g

metadata, citation and similar papers at core.ac.uk brought to you by CC

provided by Elsevier - Publisher Con

NH
TOPOLOGY
%&g AND ITS
' APPLICATIONS
ELSEVIER Topology and its Applications 126 (2002) 13-28

www.elsevier.com/locate/topol

Expansive homeomorphisms and indecomposable
subcontinua

Christopher Mouron

Department of Mathematics and Computer Science, Hendrix College, Conway, AR 72032, USA
Received 13 February 2001; received in revised form 18 December 2001

Abstract

A continuum X is k-cyclic if given anye > 0, there is a finite open covér of X such that
meshl{) < ¢ and the nerveV (/) is has at most distinct simple closed curves. A homeomorphism
h:X — X is called expansiveprovided for some fixed > 0 and everyx, y € X there exists an
integern such thatd (4" (x), 1" (y)) > . We prove that ifX is ak-cyclic continuum that admits an
expansive homeomorphism, th&mmust contain an nondegenerate indecomposable subcontinuum.
0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One important idea that is studied in a dynamical system is what happens to points
that are close together over a period of iterations or time. In dynamical continuum theory,
one is interested in how far points move apart under repeated homeomorphism of a
continuum onto itself. Acontinuumis defined to be a compact, connected metric space.
A homeomorphisnk: X — X is called expansiveprovided for some fixed > 0 and
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everyx, y € X there exists an integer such thatd (2" (x), h"(y)) > ¢, where ifn is a
positive integer, then

h'(x)=hoho---oh(x)
—_—

n

and ifn is a negative integer, then

Wx)y=h"tohto---oh t(x).

In|

Expansive homeomorphisms exhibit chaotic behavior in that no matter how close two
points are, their images will eventually be a certain distance apart.

Plykin's attractors [6] and the dyadic solenoid [7] are examples of continua that
admit an expansive homeomorphism. Both of these continua have the property of
being indecomposable. A continuum idecomposablé it is the union of two proper
subcontinuum. A continuum ismdecomposabléit is not decomposable. Indecomposable
continua are created by stretching and bending arcs an infinite number of times back and
forth. Intuitively, it appears that in order to have expansiveness, the subset of the continuum
between points that are close to each other would have to be continually stretched in
order to move points away from each other. However, because of compactness, some
folding or wrapping must also occur. Every known continuum that admits an expansive
homeomorphism has an indecomposable subcontinuum.

One way to describe continua is through sequences of finite open covers.heeta
finite open cover. Since we are assuming tkids a one-dimensional continuum, we may
also assume that eaghe X is in at most two elements éf. Define the meshof U/ to be
meshif) = supldiam(U) | U € U} where diantU) = supd(x, y) | x, y € U}. The nerve
of U is a graphV (/) which has a vertex; that corresponds to each eleméhtof ¢/ and
an edge between andv; ifand only if U; N U; # 0.

A continuumX is

1 arc-like,

2 tree-like

3 circle-like,

4 G-like,

5 k-cyclig
if given anye > 0, there is a finite open covét of X such that mesi/) < ¢ and the nerve
NU) is

1lan arc,

2 atree,

3 acircle,

4 homeomorphic to a fixed graph,

5 has exactly distinct simple closed curves.

X is finitely cyclic if it is k-cyclic for somek. The double Warsaw circle or a double
Warsaw circle with any number of stickers attached to it are examples of finitely cyclic
continua. The Sierpinski curve is an example of an one-dimensional continuum that is not
finitely cyclic.
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G-like and tree-like continua are bokhcyclic. Every circle-like continuum i€ -like,
and every arc-like continuum is both tree-like aReike.

A refinemenof an open covet/ of X is any open coved’ of X whose elements
are subsets of the elements @f and whose union coverX. If U; is an element of
U={Uy, Uo,...,U,}, thenthecoreof U; is U; — (U#i Uj.

A chainis a collection of open subsets &f denoted by {/1, Uo, ..., U,] such that
UnU;#@ifandonlyif |i — j| <1 foreach I<i, j <n. Achain [Uy, Uz, ..., U] is
a chain from x to yif x € U1 andy € U,. A circle-chainis a collection of open subsets
of X denoted by {1, U, ..., U,] such thatU; N U; # ¢ if and only if |i — j| <1 or
li — jl=n—1foreach I<i, j <n.

H. Kato has shown [3] that arc-like continua do not admit expansive homeomorphisms.
Further, Kato has also shown [1,2] that ¥ is an tree-like, circle-like or anyG-
like continuum that admits an expansive homeomorphism, tkemust contain a
nondegenerate indecomposable subcontinuum.

Theorem 1 (Kato [1]). A nondegenerate tree-like or circle-like continuum must contain an
indecomposable subcontinuum in order to admit an expansive homeomorphism.

It follows that an arc and a simple closed curve do not admit an expansive
homeomorphism.

Theorem 2 (Kato [2]). Suppose that : X — X is a homeomorphism of a continuuxn
and f: Z — Z is a homeomorphism of a continuutn Also, suppose that: X — Z is
an onto map fromX onto Z such thatyp—1(z) is a hereditarily decomposable tree-like
continuum(possible degeneraxéor everyz € Z, and for some, ¢ ~1(z) is nondegenerate
(i.e.,¢ is not a homeomorphigmif the following diagram is commutative

x—lsx

P,

Z——=7

thenh is not expansive.

