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Abstract

A continuumX is k-cyclic if given any ε > 0, there is a finite open coverU of X such that
mesh(U) < ε and the nerveN(U) is has at mostk distinct simple closed curves. A homeomorphism
h :X → X is called expansiveprovided for some fixedε > 0 and everyx, y ∈ X there exists an
integern such thatd(hn(x),hn(y)) > ε. We prove that ifX is ak-cyclic continuum that admits an
expansive homeomorphism, thenX must contain an nondegenerate indecomposable subcontinuum.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One important idea that is studied in a dynamical system is what happens to points
that are close together over a period of iterations or time. In dynamical continuum theory,
one is interested in how far points move apart under repeated homeomorphism of a
continuum onto itself. Acontinuumis defined to be a compact, connected metric space.
A homeomorphismh :X → X is called expansiveprovided for some fixedε > 0 and
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everyx, y ∈ X there exists an integern such thatd(hn(x),hn(y)) > ε, where if n is a
positive integer, then

hn(x)= h ◦ h ◦ · · · ◦ h(x)︸ ︷︷ ︸
n

and ifn is a negative integer, then

hn(x)= h−1 ◦ h−1 ◦ · · · ◦ h−1(x)︸ ︷︷ ︸
|n|

.

Expansive homeomorphisms exhibit chaotic behavior in that no matter how close two
points are, their images will eventually be a certain distance apart.

Plykin’s attractors [6] and the dyadic solenoid [7] are examples of continua that
admit an expansive homeomorphism. Both of these continua have the property of
being indecomposable. A continuum isdecomposableif it is the union of two proper
subcontinuum. A continuum isindecomposableif it is not decomposable. Indecomposable
continua are created by stretching and bending arcs an infinite number of times back and
forth. Intuitively, it appears that in order to have expansiveness, the subset of the continuum
between points that are close to each other would have to be continually stretched in
order to move points away from each other. However, because of compactness, some
folding or wrapping must also occur. Every known continuum that admits an expansive
homeomorphism has an indecomposable subcontinuum.

One way to describe continua is through sequences of finite open covers. LetU be a
finite open cover. Since we are assuming thatX is a one-dimensional continuum, we may
also assume that eachx ∈X is in at most two elements ofU . Define themeshof U to be
mesh(U)= sup{diam(U) | U ∈ U} where diam(U)= sup{d(x, y) | x, y ∈ U}. The nerve
of U is a graphN(U) which has a vertexvi that corresponds to each elementUi of U and
an edge betweenvi andvj if and only ifUi ∩Uj �= ∅.

A continuumX is
1 arc-like,
2 tree-like,
3 circle-like,
4 G-like,
5 k-cyclic,

if given anyε > 0, there is a finite open coverU of X such that mesh(U) < ε and the nerve
N(U) is

1 an arc,
2 a tree,
3 a circle,
4 homeomorphic to a fixed graphG,
5 has exactlyk distinct simple closed curves.
X is finitely cyclic if it is k-cyclic for somek. The double Warsaw circle or a double

Warsaw circle with any number of stickers attached to it are examples of finitely cyclic
continua. The Sierpinski curve is an example of an one-dimensional continuum that is not
finitely cyclic.
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G-like and tree-like continua are bothk-cyclic. Every circle-like continuum isG-like,
and every arc-like continuum is both tree-like andG-like.

A refinementof an open coverU of X is any open coverV of X whose elements
are subsets of the elements ofU and whose union coversX. If Ui is an element of
U = {U1,U2, . . . ,Un}, then thecoreof Ui isUi − (⋃j �=i Uj ).

A chain is a collection of open subsets ofX denoted by [U1,U2, . . . ,Un] such that
Ui ∩ Uj �= ∅ if and only if |i − j | � 1 for each 1� i, j � n. A chain [U1,U2, . . . ,Un] is
a chain from x to yif x ∈ U1 andy ∈ Un. A circle-chainis a collection of open subsets
of X denoted by [U1,U2, . . . ,Un] such thatUi ∩ Uj �= ∅ if and only if |i − j | � 1 or
|i − j | = n− 1 for each 1� i, j � n.

H. Kato has shown [3] that arc-like continua do not admit expansive homeomorphisms.
Further, Kato has also shown [1,2] that ifX is an tree-like, circle-like or anyG-
like continuum that admits an expansive homeomorphism, thenX must contain a
nondegenerate indecomposable subcontinuum.

