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On the Structure of Free Baxter Algebras 
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A Baxter algebra is a commutative algebra A together with a linear operator I’ 
such that P(ab) + P(a) P(b) = P(aP(b)) + P(bP(a)) holds for any pair a, b in A. 
We construct in an explicit way the free Baxter algebra b(X) on a set X. A 
suitable completion 8(X) of S(X) is the algebra of formal power series in the 
indeterminates D”(x) for n > 0 and x in X, where D(a) = -x:,tr Pj(a), the 
series converging in B(X). Incidentally a new set of identities of combinatorial 
interest is derived. 

In an important paper [l], Baxter deduced most of the known identi- 
ties in the theory of fluctuations for random variables from a simple 
identity (formula (1)). R ecently, Rota [2, 31 has undertaken an algebraic 
analysis of this identity and defined the category of the so-called Baxter 
algebras. From a combinatorial point of view the interest lies in the 
manifold of identities one can formally deduce from the Baxter identity. 
As is usual, the search for such identities may be pursued in the free 
algebras within the category of Baxter algebras. The existence of free 
Baxter algebras follows from well-known arguments in universal algebra 
but remains quite immaterial as long as the corresponding word problem 
is not solved in an explicit way as Rota was the first to do. 

The purpose of this paper is to derive a new set of identities valid in 
any Baxter algebra (see Section 2) and to use it to give a direct explicit 
construction of free Baxter algebras. We then define the completion of a 
free Baxter algebra and show its isomorphism with a suitable formal 
power series algebra. This will give us a very powerful algorithm and 
enable us to make more explicit than in Rota [2] the connection with 
the symmetric polynomials. We conclude by a derivation of Spitzer’s 
identity within the framework of Baxter algebras. 

A final word about notations. For any integer n 3 1, we let [n] 
denote the set of integers between 1 and n. For any set X, we denote by 
/ X 1 the number of its elements. 
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1. DEFINITIONS 

Let K be a commutative ring with unit. 
By a Baxter algebra we mean a pair (A, P) where A is an algebra over 

K (associative and commutative) and P is a linear map from A into A 
satisfying the Baxter identity 

P(ab) + P(u) * P(b) = P(a - P(b)) + P(b * P(u)) (1) 

(for a, b in A). We refer to [3] for various examples of Baxter algebras. 
We don’t assume that A has a unit element. In any case, we embed K 

and A in a new algebra A+ in such a way that any element in A+ can be 
uniquely written as h + a with h in K and a in A, the multiplication 
being given in A+ by 

(A + a) * (CL + b) = + + (A * ZJ + p * a + ab). 

In particular, the unit element of K acts as unit element of A+. 
By induction on n > 1, one defines as follows the n-bracket [ai ,..., a,] 

[al = P@), (2) 

[al ,..., &zl = qa, . [a, ,..., %I) (n 3 2) (3) 

for a in A, a, ,..., a,-, in A+ and a, in A. Since A is an ideal in A+, the 
values of the n-bracket lie in A for any n > 1. Since the n-bracket is 
obviously linear in each of its arguments, one can in principle consider 
only brackets, with arguments lying in A u (1). One has, for example, 
[I, 1, a] = P”(u), [a, 1, b] = P(u * P2(b)) and our conventions dispense 
altogether of considering explicitly the iterated operators P2, P3 and so 
on. 

2. PRODUCTS OF BRACKETS 

Our subsequent work is based on the following general identity 
expressing a product of brackets 

Summation runs over the integers n with 1 < n <pi + 0.. + p, and 
the sequences PI ,..., Pk of subsets of [n] such that 

Pl ” *** u Pk: = [n], IPlI =A,.-, IPkI =P,. (5) 
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Moreover, for given n, PI ,..., Pk , the n-bracket 

is defined by 

CD %P,,.... P, = [Cl ,.-., Cnl 

cj ZYZ a;: . . . ak (1 <j <n) (6) 

if j belongs to P,, ,..., 
of j in Pi, arranged 

<la but to none other of the P’s and ur is the rank 
in increasing order (for 1 < Y < 4). 