Apointx in X is periodicunderh if there exists a positive integeisuch thate = /¥ (x).
Likewise, a closed subsétof X is periodic undet if there exists a positive integérsuch
that E = h*(E). If k = 1, thenE is said to be invariant.

Proposition 3. A homeomorphism : X — X is expansive if and only t*: X — X is
expansive for every integér# 0.

Proof. Let g = h*. Therefore,g" = (h¥)" = h"*. We will prove the proposition by
showing the contrapositive for each direction.

Suppose that is not expansive. Therefore, for eveey> 0 there existsx,, y. €
X with x, # y. such thatd(h"(x.),h"(y.)) < ¢ for every integern. Therefore,
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d(g" (xs), 8" (ys)) = d(W"™* (x¢), h"* (y,)) < ¢ for every integen. Thereforeg = h* is not
expansive.

Now suppose thag = h* is not expansive. Pick any > 0, and choosé > 0 such
that d(x, y) < 8 implies thatd(h(x), h'(y)) < ¢ for eachi € {0,1,...,k}. Sinceg
is not expansive there exisis, ys € X with x5 # ys such thatd (W™ (xs), k™ (ys)) =
d(g" (x5), " (ys)) < & for every integem. Thus,d (h"*t (xs), h"**i(ys)) < & for every
integern and every € {1, 2, ..., k}. Since every integer can be representedby-i, i is
not expansive. O

Proposition 4. No graphG admits an expansive homeomorphism.

Proof. We may assume that is not an arc or simple closed curve. Détbe the set of
vertices of degree 1 or greater than 2. Sigtés not a simple closed curve,2|V| < cc.
Let E be the collection of edges between the verticeg irbince 2< | V|, E is nonempty,
and sinceV s finite, E is finite and each edge if is periodic under any homeomorphism
h. Thus, since each edge is homeomorphic to an arc, by Propositibncannot be
expansive. O

2. Main result

In [2], Kato asked “If X admits an expansive homeomorphism, mistcontain
a nondegenerate indecomposable subcontinuum?”. Since every compact metric space
of dimension greater than or equal to 2 contains a nondegenerate indecomposable
continuum [5], only one-dimensional continua need to be considered. The next theorem is
the main result of the paper and gives a partial answer in the affirmative to Kato’s question.

Theorem 5. If X is ak-cyclic continuum that admits an expansive homeomorphism, then
X must contain a nondegenerate indecomposable subcontinuum.

The proof of the main result begins by assuming tkias a hereditarily decomposable
k-cyclic continuum andi:X — X is an expansive homeomorphism. A series of
assumptions oX are then shown to be valid until a contradiction is shown.

Note. It is assumed in each lemma, claim and theorem that the contidusgatisfies all
the assumptions that were stated before each.

First it is shown that we may assume th#t contains no proper, nondegenerate
subcontinuum with period less than or equakte- 1, wherek is the cyclic bound for
X. Then it is shown that ifA is a proper subcontinuum df, then A must be tree-like.
Then under the previous assumption, it is shown that there exists a monotore freap
X to the simple closed curve@and a homeomorphistfi: § — S such thatf c @ = @ o h.
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Since each proper subcontinuumXfis tree-like,® ~1(y) is tree-like for eachy in .
Thus, by Theorem 2, eithé¥ is a graph an@ cannot be expansive, & must contain an
nondegenerate indecomposable subcontinuum.

Assumption 1. Suppose thaX is a hereditarily decomposablecyclic continuum and
thath : X — X is an expansive homeomorphism.

By Theorem 1, we may also assume tlxais neither tree-like nor circle-like. Also,
sinceX is not tree-like, we may assume that: 1.

Assumption 2. X contains no proper nondegenerate subcontinuum that has period less
than or equal tamax2, k + 1}.

The next lemma gives the justification for Assumption 2 in that we may ke be
the minimal subcontinuum described.

Lemma 6. If X admits an expansive homeomorphigmthen there exists a minimal
nondegenerate subcontinuum of period less than or equaktd that contains no proper
subcontinuum of period less than or equakte- 1.

Proof. Let ) be the collection of all subcontinua &f with period less than or equal to
k + 1. Partially ordey by inclusion. LetP be any maximal chain in the ordering.

There exists am € {1, 2, ..., k + 1} such that for ever,, € P, there exists ail € P
such thatt c A, andE has periodn. Let

Pm={Aq € P| A, has periodn},

and letA = (", ep, Ae =4, cp Aa- SincePy, is ordered by inclusiond must be a
continuum. IfA is degenerate, then for amy> 0 there exists a nondegenerate continuum
Aq,, € Pm such that diartd,,,) < . Therefore i is not expansive and thus, is not
expansive. ThusA must be nondegenerate and have diameter at least as big as the
expansive constant fé” . Notice that

h’"(A):h’"( ﬂ Aa>= ﬂ " (Ag) = ﬂ Ay = A.

