confers

no protective immunity (von Koenig et al., 1982). Moreover,

L. monocytogenes strains that fail to access the host cell cytosol

due to mutations in listeriolysin O not only fail to immunize

against subsequent challenge with virulent L. monocytogenes,

they also appear to actively suppress host immunity via

a pathway dependent on IL-10 (K.S. Bahjat, N. Meyer-Morse,

D.G. Brockstedt, and D.A.P., unpublished data). Thus, host

immune responses are shaped not only in response to PAMPs

but also in response to contextual cues—e.g., those provided

by growing bacteria or bacteria that access the host cell cytosol

as part of their virulence strategy.

Live-attenuated pathogens have shown considerable utility as

vaccines, but there is no theoretical consensus as to why live

pathogens are especially immunostimulatory and no generaliz-

able procedure, other than trial and error, for how best to atten-

uate pathogens for their use as vaccines. Based on the consid-

erations we present above, it might be expected that a vaccine

strain that has been attenuated through the deletion of an

immunostimulatory secretion system may fail to elicit protective
immunity. An example of such a vaccine may be the relatively

ineffective BCG vaccine for M. tuberculosis, in which the ESX

secretion system (RD1 locus) was deleted during its generation.

A prediction following from our conceptual framework would

therefore be that strains lacking secreted effectors (A subunits)

but retaining the immunostimulatory translocation system (B

subunits) would function as more effective live-attenuated

vaccines. There is, at present, little direct evidence to support

this specific idea, but the general notion that PAMPs are

interpreted by the immune system in the context of other

infection-derived signals is likely an important concept for future

consideration.
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