We mention a few particular cases of (4). First of all, the product of 
two brackets is given as follows: 

[a 1 >..*, %I . PI ,..*, hl = c (- l)n+p+n@n,P,cl (7) 
n.P. B 

with summation over the integers n between 1 and p + q and pairs of 
subsets P, Q of [n] such that 

PUQ = [n], IPl=P, IQ!=q- (8) 

For given n, P, Q, the n-bracket cD~,~+~ = [ci ,..., cJ is defined by 

I 
;; 

if j is the ol-th element in P and j $ Q; 
cj = if j is the P-th element in Q and j C$ P; (9) 

a,b, if j is the a-th element in P and the /3-th element in Q 

for 1 <j <n. 

For p = 1, formula (7) reduces to 

[al * Lb, ,..., b,] = - i [b, ,..., b,-l , ab, , bi+l ,..., b,] 
i=l 

(10) 

+ [a> 4 >..., b,] + i [b, ,..., h-1, a, bi ,..., b,] + [b, ,..., b, , a]. 
i=2 

If we letp, = *** =p, = 1 in (4), we get 

where (H, ,..., Hj) runs over the set of all indexed partitions of [K] and 
uH = niEH ai for any subset H of [K]. 

607/9/2-II 
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Letting finally Q = 1 in (10) or k = 2 in (11) one gets the identity 

[aI * PI = - WI + [a, 4 + P, 4 (12) 

for a, b in A. In a different notation, this is nothing else than the initial 
Baxter identity. 

3. PROOF OF THE PREVIOUS IDENTITIES 

We prove first (7) by an induction on the pair of integers p 3 1, 
q 3 1. Indeed1 letting x = [aa ,..., a,] and y = [b, ,..., bp], one gets by 
definition of brackets the relations 

Ia 1 ,..., %I = P(% * 4, [b, ,..., b,l = P&y). 

By Baxter identity, one gets 

that is, 

[Ql ,..., 4 . Lb, ,..., U 
= - P(a,b,[u, ,..., a,] * [b, ,..., b,]) 

+ P(da2 ,..., 4 f PI ,..., &I) + P(h[a, ,..., a,] * [b,, . . . . hJ). 

(13) 

On the other hand, let n be any integer between 1 and p + q. The 
pairs (P, Q) of subsets of [a] satisfying conditions (8) fall into three 
classes according to the following scheme: 

(I) 1 E P, 1 EQ; (II) 1 EP, 1 $Q; (III) leP,l~Q. 

Consider, for instance, any pair (P, Q) of class I and let P’ be the set of 
all integers i in [n - l] such that i + 1 E P; define similarly Q’ to consist 
of the elements j of [n - l] such that j + I EQ. From (9), one gets 
@ n,P,B = [& , c2 ,...> cn] where the (n - I)-bracket 

@L,P’,Q’ = [c2 ,..., Gzl 

is defined by the sequences a2 ,,,., up and 6, ,..., 6, and the subsets P’ and 

1 By convention, an empty bracket is the unit element 1 of A+. 
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Q’ of [n - I] using the same process as in the definition of cD~,~,~. 
Otherwise stated, one has 

If we use as an inductive assumption that the product of a (p - l)- 
bracket by a (4 - 1)-bracket is given according to (7), we conclude there- 
fore that the sum zIL,P, o (- l)n+“fQ @)n,P,O extended over all pairs (P, Q) 
of class I, equal to - P(a,b,[a, ,..., a,] . [b, ,..., b,]). The pairs of class II 
or III are treated in a similar way and the corresponding sums are, 
respectively, equal to 

W,[% ,..., 4 * PI ,...> &I) and wwl ,..., %I - P, >..a, %71) 

under the corresponding inductive assumptions. Using (13) concludes 
the proof of (7). 

One goes from (7) to (4) by a straightforward induction on k, the 
details of which are left to the readera. 

To conclude this section, let us mention that (10) can be proved 
directly by an easy induction on 4, and that (11) can be derived from (10) 
by another inductive proof. 

