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1. INTRODUCTION 

The construction of orthogonal quasigroups, or equivalently orthogonal 
latin squares, has long been an area of intense mathematical research, 
culminating in the celebrated disproof of the Euler conjecture by Bose et al. [l]. 
A particularly interesting problem related to this, which has recently been 
solved by Brayton et al. [2], is that of constructing quasigroups orthogonal 
to their transpose. This, however, is a special case of the more general 
problem of constructing quasigroups orthogonal to their conjugate for each 
of the several possible conjugates. The problem was originally posed by 
Stein [15] in the hope that its solution would lead to a disproof of the Euler 
conjecture. As we shall see, it is the techniques developed in the disproof 
of the Euler conjecture which are in fact instrumental in determining the 
spectrum of conjugate orthogonal quasigroups. Before we proceed let us 
establish some terminology. In what follows everything is assumed to be 
finite. 

A quasigroup is an ordered pair (S, .), where S is a set and * is a binary 
operation defined on the set S with unique solvability of the equations x . a = 
b and a * y = b for x and y, respectively. A latin square can be considered as 
the multiplication table for a quasigroup with the headline and sideline 
removed. One other well-known concept which we will need is that of an 
orthogonal array. By an orthogonal array, O&z, k) we will mean an n2 x k 
array with entries from a set S of n symbols such that if any two columns 
are juxtaposed, the rows will contain n2 distinct ordered pairs. A quasigroup 
(S, .) of order n is equivalent to an O&n, 3) with (i, j, k) as a row if and only 
if i *j = k. There are other characterizations of quasigroups, latin squares, 
and orthogonal arrays. The interested reader is referred to the excellent study 
by Denes and Keedwell [4] for further information. 
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Consider a quasigroup as an OA(n, 3). It is clear that any permutation 
of the columns is again a quasigroup. The a-conjugate of a quasigroup is 
the quasigroup that results from the application of the permutation 01 ES, 
(symmetric group on three symbols) to its columns, when considered as an 
OA(n, 3). Applying the permutation (2, 1, 3) to an O&n, 3) is evidently 
the same as taking the transpose. Furthermore, given a quasigroup and its 
a-conjugate we can construct an n2 x 4 array with (i, j, k, I) as a row if and 
only if (i, j, k) and (i,j, I) are rows in the quasigroup and its a-conjecture, 
respectively. If the resulting array is in fact an O&n, 4) then the quasigroup 
is said to be a-conjugate orthogonal, or more specifically, a-self-orthogonal. 
For a more general definition of conjugacy of polyadic algebras see Stein [ 151. 
In what follows the permutation 01 = (: 5 i) will be notated by the triple 
GA 4. 

2. PRELIMINARIES 

In determining the spectrum for a-self-orthogonal quasigroups we will 
restrict our attention to the four permutations (2, 3, I), (3, 1,2), (1, 3,2), and 
(3,2, 1). With this in mind we have the following definition: 

DEFINITION. & = {n E Z+ 1 3 an a-self-orthogonal quasigroup of order n}. 

LEMMA 2.1. (a) B, = B, where 01 = (2, 3, l), p = (3, 1, 2). 
(b) B, = BB where cx = (3,2, I), /3 = (1, 3, 2). 

Proof. (a) If II E B, consider an OA(n, 4) as described at the end of 
Section 1 with rows (i, j, k, I). The a-permutations of (i, j, k) give the rows 
(i, j, I). But since 01 and /3 are inverse permutations, the ,&permutations of 
the rows (i, j, ,) give the rows (i, j, k). Thus, if we interchange the last two 
columns we obtain an OA(n, 4) with rows (i, j, I, k) which represents a 
/3-self-orthogonal quasigroup of order n. Thus B, C B, , and, by symmetry, 
B, Z B, . 

(b) If ar is applied to (a, b, c) then (c, b, a) is obtained. If the transpose 
permutation (2, 1, 3) is applied to each of these then (b, a, c) and (b, c, a) 
are obtained, respectively. But if /3 is applied to (b, a, c) then (b, c, a) is also 
obtained. Since the transpose clearly preserves orthogonality, B, = B, . 
Thus we need only consider two conjugates (1, 3,2) and (3, 1,2). 

We now present a series of well-known constructions originally developed 
by various authors, notably, Bose et al. [l], Wilson [16], and Sade [13]. The 
reader is referred to Denes and Keedwell [4], Hall [6], and Stein [15] for 
further information. The construction of quasigroups from finite fields and 
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Abelian groups are two such well-known constructions. Using these construc- 
tions Stein was able to show the following. 