Ag€Pnm Aq€Pp Ag€Pnm

Thus, A is a minimal periodic subcontinuum that contains no proper subcontinuum with
period less than or equalto+ 1. O

Assumption 3. Every proper subcontinuum &f is tree-like.

Let x € X and A Cc X. Define d(x,A) = inf{d(x,y) | y € A} and d(A, B) =
inf{d(x,y)| y € A andx € B}.

Theorem 7. If H and K are two subcontinua oX suchthatX = HU K and H N K has
at least two components, theéhis not tree-like.
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Proof. SupposethaX = HU K andH N K = AU B, whereA andB are two nonempty,
disjoint closed sets. Let/ and V be open sets irX such thatA c U, B ¢ V, and
UNV=¢.H—(UUV)andK — (U U V) are both nonempty, disjoint closed sets in
X. Lete > 0 such that

e<min(d(H—(UUV),K—(UUV)),dU,V)).

Let W be a finite open cover of such that mesh) < ¢/4.

Let W; be an element ofV which intersectsA and letW; be an element ofV which
intersectsB. SinceH andK are both connected, there exists a cl@infrom W; to W;
of elements/V each of which intersectd, and a chai€x from W; to W; of elementsV
each of which intersect&. By our choice of, there must exist &, € Cy and aCy € Ck
suchthatC, N (H —(UUV))#£@PandC, N (K — (UUV)) #£@. Pickx € C, andy € Ck.
Then,d(x, H— (U UV)) <e/4andd(y, K — (U U V)) < e/4. So,

d(x,y)>d(H—(UUV),K—(UUV))—¢/d—e/4>¢e/2.

Thereforex ¢ Cy andy ¢ Cj,. Thus,C, N Cr = @ and the nerve o€y U Cx must
contain a simple closed curve. Henégjs not tree-like. O

Theorem 8. If H and K are two subcontinua of suchthatX = H U K and H N K has
at leastk + 2 components, theX is notk-cyclic.

Proof. The proofis similar to that of Theorem 7.0

Corollary 9. If H and K are two subcontinua of such that = H UK andH N K has
an infinite number of components, thEris notk-cyclic for anyk.

Lemma10. If Y = {U1, U>, ..., U,} is afinite open cover of a continuukhsuch that the
nerve ofl{ is a tree andV is a cover ofX with V; c U; for everyi € {1, 2, ..., n}, then the
nerve ofY = {Vq, Vo, ..., V,} is also a tree.

Proof. Suppose that the nerve df is not a tree and has dimension less than or equal
to 1. Thus, the nerve df must contain a simple closed curve. U&,, Vi,, ..., Vi, Vi, }

be elements oft’ whose nerve is a simple closed curve, thatVs, N Vi, # ¢ if
je{l2,....,m—1}, andV;, NV, # 0. But sinceV; C U; for everyi e {1,2,...,n},

that would imply thatV;, N U;,,, # @ if j €{1,2,...,m — 1}, andU;, N U;, #¥. Thus,

the nerve oftf must contain a simple closed curve. Thissjs not tree-like. This is a
contradiction. O

Theorem 11. If H and K are tree-like andHd N K has only one component, théhU K
is tree-like. Likewise, iH N K hask + 1 components, theH U K is k-cyclic.

Proof. Picke > 0 and let.{/y be any finite open cover df such that mestMy) < &, Uy
is open relative tdH U K, and the nerve dfy is a tree. Let/x be a finite open cover of
K such that mesiig) < ¢, if Uy e Uy andUg N (H N K) # @, thenUkg is a subset of
somelUy € Uy, and the nerve dfix is a tree. Sincél N K is a continuum, the nerve of

Unnk ={U | U eUx andU N (H N K) # B}
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must be connected and a tree. Let
Ux = {U|U elUx andU N (H NK) =0}

u{ |J UlUelx.Un(HNK)#BandUy eZ/{H}.
UucUy

Claim. The nerve ofﬁK is a tree.

Proof of Claim. Suppose not. Letl;,, Uj,. ..., U;,. U;,} be elements ol whose nerve
is a simple closed curve. Let

Zj]—[n[{ = {17 | l7 GZ:iK andﬁﬂ(HﬂK);é@}.
Then, the nerve ik is connected and by Lemma 10 is a tree. Suppose there eyists a

such tha'U, ¢UHm< ThenU, m(HmK)_@ and thereforeU, elUg. If U, ¢UHm<
foreveryj e {1,2,...,m}, then{U,l, U,z,.. Ui U,l} C Ukg. However thatwould|mply

Im>

that nerve ofi/g would contarn a srmple closed curve whrch is a contrad|ct|on Thus,

we may choosg/, n such that{U, .. U .} is a subchain of{U,l, U,Z,.. Ui, ., U,l}
¢ Unnk for every U, € {U,,,.. Ul } U,/ € Unnk, and U,/ € Upnk, Where
Ulj,, U,n, are the unique elements ()U,l, U,Z, ey U,,,,, U,l} — {U,_,, ey U,n} such that