4. FREE BAXTER ALGEBRAS 

Let X be any set. We let M be the free commutative semigroup with 
unit on X, that is, the set of all monomials in the “variables” taken 
from X. By S(X) we denote the free K-module with a basis consisting 
of the symbols u . [ ] with u in ikl, u # 1 and u * [ur ,..., u,] withp > 1, 
% Ul ,**a, up in M and up # 1. One defines in 93(X) a bilinear multi- 
plication whose effect on the basic elements is given by 

@ * [ 11 {v * 1 I> = m . [ 7, 

{u . [ I> @J . [% >..., %I> = {v . [VI ,..., zly]> {u . [ ]} = uv . [nl ,...) I+], 

(24 * [ul )...) u,]} {v - [VI ,...) v,]} = c (- l)++q uv * Yn,,,, . (14) 
7l.P.Q 

2 See also the proof of (A) in Section 4 for a similar argument. 
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The conventions over n, P, Q are as in (7) and v/,,,, o is the n-bracket 
[Cl ,“., cn] where cj is defined for 1 < j < n by 

I 

% if j is the a-th element in P and j 6 Q; 
cj = v, if j is the /3-th element in Q and j $ P; (15) 

w43 if j is the ol-th element in P and the P-th element in Q. 

Finally one defines a linear map 17 from %(X) into 23(X) by 

n(u . [ I) = bl! L7(u * [ul ,...) UD]) = [u, 241 )...) u,]. (16) 

We identify any element x in X with the basic element x * [ ] of 
B(X). Therefore X is a subset of !3(X). 

THEOREM 1. The pair (23(X), II) is a free Baxter algebra on X. 

The contention of the theorem is the following list of properties: 

(A) The multiplication in b(X) is associative. 

(B) The multiplication in 23(X) is commutative. 

(C) Baxter identity: 

Ii’ + 17(a) * II(b) = Il(a * 17(b)) + 17(b * II(a)) 

for a, b in B(X). 

(D) Universal property: Let (A, P) be any Baxter algebra and v a 
map from X into A. There exists a unique homomorphism of K-algebras 
f : 8(X) + A extending v and such that Pf = fL7. 

Proof of (A). In order to make the proof easier to follow, we shall 
change the notations slightly. An infinite sequence u = (ui , us ,...) of 
elements in M is called admissible if there are only finitely many terms 
different from 1 among the u~‘s; the rank of u is the largest among the 
integers n with u, # 1 or 0 if there exists no such integer. We denote by 
[ ] the unit element in B(X)+ ( see footnote 3) and identify each mono- 
mial u in M with u . [ 1. The submodule of S(X) generated by these 
monomials is therefore identified to the polynomial algebra K[X] (free 
associative and commutative algebra with unit on X). For any admissible 
sequence u of rank n > I we let E(U) = (- 1)” [ur ,..., un] and let 
E(U) = [ ] if u is the (unique) admissible sequence of rank 0. We can 

3 The definition of B(X)+ is similar to the definition of A+ in Section 1. Note that 
the multiplication in B(X) is associative if and only if it is in B(X)+. 
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in an obvious way consider B(X)+ as a module over the ring K[X]; 
then the elements E(U), where u runs over the set of admissible sequences, 
form a basis of 23(X)+ and the multiplication in b(X)+ is bilinear over 
K[X]. Consequently it suffices to check the associativity in the form 

(E(U) +)) E(W) = 44 (4v) 4w)h (17) 

whenever u, v and w are three admissible sequences. 
We have first to compute E(U) E(V) for any pair of admissible sequences 

u and v. Let p be the rank of u and q the rank of v. Let I be the set of 
integers 1,2,... and a be any strictly increasing map from [p] to I. Define a 
new admissible sequence olu by the following recipe 

(~U)n = 
(ui if there is an integer i in [p] with n = a(i) 

!l otherwise. (18) 

Furthermore, two strictly increasing maps 01 : [p] 4 I and fi : [q] --+I 
are called compatible if the union of their ranges is an interval of the 
form [m] in 1. With these notations, formula (14) takes the equivalent 
form 

‘(U) E(V) = c E(CYU * /Iv), (19) 
a,0 

where the summation is over the pairs of compatible maps 01 : [p] + I 
and p : [q] 4 I and where * denotes the term-wise multiplication of 
sequences of elements in M. 