LEMMA 2.2 (Stein [15]). If n = 0, 1, or 3 mod 4 then there exists an 
(1, 3,2)-self-orthogonal quasigroup of order n. 

Similarly, we have the following: 

LEMMA 2.3. If n is a prime or power of a prime, and n > 2, then n E B, 
where OT = (3, 1, 2). 

Proof. Choose a, b E GF(p”), pk > 2, such that a, b, a2 + b # 0, then 
define the quasigroup operation by x 0 y = a * x + b * y, x, y E GF(pk) with 
field operations ., +. Clearly if pk > 2 we cab choose appropriate a and b, 
for instance, let a = 1, b # - 1. 

We remark that for 01 = (1,3,2) we can define a quasigroup in a similar 
except that for a, b E GF(p”) we require a, b, b + 1 # 0. Since it will be 
needed later we note that in either of the above finite field constructions if 
we are able to find elements a, b E GF(p’“) that satisfy the additional constraint 
a + b = 1, then in each case, the quasigroup will be idempotent, that is, 
x 0 x = x for all x. 

Next we have the direct product and singular direct product constructions 
originally due to MacNeish [II] and Sade [13], respectively. 

LEMMA 2.4. If n, m E B, then n * m E B, . 

Proof. Direct product of quasigroups preserves orthogonality and it is 
easy to see that the a-conjugate of the direct product will just be the direct 
product of the a-conjugates. 

The singular direct product (SDP) originally developed by Sade was later 
generalized and extensively used by Lindner. The definition that follows 
comes from the later author. Let (Q, .) be a quasigroup with a subquasigroup 
(P, a), and let (V, *) be an idempotent quasigroup. Let P = Q\P and (P, 0) 
be any other quasigroup then we can define a quasigroup (S, a), where 
S = P v P x V, as follows: 

(9 P 0 4 = P f 4, PyqEP; 
(3 P 0 (4, 4 = (P . 4,4, p E P, q E P, v E v, 

(4, u> O P = (4 * PT 0); 

(iii) (P, 0) 0 (4, v) = P * 4 ifp*qEP, 
= (P . 49 u) ifp*qoP; 

(iv> (P, v) 0 (4, w) = (p 0 9, u * w) if u # w. 

Using the above singular product construction we have: 
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LEMMA 2.5. If there exists an idempotent ar-self-orthogonal quasigroup 
of order n, an ol-self-orthogonal quasigroup of order m which has a subquasi- 
group of order p, and an cu-self-orthogonal quasigroup of order m - p then 
n(m -P> +PE&. 

For the sake of brevity we omit the proof and instead refer the reader to 
Lindner [7, 81 and Steedly [14]. That the singular direct product will preserve 
orthogonality and conjugacy is contained in the above references. 

The final general construction which we will introduce is the well-known 
construction of quasigroups from pairwise balanced designs. By a pair-wise 
balanced design (PBD) we mean an ordered pair (P, 1) where P is a set and 
X a collection of subsets of P, called blocks, such that every two-element 
subset of P occurs in exactly one block. If b, , b, ,..., b, are the blocks of 
PBD (P, X) then on each block, bi , we define an idempotent quasigroup 
(bj , @J. We can then define a quasigroup (P, *) by: 

(1) P *P = P9 

(2) P*q=POjqwherep,qEbj,p #q. 

Clearly this is a quasigroup and its a-conjugate is merely the quasigroup 
constructed from the same PBD using instead the a-conjugates of the quasi- 
groups (bi , Q), j = I,..., n. We note that the conditions on the quasigroups 
(by, @j) can be weakened if there exists a clear set of blocks, that is, a set of k 
mutually disjoint blocks. In this case if we assume (P, X) is as before and 
the blocks b, , b, ,..., b, are mutually disjoint then on the blocks bj , j < k 
we define any quasigroup (bi , @J and then (P, *) can be defined as follows: 

(9 P* =P&P ifpEbi, j<k 

=P otherwise; 

(ii) P * 4 = P Oj 4, P # q, P, 4 E bj . 

Again this is clearly a quasigroup and its a-conjugate is the composition 
of the a-conjugates of the quasigroups defined on the blocks of the PBD. 
Thus we have the next Lemma. 

LEMMA 2.6. If there exists a PBD (P, X), with a clear set of blocks, such 
that for each bj E X 1 bi 1 E B, and furthermore for each block b, not in the 
clear set there exists an idempotent ol-self-orthogonal quasigroup of order 
1 bj 1, then 1 P 1 E B, . 