Theorem 1 (Kato [1]).A nondegenerate tree-like or circle-like continuum must contain an
indecomposable subcontinuum in order to admit an expansive homeomorphism.

It follows that an arc and a simple closed curve do not admit an expansive
homeomorphism.

Theorem 2 (Kato [2]). Suppose thath :X→ X is a homeomorphism of a continuumX
andf :Z → Z is a homeomorphism of a continuumZ. Also, suppose thatφ :X→ Z is
an onto map fromX onto Z such thatφ−1(z) is a hereditarily decomposable tree-like
continuum(possible degenerate) for everyz ∈Z, and for somez, φ−1(z) is nondegenerate
(i.e.,φ is not a homeomorphism). If the following diagram is commutative:

X

Φ

h
X

Φ

Z
f

Z

thenh is not expansive.

A pointx inX is periodicunderh if there exists a positive integerk such thatx = hk(x).
Likewise, a closed subsetE ofX is periodic underh if there exists a positive integerk such
thatE = hk(E). If k = 1, thenE is said to be invariant.

Proposition 3. A homeomorphismh :X → X is expansive if and only ifhk :X → X is
expansive for every integerk �= 0.

Proof. Let g = hk . Therefore,gn = (hk)n = hnk . We will prove the proposition by
showing the contrapositive for each direction.

Suppose thath is not expansive. Therefore, for everyε > 0 there existsxε, yε ∈
X with xε �= yε such that d(hn(xε), hn(yε)) < ε for every integern. Therefore,
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d(gn(xε), g
n(yε))= d(hnk(xε), hnk(yε)) < ε for every integern. Therefore,g = hk is not

expansive.
Now suppose thatg = hk is not expansive. Pick anyε > 0, and chooseδ > 0 such

that d(x, y) < δ implies that d(hi(x), hi(y)) < ε for each i ∈ {0,1, . . . , k}. Since g
is not expansive there existsxδ, yδ ∈ X with xδ �= yδ such thatd(hnk(xδ), hnk(yδ)) =
d(gn(xδ), g

n(yδ)) < δ for every integern. Thus,d(hnk+i (xδ), hnk+i (yδ)) < ε for every
integern and everyi ∈ {1,2, . . . , k}. Since every integer can be represented bynk+ i, h is
not expansive. ✷
Proposition 4. No graphG admits an expansive homeomorphism.

Proof. We may assume thatG is not an arc or simple closed curve. LetV be the set of
vertices of degree 1 or greater than 2. SinceG is not a simple closed curve, 2� |V |<∞.
LetE be the collection of edges between the vertices inV . Since 2� |V |, E is nonempty,
and sinceV is finite,E is finite and each edge inE is periodic under any homeomorphism
h. Thus, since each edge is homeomorphic to an arc, by Proposition 3,h cannot be
expansive. ✷

2. Main result

In [2], Kato asked “If X admits an expansive homeomorphism, mustX contain
a nondegenerate indecomposable subcontinuum?”. Since every compact metric space
of dimension greater than or equal to 2 contains a nondegenerate indecomposable
continuum [5], only one-dimensional continua need to be considered. The next theorem is
the main result of the paper and gives a partial answer in the affirmative to Kato’s question.

Theorem 5. If X is a k-cyclic continuum that admits an expansive homeomorphism, then
X must contain a nondegenerate indecomposable subcontinuum.

The proof of the main result begins by assuming thatX is a hereditarily decomposable
k-cyclic continuum andh :X → X is an expansive homeomorphism. A series of
assumptions onX are then shown to be valid until a contradiction is shown.

Note. It is assumed in each lemma, claim and theorem that the continuumX satisfies all
the assumptions that were stated before each.

First it is shown that we may assume thatX contains no proper, nondegenerate
subcontinuum with period less than or equal tok + 1, wherek is the cyclic bound for
X. Then it is shown that ifA is a proper subcontinuum ofX, thenA must be tree-like.
Then under the previous assumption, it is shown that there exists a monotone mapΦ from
X to the simple closed curveS and a homeomorphismf : S→ S such thatf ◦Φ =Φ ◦h.
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Since each proper subcontinuum ofX is tree-like,Φ−1(y) is tree-like for eachy in S.
Thus, by Theorem 2, eitherX is a graph andh cannot be expansive, orX must contain an
nondegenerate indecomposable subcontinuum.