Let u, v and w be admissible sequences of respective ranks p, q and r. 
From (19) one deduces 

The previous summation is restricted to the systems of strictly increasing 
maps 

a : [PI - 1, P : M - 19 y : [Ql - 1, 6 : [Y] --f I, 

where [n] is the union of the ranges of 01 and p and the union of the ranges 
of 7 and 6 is some interval [ml. It is clear that y(c~u * /3v) is equal to 
yolu * y/3v and that any pair of strictly increasing maps p : [p] -+ I and 
CJ : [q] ---f I whose ranges comprise together n elements can be uniquely 
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written as p = yar, u = y/3 with 01, /I, and y as before. From (20) follows 
the identity 

(4U) W) w = c 4(PU * 4 * 4, (21) 
0.O.T 

the summation being over the triples of strictly increasing maps 

P : [PI - 6 0 : kl - 4 7 : [r] 3 I 

such that the union of their ranges be some interval [ml. 
A completely similar reasoning gives the identity 

E(U) (c(v) E(W)) = c c(pu * (uv * TW)) 
0,O.T 

(22) 

and associativity of the multiplication in a(X)+ follows therefore from 
the associativity in the semigroup il4. 

Proof of (B). C ommutativity of multiplication in d(X) follows 
immediately from the corresponding property in M. 

Proof of (C). By linearity it suffices to prove the Baxter formula for 
basic elements a : ur . [~a ,..., u,] and b = q * [~a ,..., v,] in 23(X)“. 
By definition of multiplication and I7 in 23(X) we get 

II(u) * II(b) = [ul ,..., up] * [WI )..., w,] = 1 (- l)n+P+n Yn,,, Q . (23) 
n.P, Q 

Divide the pairs (P, Q) in three classes as in Section 3 and split accord- 
ingly the last sum in (23) as ZI + Zn + Zm . A calculation similar to 
the one in Section 3 gives 

I7(ab) = - z* ) qa . WJ)) = 4, , WJ * n(4) = 411 , 

whence the sought-for relation. 

Proof of(D). We first extend QI to a multiplicative map 9’ from M into 

A+ by 4(x, *** 4 = dx,) *** I for x1 ,..., ,x, in X. Let then the 
linear mapf+ : 23(X)+ + A+ be given by its action on the basic elements 

f’(u * [% ,...> %I> = ?w hJ’(%L 9+,)1. 

It is immediate that f + induces a map f from B(X) into A, that f extends 
cp and that Pf = fI7. 
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It remains to check the relationf(ab) =f(a)f(b) for a, b in B(X). By 
linearity we need only consider the case of basic elements a and b. But 
it checks because the definition (14) of the product of two basic elements 
in ‘%(X) matches with identity (7) valid in any Baxter algebra. 

Any element in %(X) can be obtained from the elements of X by 
applying finitely many times the basic operations in B(X): addition, 
multiplication, scalar multiplication by an element of K, action of n. 
This property entails uniqueness off. 

5. COMPLETION OF A FREE BAXTER ALGEBRA 

Notations are as in Section 4. We let ?-8(X) be the set of unrestricted 
linear combinations of the basic elements u . [pi ,..., up] with coefficients 
in K. We allow therefore for infinitely many terms in such a linear 
combination. It is easily seen that a given basic element enters with a 
nonzero coefficient in the product of finitely many pairs of basic elements 
only and that it is the image under 17 of at most one basic element. We 
can therefore extend to ‘8(X) the multiplication of 23(X) and extend ff 
to an operator fi in a(X). Obviously the pair (@(X),n) is a Baxter 
algebra, to be called the completion of the free Baxter algebra on X. 