This establishes the connection between block designs and conjugate 
orthogonal quasigroups. We now state the following construction of block 
designs from orthogonal arrays, OA(n, k). 
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LEMMA 2.7. Zf there exists an OA(n, k + 1) then, for 0 < m < n, there 
exists a PBD of order kn + m, with block sizes k, k + 1, n, m. Furthermore 
the blocks of cardinalities n and m form a clear set. 

Proof See Hall [6], Wilson [16], or Brayton et al. [2, 31 for details of the 
construction. 

With these preliminary lemmas at hand we can now proceed to the first 
of the two cases under consideration, i.e., ~11 = (3, 1, 2). 

3. (3, 1, +-SELF-ORTHOGONAL QUASIGROUPS 

Our method in this as well as the other case parallels that of Brayton et al. 
121. We first establish a recursive construction: Using finite fields one can 
construct an idempotent (3, 1, 2)-self-orthogonal quasigroup of orders 7, 8, 
and 9 (Lemma 2.3). This fact.along with Lemma 2.7 gives us the following: 

LEMMA 3.1. Zf there exists an OA(n, 8) and n, m E B(3,1,2) then 7n + m E 
Bc~,~,~) . Zf there exists an OA(n, 9) then 8n + m E B(s,l,z) as well. 

Next we remark that these exists an OA(n, 8) for all II 3 91 and for many 
lesser values (Wilson [17], Van Lint [lo]). Obviously 2 and 6 are not in the 
spectrum; however, 7n + 2 = 7(n - 1) + 9 and 7n + 6 = 7(n - 1) + 13. 
Clearly then for n > 92 we can invoke Lemma 3.1 but we must first establish 
the existence of (3, 1, 2)-self-orthogonal quasigroups for smaller orders, i.e., 
n < 644. To this end, we consider some specific constructions. 

First note that the existence of an OA(n, 4) which is invariant under cyclic 
permutation of its columns implies that there exists an (3, 1,2)-self-orthogonal 
,quasigroup of order n. If (i, j, k, Z) is a row of such an orthogonal array then 
(j, k, 1, i), (k, Z, i,j), and (I, i, j, k) are also rows in this array. Thus if (P, 0) is 
a quasigroup defined by the first three columns we have i 0 j = k and 10 i = j; 
thus the (3, 1,2) conjugate of (P, o), denoted by (P, $3, 1,2)), will have 
i 0 (3, 1,2)j = 1. In other words (P, o(3, 1,2)) is the quasigroup defined by 
the first, second, and fourth columns. The spectrum of OA(n, 4) which are 
invariant under cyclic permutation is unknown, however, it does suggest the 
use of a construction, known as a method of differences, ad described in 
Hall [6], Denes and Keedwell [4], or Brayton et al. [2, 31. 

Let us illustrate this construction for n = 10. Let A, be the array 3.10 
below and let A,, Al , A,, A, be the arrays that result from the cyclic 
permutation of the rows of A,. Now let P0 = (A,, , A,, A3, V) where F/ 
is a column vector of zeros and let Pi be the array of residues modulo 7 that 
results from adding i to each integer in the array P,, . Finally if X is an 
OA(3,4) on the symbols x1, x2, xQ which corresponds to a (3, 1, 2)-self- 
orthogonal quasigroup and its (3, 1,2) conjugate then the transpose of the 



122 K. T. PHELPS 

array (PO, Ply P2 ,..., P, , X) is an OA(10, 4) which defines a (3, 1, 2)-self- 
orthogonal quasigroup and its (3, 1,2) conjugate. 

Example 3.18 was constructed by the author, the other examples can be 
found in the references previously cited as well as elsewhere. 

(3.10) 

(3.14) 

(3.18) 

(3.26) 0 0 0 0 x1 x2 xg 
3 6 2 1 0 0 0 
8 20 12 16 20 17 8 ’ 

12 16 7 2 19 6 21 

With this construction, we are ready for the following lemma. 

LEMMA 3.2. For all n, I < n < 62, n # 2 or 6, n E B(3,1,2) . 

Proof First we have a table of special cases. 

n Comment Lemma n Comment Lemma 

10 Example (3.10) mod 7 34 11(4 - 1) + 1 2.5 
14 Example (3.14) mod 11 38 5(10 - 3) + 3 2.5 
18 Example (3.18) mod 15 46 5(10 - 1) + 1 2.5 
22 7(4 - 1) + 1 2.5 58 19(4 - 1) + 1 2.5 

26 Example (3.26) mod 23 62 8 - 8 + 1 - 3 2.6 

Note. For n = 62 we take the affine plane of order 8 and add a new point 
to each line in one pencil of lines giving 8 * 8 + 1 points. We then delete any 
three collinear points from a line with eight points (i.e., any line not in the 
original pencil) and the result is a PBD with block sizes 5, 7, 8, and 9. 
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All other cases are swept out by Lemmas 2.3 and 2.4 (direct product and 
finite fields). 