Ui, N 17,-/., #¢ and U;, N U;, # ¢. Now, there existU,, Ug € Ug such thatU, C
U s Ug C Ui, Us N Ui, # 0, and Us N U;, # @. Since H N K is a continuum,
there exists a chaifUy, Uy, ..., Ug} of elements oft/ynx from U, to Ug. Thus,
{U, .. U,n,U,g,.. ,Ua, Ui;} C Uk . However, the nerve o{fU,-j,...,U,-n,U,g,...,Ua,
U;. } is a simple closed curve. Thus, the nervé{gfis not a tree, which is a contradiction.
ThUS,ﬁij € {ﬁil’ ﬁ,‘z, ceey 17 ﬁil} implies ﬁ,‘j EaHmK. Hence,{ﬁ,-l, [7,'2, .. Uzl}

Im> lm ’

C Unnk . But that is impossible since the nervedfinx is a tree. Thus, the claim is
proved.

Noti~ce that if V e Uy then eitherV e Uy or VCUn where Uy € Uy. Thus,
meSI’(Z/{K) <eée. LetUy = {UHl, UHZ’ ey UH,,} anduK = {UKl, UKZ’ ey UK,,,}-
Now composé/V of the following open sets:

(1) Wu, =Uny, — K if Uy, GUl-[ andUH[ NHNK)=0

(2) WK_,- = UKj — Hif UKj e Uk andUK_,. NHNK)=0

(3 Wh, = Wg; = (U, — (K = (HNK)) U (Ug; — (H = (HNK))) if Uy, € Un,
Uk, elUxk andUK/. CUpy,.

Notice that if Wy, = Wk; and Wy, = WK/.,, then WK],, N Wk, #V if and only if
UK, NUk; #Y if and only if Up, N Un; # @. Thus, by Lemma 10, the nerves of both

Wy = {WH, Y andWg = (W, }m , are trees. Let

Wenk ={Wa, | W, 0 (HNK) # 0} ={Wk, | Wg, N (HNK) # 0}

ThenWgng € Wy (and likewise Wynx € Wk). Thus, the nerve oWy Is a tree.
Also, if Wy, € Wi andWy, N (H N K) =0, thenWy, N K = ¢. Likewise, if Wk, € Wk
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andWK/. N(HNK)=0, thenWKj N H = @. Thus if the nerve oV = Wgy U Wk is not
atree, then the nerve of

Wink ={W | W N (HNK) # 0}

is not a tree, which is a contradiction. Thus, the nervig\ois a tree. Proof is similar when
H N K hask + 1 components. O

Suppose that/ is a finite open cover of continuum. Let B be a subcontinuum o
and letd(B) ={U eUU | U N B # @}.

Lemma 12. Let X be a one-dimensional continuum and febe a tree-like subcontinuum
of X. If U is a finite open cover ok, then there exists a finite open covat of X such
that W refines/, the nerve o¥V is one-dimensional, and the nervelof(A) is a tree.

Proof. Let be a finite open cover oX. There exists a finite open coverof X such
thatV refinesi/ and the nerve oP’(A) is a tree. Sinc& is one-dimensional, there exists
a finite open coveD of X such thatD refines) and the nerve oD is one-dimensional.
Define

W= (D —D(A)) u{ U U|UeD(A) andV eV(A)}.
ucv

Then by Lemma 10}V satisfies the conclusion of the lemmaz

From here on out, we may assume thawlifis an open cover ok that refines open
coverl{ such that the nerve 0/ (A) is a tree, then the nerve ®¥ is one-dimensional.

If U is a collection of sets, thei* is the union of the elements &f. If x € U/, then the
star ofx in U, denoted by sk, I{), is the collection of elements &f that containx (i.e.,
stx, Uy ={U el |x e U}).If AcU*, thenstA,U) ={U €U | ANU # @}. Inductively,
stti(x, U) = st(st (x, U)*, U).

Lemma 13. Let X be a k-cyclic continuum and letZ be a collection of tree-like
subcontinua ofX such that7 has p elements. 1#4; is a finite open cover ok such

that the nerve aff has at mosk simple closed curves, then there exists a finite open cover
W of X such that refinesi/y, the nerve obV contains at most simple closed curves,
and the nerve oV(T) is a tree for eacly € 7.

Proof. First, we must verify a claim.

Claim. There exists a finite open coverof X such thatV refinesi/; and the nerve of
V(T) is atree foreacll € 7.

Proof of Claim. Pick Ty € 7. SinceT; is tree-like, there exists a finite open covarthat
refinesl{; such that the nerve df,(T1) is a tree.
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PickT> € 7. SinceT is tree-like, there exists a finite open coverthat refines’; such
that the nerve o¥»(T») is a tree. Define

Vo= (V2 — Va(T1) U { J U1vevimandu e Vz(Tl)}.
ucv

Thus,V’s refinesyy, and the nerves of’o(T1) andV’»(T>) are trees.
Pick T3 € 7. SinceTs is tree-like, there exists a finite open coveéy that refines)’,
such that the nerve df3(T3) is a tree. Define

V'3 = (Vza— (Va(T1) U V3(T)) U { U U|V eV (T andU e V3(T1)}
ucv

U { L U1VeVar andu e V3(T2)}.
ucv

Thus, V'3 refines)’,, and the nerves of'3(T1), V'3(T») andV’3(T3) are trees. Continue
in the same manner inductively. Suppose thahas been found. Define

P P
V= (vp - (U vp(Tj))> U (U{ JUlveV,aT)andu e v,,(Tj)}>.

j=1 j=1‘Ucv
ThenYV satisfies the claim.