A given basic element can be written finitely many times only in the 
form P(a), where a is another basic element and n 2 0 an integer. It 
follows immediately that the series x,,“=, fin(a) converges for any element 
a in F&(X). The linear operator 1 -n in B(X) is therefore invertible 
with the operator crz=,nn as inverse. Define the operator 

We have then 

A = -fi--If2Lfi3- . . . . 

fi = - A - 43 - 43 - 1.. . 

The following lemma by Rota [3] implies that d is a ring endo- 
morphism of s(X). 

LEMMA 1. Let A be a commutative ring and P an additive operator in 
A. Assume that I - P is invertible and set D = - P . (I - P)-‘. Then P 
satisjies the Baxter identity if and only ;f D is a ring endomorphism of A. 
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The graph rof D is the set of pairs (a - P(a), - P(u)) in A x A for a 
running over A. A pair (x, y) is in I’ if and only if y - P(y) = - P(x) 
holds. Moreover D is a ring endomorphism of A if and only if I’ is 
closed under multiplication in A x A, that is, if and only if the following 
identity holds in A: 

P(a) * P(b) - P(P(a) - P(b)) = -P((a - P(a)) . (b - P(b))). 

After simplifying, this goes over to 

(24) 

P(a) * P(6) = - P(ab) + P(” * P(b)) + P(b * P(a)), 

that is Baxter identity. Q.E.D. 

We are now in a position to prove our main theorem. Let 6 be the 
ring of formal power series without constant term with coefficients in K 
in a family of indeterminates Tz,% for x in X and n > 0 an integer. 

THEOREM 2. There exists an isomorphism of algebras from 6 onto 
‘8(X) mapping T,,, into d”(x) for x in X and n > 0. 

Let D be the ring endomorphism of 6 which maps a power series into 
the power series obtained by the substitutions Tz,n -+ Tz,n+l . It is easy 
to see that the series C,“=O Dn( f) converges for any f in 6, hence the 
additive operator I - D in 6 has an inverse equal to CzzO D”. Set 
P = - D * (I - D)-l. Then1 - P is invertible and D = - P * (I - P)-l, 
By Lemma 1 one concludes that (6, P) is a Baxter algebra. 

We identify any x in X with the indeterminate T,,, in 6; hence 
T = D”(x). As before, let M be the set of monomials on the elements 
OF’>. Then a monomial in 6 can be uniquely written in one of the 
following forms : u # 1 in M; or u * D(q) . D2(u,) *a* DP(u,) with 

% u i ,..., up in M and up # 1. 
Let us denote by {ui ,..., a,} the n-bracket in the Baxter algebra 

(G, P). By d e nl ion of P, one gets P(u) = - zT=, Dj(a) for any a in A. fi ‘t’ 
By induction on n, one gets 

{a 1 >..., a,> = (- 1)” c LY+z,) *** LY”(cq) (25) 
la,<...<& 

for a, ,..., a, in 6. 
Since (6, P) is a Baxter algebra, there exists a unique homomorphism 

@ : 8(X) -+ G such that P@ = @17 and D(x) = x for any x in X. 
Therefore @ maps u . [ ] into u for any monomial u # 1 in M. Define the 
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degree of Tz3, to be n and the degree of a monomial in these indeter- 
minates to be the sum of the degrees of its factors. Using (25) 
one shows that @ maps the basic element u * [ur ,..., u,] into 
(- 1)” u * O(z4r) a.- D+L,) + R w h ere R is a sum of monomials each 
having a degree strictly greater than the degree of u . O(z~r) **. DP(u,,). 
By an easy induction one concludes that any element in G can be uniquely 
written as a linear combination (possibly infinite) of the images under @ 
of the basic elements of s(X). 

Therefore @ extends to an isomorphism 6 of the algebra B(X) 
onto the algebra 6. From P& = &II? one deduces D6 = &,O hence 
On@ = $,Ofi for any integer n > 0 and 6 maps therefore An(x) 
into D”(x) = T,,, . Q.E.D. 