Assumption 1. Suppose thatX is a hereditarily decomposablek-cyclic continuum and
thath :X→X is an expansive homeomorphism.

By Theorem 1, we may also assume thatX is neither tree-like nor circle-like. Also,
sinceX is not tree-like, we may assume thatk � 1.

Assumption 2. X contains no proper nondegenerate subcontinuum that has period less
than or equal tomax{2, k+ 1}.

The next lemma gives the justification for Assumption 2 in that we may takeX to be
the minimal subcontinuum described.

Lemma 6. If X admits an expansive homeomorphismh, then there exists a minimal
nondegenerate subcontinuum of period less than or equal tok+ 1 that contains no proper
subcontinuum of period less than or equal tok + 1.

Proof. Let Y be the collection of all subcontinua ofX with period less than or equal to
k + 1. Partially orderY by inclusion. LetP be any maximal chain in the ordering.

There exists anm ∈ {1,2, . . . , k + 1} such that for everyAα ∈ P , there exists anE ∈P
such thatE ⊂Aα andE has periodm. Let

Pm = {Aα ∈ P |Aα has periodm},
and letA =⋂

Aα∈Pm Aα = ⋂
Aα∈P Aα . SincePm is ordered by inclusion,A must be a

continuum. IfA is degenerate, then for anyε > 0 there exists a nondegenerate continuum
Aαm ∈ Pm such that diam(Aαm) < ε. Therefore,hm is not expansive and thus,h is not
expansive. Thus,A must be nondegenerate and have diameter at least as big as the
expansive constant forhm. Notice that

hm(A)= hm
( ⋂
Aα∈Pm

Aα

)
=

⋂
Aα∈Pm

hm(Aα)=
⋂

Aα∈Pm
Aα =A.

Thus,A is a minimal periodic subcontinuum that contains no proper subcontinuum with
period less than or equal tok + 1. ✷
Assumption 3. Every proper subcontinuum ofX is tree-like.

Let x ∈ X and A ⊂ X. Define d(x,A) = inf{d(x, y) | y ∈ A} and d(A,B) =
inf{d(x, y) | y ∈A andx ∈B}.

Theorem 7. If H andK are two subcontinua ofX such thatX =H ∪K andH ∩K has
at least two components, thenX is not tree-like.
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Proof. Suppose thatX =H ∪K andH ∩K =A∪B, whereA andB are two nonempty,
disjoint closed sets. LetU and V be open sets inX such thatA ⊂ U , B ⊂ V , and
U ∩ V = ∅. H − (U ∪ V ) andK − (U ∪ V ) are both nonempty, disjoint closed sets in
X. Let ε > 0 such that

ε <min
(
d
(
H − (U ∪ V ),K − (U ∪ V )), d(U,V )).

Let W be a finite open cover ofX such that mesh(W) < ε/4.
LetWi be an element ofW which intersectsA and letWj be an element ofW which

intersectsB. SinceH andK are both connected, there exists a chainCH fromWi toWj
of elementsW each of which intersectsH , and a chainCK fromWi toWj of elementsW
each of which intersectsK. By our choice ofε, there must exist aCh ∈ CH and aCk ∈ CK
such thatCh ∩ (H − (U ∪V )) �= ∅ andCk ∩ (K − (U ∪V )) �= ∅. Pickx ∈Ch andy ∈ Ck .
Then,d(x,H − (U ∪ V )) < ε/4 andd(y,K − (U ∪ V )) < ε/4. So,

d(x, y) > d
(
H − (U ∪ V ),K − (U ∪ V ))− ε/4− ε/4> ε/2.

Therefore,x /∈ Ck and y /∈ Ch. Thus,Ch ∩ Ck = ∅ and the nerve ofCH ∪ CK must
contain a simple closed curve. Hence,X is not tree-like. ✷
Theorem 8. If H andK are two subcontinua ofX such thatX =H ∪K andH ∩K has
at leastk + 2 components, thenX is notk-cyclic.

Proof. The proof is similar to that of Theorem 7.✷
Corollary 9. If H andK are two subcontinua ofX such thatX =H ∪K andH ∩K has
an infinite number of components, thenX is notk-cyclic for anyk.

Lemma 10. If U = {U1,U2, . . . ,Un} is a finite open cover of a continuumX such that the
nerve ofU is a tree andV is a cover ofX with Vi ⊂Ui for everyi ∈ {1,2, . . . , n}, then the
nerve ofV = {V1,V2, . . . , Vn} is also a tree.