If the nerve of Y has at mosk simple closed curves, 18tV =V and we are done.
Otherwise, sinc is k-cyclic, there exists a finite open covés of X such thais, refines
VY and the nerve affo contains: simple closed curves, whene< k. Let {C1,Co, ..., Cp}
be then distinct subsets dff> such that the nerve of eachis a simple closed curve. If, for
eachj € {1,..., p}, noC} is a subset oV’ (T;)*, then naC; is a subset alf>(T;), and thus,
the nerve off>(7};) is a tree for eacll’; € 7, and we are done. Otherwise, suppose that
{Ci,, Ciy, - ..., C,-m/_} are the elements df’1,Co, ..., C,} such thatC;; C V(Tj)* for every

lef1,...,m;}, wherem; <n.LetA; =|J;", C;,. Define

W= (Uz— (,U;Aj>)u<o{ Juiveva andUeAj}>.

j=1‘Ucv

Thus,W is a finite open cover ok such thatV refinesi{1, the nerve o} contains at
mostk simple closed curves and the nerve®{T) is atree foreaclf € 7. O

Theorem 14. If A is a proper subcontinuum &, thenA is tree-like.

Proof. Let A be the set of all subcontinua &f that are not tree-like. LeP be a partial
ordering of A by inclusion and letM be a maximal chain dP. Let

M= () A

AeM

Claim. M is not tree-like.
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Proof of Claim. The proofis by induction.

Base caseSuppose that there exists a subddy of M such that eactd € M,
is 1-cyclic, M = (Nycpm A = [Naem, A, and thatM is tree-like. Pick anyA; € M.
By Lemma 13, there exists a sequence of finite open cov&f3;,> ;, of A1 such that
mesh{4,,) — 0 asn — oo, U, 41 refinesd, for eachn, the nerve ofi4, has exactly 1
simple closed curve, and the nervd Hf(M) is a tree.

SinceM = ﬁAEMl A, there exist amy € M3 which is a proper subcontinuum df
such that the nerve @f1(A2) is a tree. Sincel; is not tree-like, there exists an integeés
such that for every > N», the nerve ol4,(A») is not a tree. Thus, the nerve@f, (A2)
must contain a simple closed curve. Let

V1= (Un, —Uny(A2)) U { | U 1U elin,(42) andV € L{l(Ag)}.
ucv
V1 is a finite open cover ofi1, and by Lemma 10, the nerve U (A») is a tree. Since the
nerve ofi{y, contains exactly 1 simple closed curve, the nervgjofust be a tree. Notice
that meslVy) < meshif).

Suppose thaldy, has been found. Sincll = ﬂAEMl A, there exists am;;1 € M1
which is a proper subcontinuum df; such that the nerve @fy, (A;+1) is a tree. Since
A;+1 is not tree-like, there exists an integer.1 such that for every > N;11, the nerve
of U, (A;i+1) is not a tree. Thus, the nerve &, , (A;+1) must contain a simple closed
curve. Let

Vi = (UN;+1 _uNi+l(Ai+1))

U { U U1V ety (A1) andV e Uy, (A,-+1)}.
ucv
V; is a finite open cover ofi1, and the nerve o¥;(Ay) is a tree. Since the nerve of
Un,,, contains exactly 1 simple closed curve, the nerv&;omust be a tree. Notice that
mesh(V;) < meshiUy,). Thus, mestlV;) — 0 asi — oo. Thus,A1 must be tree-like. This
is a contradiction. Thusy is not tree-like.

Induction stepSuppose that there exists a suhs¢t of M such that eaclt € M;
is j-cyclic, but not(j — 1)-cyclic, M = [qcpq A =(Naem; A @and thatM is tree-like.
Pick anyA; € M. There exists a sequence of finite open covgds} > ,, of A1 such
that mesh,) — 0 asn — oo, U, +1 refinesld, for eachn, the nerve oi4,, has exactly;
simple closed curves, and the nervéff M) is a tree.

SinceM = (4, A, there exist amz € M which is a proper subcontinuum af,
such that the nerve @f1(A») is a tree. Now, sincel, is not(j — 1)-cyclic, there exists
an integerN» such that for every. > N», the nerve ol4,(A2) contains exactlyi simply
closed curves. Let

V1= (UN2 _Z/{NZ(AZ)) U { U Ulu GUNZ(Az) andV ¢ uNl(A2)}~
ucv
V) is a finite open cover ofi1, and the nerve o1 (Ap) is a tree. Since the nerve by,
contains exactlyj simple closed curves, and the circular chaing/gf (A2) have been
collapsed, the nerve df; must contain no more thah— 1 simple closed curves. Notice
that meslVy) < meshif).
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Suppose thaldy, has been found. Sincel = (1, 4, A, there exists am, 1 € M;
which is a proper subcontinuum d@f; such that the nerve @fy, (A;+1) is a tree. Now
sinceA; 1 is not(j — 1)-cyclic, there exists an integ@f; .1 such that for every > N; 1,
the nerve o4, (A;+1) has exactlyj simple closed curves. Let