The map @ of the previous proof induces an isomorphism of %3(X) 
onto a subalgebra of 6 compatible with the corresponding Baxter 
operators. We have therefore the following general principle, first stated 
and proved by Rota [2, p. 3281. 

Suppose we want to prove an identity of the form F(a, ,..., a,) = 0 to be 
valid for any choice of elements a, ,..., a, in any Baxter algebra, where F 
is formed using also the Baxter operator. It su.ces to prove the following 
particular case. Let 6, be the ring of power series without constant term in a 
sequence of indeterminates Xi,j with 1 < i < n and j > 0. Let D be the 
shif endomorphism in 6, arising from the substitutions Xz,i --t Xi,i+l and 
let P = - D * (I - D)-l. Then it sufices to prove the identity 
F(X,,, ,..., X,,,) = 0 in 6,. 

Formula (25) p roves very helpful to evaluate the brackets in the Baxter 
algebra (Gn , P). We leave as an exercise to the reader to rederive the 
identities in Section 2 along these lines. 

6. BAXTER ALGEBRAS AND SYMMETRIC POLYNOMIALS 

We consider in more detail the free Baxter algebra 8, in one generator 
x and its completion 6,; we denote by P the Baxter operator in 6, 
unlike the notation fr in previous sections. We define the shift operator 
D= -xzCIPn in 6,. We know that 6, can be considered as the 
algebra of power series without constant term in the infinitely many 
indeterminates T, = D”(x) (for n >, 0). 

Any element in 6, can be uniquely written as an unrestricted linear 
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combination of the symbols xj . [ ] for j > 0 and xi . [xkl,..., @D] for 

j 2 0, p > 1, k, 3 L, $1 I > 0, ky > 0. Furthermore, 8, consists of 
the finite linear combinatrons of the same symbols and one has 

[Xkl,..., X”“] = (- 1)” 1 Tt,; . . . T$. 
lCi,<...<i, Zb 

according to (25). 
Let p > I be an integer and let UP be the submodule of 6, with basis 

the set ofp-brackets [x~I,..., c&] with k, > O,..., KP > 0. The symmetric 
group S, of order p acts in an obvious way on the set of such symbols 
whence results a linear action of S,, in U, . Let V, be the submodule of 
U, consisting of all invariants of 8, in U, . A basis of VP as a K-module 
consists of the elements 

MC4 ,..., d,) = (- l)P c [xkl,..., zk,] (27) 

for dr > **. 3 dP > 0, where the summation extends over all distinct 
rearrangements k, ,..., k, of dr ,..., d, . The unrestricted direct sum ‘1) 
of the submodules V, for p 2 I is called the symmetric part of Gr . 

According to (26) and (27), M(d, ,..., d,) is the sum of all distinct 
monomials in the indeterminates Z’r , T, and so on, containing p distinct 
variables with exponents dl ,..., dP . By construction %J is the set of all 
unrestricted linear combinations of the elements IM(d, ,..., d,) for 
variable p. By known results 23 is nothing else than the set of symmetric 
power series in the injinitely many indeterminates Tl , T, ,..., T, ,... . 

As an example, 

+) = (- I)i” Lx%] MQ,..., 

is equal to the p-th elementary symmetric function ar, of the T,‘s. 
Moreover, M(p) = - P(@) is equal to s3, = x,“==, Tnfl, the p-th power 
sum. 

Suppose that K is a field of characteristic 0. Using the classical results, 
one sees that 9 is the ring of power series in the indeterminates a, , a2 ,... 
and also in the indeterminates s1 , s2 ,... . The two sets of indeterminates 
are related by the well-known Waring’s formula 

1 + f a,?P = exp f (- 1),-l s,iY/n, 
,kl n=l 

where U is another indeterminate. 

(28) 
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If we replace up and sP by their values in the free Baxter algebra Y& , 
we get from Waring’s formula the following general version of Spitxer’s 
formula 

1 + P(X) . u + P(X . P(x)) . u2 + 1.. = exp f P(P) . iY/n (29) 
n=l 

valid for any element x in any Baxter algebra (A, P). For another 
combinatorial proof of this identity, see [3]. 
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