Proof. Suppose that the nerve ofV is not a tree and has dimension less than or equal
to 1. Thus, the nerve ofV must contain a simple closed curve. Let{Vi1,Vi2, . . . , Vim,Vi1}
be elements ofV whose nerve is a simple closed curve, that is,Vij ∩ Vij+1 �= ∅ if
j ∈ {1,2, . . . ,m − 1}, andVim ∩ Vi1 �= ∅. But sinceVi ⊂ Ui for every i ∈ {1,2, . . . , n},
that would imply thatUij ∩Uij+1 �= ∅ if j ∈ {1,2, . . . ,m− 1}, andUim ∩Ui1 �= ∅. Thus,
the nerve ofU must contain a simple closed curve. Thus,U is not tree-like. This is a
contradiction. ✷
Theorem 11. If H andK are tree-like andH ∩K has only one component, thenH ∪K
is tree-like. Likewise, ifH ∩K hask + 1 components, thenH ∪K is k-cyclic.

Proof. Pick ε > 0 and letUH be any finite open cover ofH such that mesh(UH) < ε, UH
is open relative toH ∪K, and the nerve ofUH is a tree. LetUK be a finite open cover of
K such that mesh(UK) < ε, if UK ∈ UK andUK ∩ (H ∩K) �= ∅, thenUK is a subset of
someUH ∈ UH , and the nerve ofUK is a tree. SinceH ∩K is a continuum, the nerve of

UH∩K = {
U |U ∈ UK andU ∩ (H ∩K) �= ∅}
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must be connected and a tree. Let

ŨK = {
U |U ∈ UK andU ∩ (H ∩K)= ∅}
∪
{ ⋃
U⊂UH

U |U ∈ UK,U ∩ (H ∩K) �= ∅ andUH ∈ UH
}
.

Claim. The nerve ofŨK is a tree.

Proof of Claim. Suppose not. Let{Ũi1, Ũi2, . . . , Ũim, Ũi1} be elements of̃U whose nerve
is a simple closed curve. Let

ŨH∩K = {
Ũ | Ũ ∈ ŨK andŨ ∩ (H ∩K) �= ∅}.

Then, the nerve of̃UH∩K is connected and by Lemma 10 is a tree. Suppose there exists aj

such that̃Uij /∈ ŨH∩K . ThenŨij ∩ (H ∩K)= ∅, and therefore,̃Uij ∈ UK . If Ũij /∈ ŨH∩K
for everyj ∈ {1,2, . . . ,m}, then{Ũi1, Ũi2, . . . , Ũim , Ũi1} ⊂ UK . However, that would imply
that nerve ofUK would contain a simple closed curve which is a contradiction. Thus,
we may choosej,n such that{Ũij , . . . , Ũin} is a subchain of{Ũi1, Ũi2, . . . , Ũim , Ũi1},
Ũip /∈ ŨH∩K for every Ũip ∈ {Ũij , . . . , Ũin}, Ũij ′ ∈ ŨH∩K , and Ũin′ ∈ ŨH∩K , where

Ũij ′ , Ũin′ are the unique elements of{Ũi1, Ũi2, . . . , Ũim , Ũi1} − {Ũij , . . . , Ũin} such that

Ũij ∩ Ũij ′ �= ∅ and Ũin ∩ Ũin′ �= ∅. Now, there existUα,Uβ ∈ UK such thatUα ⊂
Ũij ′ , Uβ ⊂ Ũin′ , Uα ∩ Ũij �= ∅, and Uβ ∩ Ũin �= ∅. SinceH ∩ K is a continuum,
there exists a chain{Uα,Uγ , . . . ,Uβ} of elements ofUH∩K from Uα to Uβ . Thus,
{Ũij , . . . , Ũin ,Uβ, . . . ,Uα, Ũij } ⊂ UK . However, the nerve of{Uij , . . . ,Uin,Uβ, . . . ,Uα,
Uij } is a simple closed curve. Thus, the nerve ofUK is not a tree, which is a contradiction.
Thus,Ũij ∈ {Ũi1, Ũi2, . . . , Ũim, Ũi1} implies Ũij ∈ ŨH∩K . Hence,{Ũi1, Ũi2, . . . , Ũim, Ũi1}
⊂ ŨH∩K . But that is impossible since the nerve of̃UH∩K is a tree. Thus, the claim is
proved.