Vi = Un.y —Unis (Aiyn)

U { U U1V ety 4 (Aiy1) andV e Uy, (A,-+1)}.
Ucv
V; is a finite open cover ofi1, and the nerve o¥;(Ay) is a tree. Since the nerve of
U, ,, contains exactly simple closed curves, and the circular chaing{gf, , (A2) have
been collapsed, the nerve Bf must contain no more thaph— 1 simple closed curves.
Notice that mestV;) < meshfy,). Thus, mest);) — 0 asi — oo, and henced; must

be(j — 1)-cyclic. This is a contradiction. Thug/ is not tree-like, and the claim is proved.

If B is a proper subcontinuum a@f, thenB is tree-like. Also, the same properties that
hold for M must hold fork/ (M) for every j. Consider the collection

(M, h(M), ..., k" (M), ()

and suppose there existj € {0, 1, ..., k + 1} such that # j andh’ (M) = h/(M). Then
M has period k + 1 which is a contradiction. Thus, eithaéf = X or hi (M) # h/ (M)
for everyi # j. Supposé:’ (M) N h/ (M) has a componer€ that is not tree-like. Since
C is a continuum, and’(M) and k(M) are minimal,h'(M) = C = h/(M). This is a
contradiction. Thus, every component/@f(M) N h/ (M) is tree-like. Also, sinceX is
k-cyclic, the number of components &f(M) N 1/ (M) must be finite by Corollary 9.

LetC = {C | C is a component of! (M) N h/ (M) for somei # j}. We may suppose
that X is k-cyclic but not(k — 1)-cyclic. Since eaclh’ (M) is not tree-like, there exists an
¢ > 0 such that i/ is a finite open cover ok such that mesk() < ¢, then the nerve of
U(h' (M)) is not a tree for each Let {U4,} be a sequence of finite open covers¥obuch
that meski4,) < ¢ for eachn, the nerve of eacly,, has exactlyk simple closed curves,
lim,_ o (meshi4,)) = 0, eachis, 1 refinesls,, and the nerve df(,(C) is a tree for each
CecC.

Claim. There exists an intege¥ such that for every > N and each’ # j, the nerves of
U, (k' (M)) andU,, (h/ (M)) contain distinct simple closed curves.

Proof of Claim. Suppose not. Thus, suppose for everythere exists: > p such that
in # j, and the nerves off,(h’»(M)) and U, (h/»(M)) do not have distinct simple
closed curves. Since there is only a finite number of combinationig ¢f, there exists
a subsequende,,} of {n} such that,, = i; andj,, = j; for all positive integers:, [. For
ease of notation, Ietz,,,} = {n}, i =i,, andj = j,,.

The nerves ou,l(hf'(M)) and U, (h/ (M)) must both contain a collection of circle-
chains, sayS! and S;. Since the nerves df, (h'(M)) and U,(h/ (M)) do not have

distinct simple closed curves, eith8f ¢ Sl ors] c S! for eachn. Thus, without loss of
generality, we may assume that there exists an infinite subsequenicef {n} such that

S C&;,, foreachm. Again, for ease of notation, I¢t} representn,, }.
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Pick ¢1 > 0 such that
e1 <d(h' (M) —Ur(h (M) NI (M), h' (M) — Ua (R (M) N Y (M))).
There exists intege?kfl such that.mesern) < g1/4 for everyn > Nj. Consider th_e circle-
chains oft/y, (h' (M)) andUy, (h/ (M)). By the choice ok1/4, if (S}\,l)* ¢ Ur(h* (M) N
hi(M))*, thenSj\,1 would contain a circle-chain distinct from any circle—chairSgS,fl. This

contradicts our hypothesis. Tht(élj\,l)* C UK (M) N hI (M))*.
Define

V1= Uy, — Si,) N { | UlUesy, andv etn(h (M) mhf(M))}.
ucv
Notice that the nerve af; is a tree. Le$1 be the Lebesgue numberBf. There exists an
integerN, such that for every > N;, meshi4,) < §1 and thusz/{Né refinesys.
Let

e2 <d(h' (M) — Uy, (h' (M) N R (M), ' (M) — Uy, (h' (M) ORI (M))).

Continue in this manner inductively.

Suppose that the Lebesgue numBger;, of V;_1 has been found. There exists an integer
Nj such that for every > N/, meshi4,) < &1 and thusZ/{N[/ refinesy,_1.
Let

e <d(h' (M) — Uy, (h' (M) ORI (M), (M) — Uy, (h' (M) ORI (M))).
There exists an intege¥; such that mesl,) < ¢;/4 foreveryn > Nj. Considerthe circle-
chains ofiy, (' (M)) andUy, (h/ (M)). By the choice ofg; /4, if (S}V[)* Z U (M) N
hi(M))*, thenSjV[ would contain a circle-chain distinct from any circle—chailﬁjuj. This

contradicts our hypothesis. Tht(élj\,l)* C Uy(h' (M) N hI (M))*.
Define

Vi = (Uy, —Sjvl)m{ U vivesy andv eu,(h"(M)mhf(M))}.
ucv
Notice that the nerve of is a tree. Thus{);}7°, is a sequence of finite open covers of
X such that mespy;) — 0 asl — oo, V41 refinesV, and the nerve oV (hi (M)) is a
tree. Thush (M) is tree-like. However, this contradicts the fact thatM) is not tree-like.
Thus, there exist an integé¥ such that for every: > N, the nerves ot4, (h' (M)) and
U, (h' (M)) contain distinct simple closed curves. Hence, the claim is proved.