LEMMA 3.3. For all n, 63 < n < 704, n E Bc~,~,~) . 

ProoJ: For these cases we apply Lemma 3.1, that is 7t + m and 8t + m, 
with certain exceptions, since m # 2 or 6. We then have the following table: 

11 Lemma 3.1 

63-72 7.9fm 
72-8 1 8+9+m 
77-88 7.11 +m 
88-104 8 . 11 + m, 7. 13 + m 

104-l 17 8.13tm 
112-128 7.16fm 
128-144 8.16fm 
136-153 8.17$-m 
1.52-171 8.19+m 
161-184 7.23 +m 
175-299 7.25+ m 

n 

189-216 
203 232 

217-261 
259-296 
296344 
343-392 
371-424 

413477 

469-536 
511-584 

560-640 

616-704 

Lemma 3.1 
- 

7.27 +m 
7 * 29 + m 
7.31 fm,8.29+m 
7.37+n,8.31 fm 
8.37+n,7-43+m 
8.43+n,7*49+m 
7.53 fm 
7 .59 + m, 8 .53 + m 
7.67+ m 
7.73 fm 
7.80+ m 
7.88+m 

Exceptions are of the form 7t + 2, 7t + 6, 8t + 2, 8t + 6. Most of these 
are covered in the above table. For example, 78 = 8 .9 + 6 but also 
78 = 7 * 11 + 1. We have these exceptions remaining: 

n Lemma 

74 = 9 * 9 - 7 (PBD) 2.6 

106 = 7 (16 - 1) + 1 (SDP) 2.5 
118 = 13 (10 - 1) + 1 (SDP) 2.5 
134 = 7 * 17 + 15 3.1 

158 = 9. 19 - 13 (PBD) 2.6 

298 = 11 . (28 - 1) + 1 (SDP) 2.5 

Note. For n = 74 we take an affine plane of order 9 and delete six 
collinear points and one point from a different line giving a PBD with block 
sizes 3, 7, 8, and 9. For n = 158 we take 9 parallel lines of an affine plane of 
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order 19 delete 12 points from one line and one from another line. This 
gives us 9 . 19 - 13 = 158 points, the blocks being the original lines re- 
stricted to these points. Thus the block sizes will be 7, 8, 9, 18, 19 with the 
one block of size 18 forming a clear set. All other exceptions are covered 
by Lemmas 2.3 and 2.4. 

THEOREM 3.4. For allpositive integers n, n f 2 or 6, there exists a (3, 1, 2)- 
self-orthogonal quasigroup of order n. 

Proof. 1 < n < 704, n # 2 or 6 by Lemmas 3.2 and 3.3. For n > 704, 
n can be represented in the form n = 7t + k, where k -C 7 and t > 92. But 
there exists an OA(t, 8) and an OA(t - 1, 8). Thus n = 7t + k = 7(t - 1) + 
(k + 1) and by Lemma 3.1 12 E B(3,1,2) . 

COROLLARY 3.5. If n # 2 or 6 then there exists a (2, 3, I)-self-orthogonal 
quasigroup of order n. 

Proof. Lemma 2.1(a) and Theorem 3.4. This completes this section; we 
now consider the other case. 

4. (1, 3, +-SELF-ORTHOGONAL QUASIGROUPS 

Our method is essentially the same as before. In this case we use the 
following lemma: 

LEMMA 4.1. If n, m E %,~.~) 0 < m < n and there exists a OA(n, 5) 
then 4n + m E Bc~,~,~) . 

Proof: There exists an idempotent (1, 3, 2)-self-orthogonal quasigroup 
of orders 4 and 5 via the finite field construction. This along with Lemmas 
2.6 and 2.7 gives us the result. 

We immediately note that for n > 46 there exists an OA(n, 5) (see Wilson 
[17, 181 or Van Lint [lo]). Because of Lemma 2.2 we need only consider 
n SE 2 mod 4 to establish our construction. 

THEOREM 4.2. For all n # 2 or 6 there exists an (1, 3, 2)-self-orthogonal 
quasigroup of order n, except possibly n = 14 and 26. 