Thus, for each, the nerves oflf, (M), U, (h(M)), . .., U, (K (M)), U, (h*T1(M))} all
contain a distinct simple closed curve. Thus, for each N, the nerve of4, contains
more thank simple closed curves. This is a contradiction. Thusmust equalX, and
every proper subcontinuum &f is tree-like. O

3. Irreducible continua, tranches and Kuratowski’'stheorem

A subsetA of a metric spac« is e-densdn X if for everyx € X, d(x, A) <e. Amap
g:X — Y is monotondf g~(y) is connected for each e Y. If X is a continuum, then
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eachg—1(y) is a continuum (possibly degenerate). Also} ifs any subcontinuum af(X),
theng—1(A) is a subcontinuum ok .

A continuum X is irreducible betweena and b if a,b € X and if A is a proper
subcontinuum ofX, thena ¢ A or b ¢ A. The notation,/ (a, b), will be used to imply
that/(a, b) is a continuum irreducible betweerandb. If K is a subcontinuum oX and
a,b e K, then letlg (a, b) be a subcontinuum o irreducible between andb.

Theorem 15 (Kuratowski [4]). If X is hereditarily decomposable and is irreducible
betweern and b, then there exists a monotone map X — [0, 1] such thatyr(a) =0
and ¥ (b) = 1. In fact, there exists a minimal monotone onto ngapX — [0, 1] such
that if v : X — [0, 1] is any other monotone onto map apd!(z) N v ~1(y) # @, then
¢~ M) Cy ).

If ¢: X — [0, 1]is a minimal monotone onto map, then egct () is called atranche
of X. Tranches arenowhere denssubcontinua off. That is, int¢p—1(y)) = @. Also, if
I(a,x)=1(a,y),thenx andy are in the same tranche bfa, b).

The following well-known lemma is needed:

Lemma 16. ContinuumX is indecomposable if there exists distinct poiats andc in X
such thatX is irreducible between each pair of » andc.

Theorem 17. Suppose thalX is neither 1-cyclic nor tree-like and that every proper
subcontinuum oX is tree-like, thenX is either indecomposable @indecomposable.

Proof. If X is decomposable, there exist minimal proper subcontidu® such that
AU B =X. Thatis, if A’ is a proper subcontinuum of thenA’ U B # X and if B’ is
a proper subcontinuum a8 then A U B’ # X. Also, sinceX is not 1-cyclic, it follows
from Theorems 7, 8, and 11 thatn B must have at least 3 components. gt C, and
C, be 3 distinct components of N B that contain the points, y and z, respectively.
Let I4(x,y), Ia(x,z) and I4(y, z) be subcontinua ofA irreduciblie between: and y,
x and z, and y and z, respectively. Suppose thdf (x, y) is a proper subcontinuum
of A. Then from Theorem 7B N I4(x, y) is a proper subcontinuum of that is not
tree-like which is impossible. Hencdy (x, y) = A. Similarily, it can be shown that
Ia(x,y)=14(x,z) =14(y,z) = A. Thus, it may be concluded thdtis indecomposable.
Proof is similar to show thaB is indecomposable. O

Assumption 4. Suppose thaX is hereditarily decomposabl#;cyclic but not tree-like and
that every proper subcontinuum gfis tree-like.

Lemma 18. Under Assumptiod, there exists:, b € X and distinct minimal subcontinua
I(a,b) andI’(a, b) irreducible aboutz, b such thatX = I(a,b) U I'(a, b).

Proof. SinceX is decomposable, there exist minimal proper subcontiiuB such that
AU B = X. SinceA andB are proper subcontinua, they must be tree-like. Also, it follows
from Theorems 7, 8, and 11 that singeis 1-cyclic but not tree-likeA N B must have
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exactly 2 components. Laf,, C, be the distinct components o&f U B wherea € C,
andb € Cyp. Let I4(a, b) be a subcontinuum of irreducible about:, b and let/g (a, b)
be a subcontinuum oB irreducible about:, b. Sincel (a, b) N Ip(a, b) has exactly 2
componentsl4 (a, b) U Ig(a, b) cannot be tree-like. Hencéy (a, b)) U Ig(a, b) = X. Also,
sinceA and B are both minimal with respect to the decompositiorXof/ 4 (a, b) = A and
Ig(a,b)=B. O

Theorem 19. Under Assumptiord, there exists a minimal monotone mdp. X — S,
where S is a simple closed curve.

Proof. Let I4(a,b) and Ig(a,b) be described as in Lemma 18. Sinég(a, b) and
Ig(a, b) are both hereditarily decomposable and irreducible betwegmd b, there exist
minimal monotone map®4:14(a,b) — [0,1] and ®g:Ip(a,b) — [1,2] such that
Dp(a) =0, Py(b) =1= dp(b), anddp(a) = 2. Now let S be formed by identifying
0to 2 on the intervall, 2]. Let @ : X — S be defined in the following manner:

D(x)=Ds(x) if xelsla,b),
D (x)=Dp(x) if xelg(a,b).

Now, if there exists & € (0, 1) such thatcbgl(y) N Ig(a,b) # @, thenly(a,b) and
Ip(a,b) are not both minimal with respect to the decompositionkofSame is true if
there exists ay € (1,2) such thatdﬁ;l(y) N I4(a,b) # @. Clearly, if y € (0,1) then
oLy = @;1(y) and is therefore connected. Similarly, jife (1,2) then®~1(y) =
@5 (y) and is also connected. Now,~1(0) = #1(2) = ¢, 1(0) U #;%(2). Since both
@,%(0) and ®,%(2) are connected and € @;(0) N @,%(2), it follows that ®~1(0)
(equivalently ®~1(2), ® ;1(0) U @,%(2)) is connected. Proof is similar to show that
®~1(1) is connected.

Next, it must be shown thap is minimal. Let¥ : X — S be another monotone map.
If y e (0,1) and@~1(y) N¥~L(z) # 0, thend~1(y) = & 1(y) c w1(z) sinced, is
minimal. Likewise, ify € (1,2) and®~(y) N ¥ ~1(z) # 0, then®—1(y) = o5 (y) C
w—1(z) since®p is minimal. So, suppose that—1(0) N ¥ ~1(z) # @. Since®, and®p
are both minimal@;*(0) c ¥ ~1(z) and®;*(2) c ¥ ~1(z). Hence @ (0) = ¢71(2) =
@710 U5 (2) c wL(z). Proof is similar to show that i® (1) N ¥ ~1(z) # ¢, then
@~1(1) c v~1(z). Thus,® is a minimal, monotone map.o

Theorem 20. Under Assumptiof, if h is any homeomorphism af onto itself, there exists
a homeomorphisnf of the circle, S, onto itself such that the following diagram commutes

xX—"sx

P,

S——=S

Proof. First, it will be shown that ify, z € S such thath(®~1(z)) N ®~1(y) # @, then
h(@~(2) = 2~ (y).
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Let¥ =d oh andI” = @ o h~L. Notice that¥ and " are monotone maps. Suppose
y, z € S such that" ~1(z) N ®~1(y) # @. Then, sincep is minimal,® 1(y) c ' 1(z) =
h(@~1(2)).

Also,

et Nty =2t NN @) =h Tt o k(@ ) NETH@ TNy =
h @ Y@ NN @ ) = M M) N L) # 0.

Thus, sincep is minimal,® ~1(z) c ¥ ~1(y) = h~1(®~1(y)). Thereforeh(®1(z)) C
@~1(y). Hence @ 1(y) = h(®1(z)).

Let f(y) = @ o h o @ 1(y). To show thatf is an one-to-one function, pick any
distinct z1, z2 € S. There existsy1, y» € S such thath(®1(z1)) N @~ 1(y1) # ¥ and
h(@Y(z2)) N @ L(y2) # B. So by the previous arguemend1(y1) = h(® 1(z1))
and @~ 1(y2) = h(@ 1(z2). Since®@1(y1) N @~ 1(y2) = h(® 1 (z0) N h(@~H(z2)) =
h(@Y(z1) N @ 1(z2)) = ¥, y1 and y» must be distinct. Hencey; = & (@~ 1(y1)) =
@ o h(®L(z1)) = f(z1) andyr = ® (D 1(y2)) = ® o h(® 1(z2)) = f(z2) are distinct
points ofS. Thus, f is a one-to-one function.

To show thatf is continuous, leE be closed irs. Then® ~1(E) is closed and therefore
h~Y(®~1(E)) is closed and hence compact. Therefotel(E) = @ o h Y@~ 1(E)) is
compact and therefore closed. Thifsis continuous.

Since f is a continuous, one-to-one mapping from a compact space to a Hausdorff
space, f is a homeomorphism. Also, sincg o @(x) = @ o h(x), the diagram com-
mutes. O

Since it has already been determined that each proper subcontinuXirisdfee-like,
each pointinversé —1(s) must either be degenerate or a tree-like subcontinuugn. H(s)
is degenerate for eache S, then® is a homeomorphism aridcannot be expansive from
Theorem 1. If for soma, @ ~1(s) is nondegenerate, théncannot be expansive from
Theorem 2. Hence, the main result (Theorem 5) now follows.

The following questions remain open:

Question 1 (Kato). If X admits an expansive homeomorphism, mustontain a non-
degenerate indecomposable subcontindum

A continuum X is hereditarily indecomposablé every proper subcontinuum is
indecomposable.

Question 2 (Kato). Does there exists an hereditarily indecomposable continuum that
admits an expansive homeomorphsm
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