Proof: 

Case J. 1 < n < 50, n # 2 or 6. 
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n Comment Lemma n Comment Lemma 

10 Example (4. IO) 34 ll(4 - 1) + 1 2.5 

14 (-3 38 5(10 - 3) + 3 2.5 

18 42 + 4 + 1 - 3 2.6 42 5.9-3 2.6 

22 7(4 - 1) + 1 2.5 46 5(10 - 1) + 1 2.5 

26 (?I 

For n = 18, we take the projective plane of order 4 and delete three points 
which are not collinear; the result is a PBD and the blocks of size 3 form a 
clear set. For n = 42, choose five parallel lines in an affine plane of order 9. 
Again delete three points which are not collinear. This gives a PBD on 
5 * 9 - 3 = 42 points with block sizes 3, 4, 5, 7, 8, 9 and the blocks of size 
3 form a clear set. Again the blocks are the original lines intersecting with 
this set of points. For IZ = 10 the example below is a modification of a 
method of differences mentioned previously. The construction is the same 
except there are only three rows to permute. The result is an OA(10,3), 
with a sub-OA(3, 3) on x1, x2, xg which corresponds to a (1, 3,2)-self- 
orthogonal quasigroup of order 10: 

(4.10) 0 

i 3 1 3 5 6 

For n = 30 and 50 we apply Lemma 2.3 with 30 = 3.10 and 50 = 
5.10. 

Case II. n > 50: For all n > 50 where n = 4t + k and k # 2, 0 ,( 
k < 4 if there exists an OA(t, 5) and t E Bc~,~,~) then we can conclude by 
Lemma 4.1 that n E Bu3,2) . Similarly if n = 4t + 2 then n can be written as 
n = 4(t - 2) + 10. Thus if there exists an OA(t - 2, 5) and t - 2 E Bc~,~,~) 
then we can again use Lemma 4.1 to conclude that n E Bc~,~,~) . (Note that 
n > 50 implies t > 12.) 

There exists an OA(t, 5) for all orders t 3 11 except for those values of t 
listed below. For t = 0 or 1 mod 4 Mills [I l] has shown that there exists 
an OA(t, 5). For other orders we again refer to Wilson [17, 181 and Van Lint 
[lo]. For those values of t for which an OA(t, 5) is not known to exist we have 
two expectations to deal with; when n = 4t + k, 0 < k < 4 and when 
n = 4(t + 2) + 2 = 4t + 10. In the table below all of these exceptions are 
covered by suitable applications of Lemma 4.1 except where noted. 
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t n=4t+k Lemma 4.1 n=4t+lO Lemma4.1 

14 56-59 4~12+m,4~13fm 66 3 * 22* 
18 72-75 4.16+m 82 9(10 - 1) + 1** 
22 88-92 4 .20 + m 98 4.20+ 18 
26 104106 4.24+m,4*25+m 114 4.24+ 18 
34 136-139 4 . 31 + m, 4.32 + 10 146 4.32-t 18 
38 152-155 4.31 +m 166 4.37+ 18 
42 168-171 4 .37 + m 178 4 .40 + 18 

(*) Lemma 2.4, (**) Lemma 2.5 

With these exceptions taken care of, we can recursively construct a (1, 3, 2)- 
self-orthogonal quasigroup of orde IZ for all n > 50 by using Lemma 4.1. 

COROLLARY 4.3. For all n # 2 or 6, with the possible exception of n = 14 
and 26, there exists a (3, 2, I)-self-orthogonal quasigroup of order n. 

Proof Lemma 2.1(b) and Theorem 4.2. 
We remark that the existence of an OA(n, 4) which is invariant under a 

permutation that fixes one column and cyclically permutes the other three 
implies the existence of a (1, 3, 2)-self-orthogonal quasigroup of order n. 
The spectrum for the existence of such an array is unsettled and furthermore 
there is no straightforward construction of such an array via a method of 
differences. 

5. CONCLUDING REMARKS 

Quasigroup identities which imply conjugate orthogonality have not 
received much attention in the literature for conjugates other than the 
transpose. Much can be done in this area. For a general characterization 
of these identities see Evans [5]. The connection between orthogonal arrays 
OA(n, 4) which are invariant under conjugation (i.e., permutation of columns) 
and quasigroup identities has recently been studied by Lindner and Mendel- 
sohn [9]. The spectrum of such arrays also is investigated in their paper, 
however, much remains to be done in this area too. It appears that the 
techniques and results of this paper will help solve some of these questions 
but that is a subject for another paper. 
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