Notice that if V ∈ ŨK then eitherV ∈ UK or V ⊂ UH where UH ∈ UH . Thus,
mesh(ŨK) < ε. LetUH = {UH1,UH2, . . . ,UHn} andŨK = {UK1,UK2, . . . ,UKm}.
Now composeW of the following open sets:

(1)WHi =UHi −K if UHi ∈ UH andUHi ∩ (H ∩K)= ∅.
(2)WKj =UKj −H if UKj ∈ ŨK andUKj ∩ (H ∩K)= ∅.

(3) WHi =WKj = (UHi − (K − (H ∩K))) ∪ (UKj − (H − (H ∩K))) if UHi ∈ UH ,
UKj ∈ ŨK andUKj ⊂UHi .

Notice that ifWHi = WKj andWHi′ = WKj ′ , thenWKj ′ ∩ WKj �= ∅ if and only if
UKj ′ ∩ UKj �= ∅ if and only if UHi′ ∩ UHi �= ∅. Thus, by Lemma 10, the nerves of both
WH = {WHi }ni=1 andWK = {WKj }mj=1 are trees. Let

WH∩K = {
WHi |WHi ∩ (H ∩K) �= ∅}= {

WKj |WKj ∩ (H ∩K) �= ∅}.
ThenWH∩K ⊂ WH (and likewise,WH∩K ⊂ WK ). Thus, the nerve ofWH∩K is a tree.
Also, if WHi ∈ WH andWHi ∩ (H ∩K)= ∅, thenWHi ∩K = ∅. Likewise, ifWKj ∈ WK
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andWKj ∩ (H ∩K)= ∅, thenWKj ∩H = ∅. Thus if the nerve ofW = WH ∪WK is not
a tree, then the nerve of

WH∩K = {
W |W ∩ (H ∩K) �= ∅}

is not a tree, which is a contradiction. Thus, the nerve ofW is a tree. Proof is similar when
H ∩K hask + 1 components. ✷

Suppose thatU is a finite open cover of continuumA. Let B be a subcontinuum ofA
and letU(B)= {U ∈ U |U ∩B �= ∅}.

Lemma 12. LetX be a one-dimensional continuum and letA be a tree-like subcontinuum
of X. If U is a finite open cover ofX, then there exists a finite open coverW of X such
thatW refinesU , the nerve ofW is one-dimensional, and the nerve ofW(A) is a tree.

Proof. Let U be a finite open cover ofX. There exists a finite open coverV of X such
thatV refinesU and the nerve ofV(A) is a tree. SinceX is one-dimensional, there exists
a finite open coverD of X such thatD refinesV and the nerve ofD is one-dimensional.
Define

W = (
D −D(A)

)∪
{ ⋃
U⊂V

U |U ∈D(A) andV ∈ V(A)
}
.

Then by Lemma 10,W satisfies the conclusion of the lemma.✷
From here on out, we may assume that ifW is an open cover ofX that refines open

coverU such that the nerve ofW(A) is a tree, then the nerve ofW is one-dimensional.
If U is a collection of sets, thenU∗ is the union of the elements ofU . If x ∈ U , then the

star ofx in U , denoted by st(x,U), is the collection of elements ofU that containx (i.e.,
st(x,U)= {U ∈ U | x ∈ U}). If A⊂ U∗, then st(A,U)= {U ∈ U |A∩U �= ∅}. Inductively,
sti+1(x,U)= st(sti (x,U)∗,U).

Lemma 13. Let X be a k-cyclic continuum and letT be a collection of tree-like
subcontinua ofX such thatT hasp elements. IfU1 is a finite open cover ofX such
that the nerve ofU has at mostk simple closed curves, then there exists a finite open cover
W ofX such thatW refinesU1, the nerve ofW contains at mostk simple closed curves,
and the nerve ofW(T ) is a tree for eachT ∈ T .

Proof. First, we must verify a claim.

Claim. There exists a finite open coverV of X such thatV refinesU1 and the nerve of
V(T ) is a tree for eachT ∈ T .

Proof of Claim. PickT1 ∈ T . SinceT1 is tree-like, there exists a finite open coverV1 that
refinesU1 such that the nerve ofV1(T1) is a tree.
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PickT2 ∈ T . SinceT2 is tree-like, there exists a finite open coverV2 that refinesV1 such
that the nerve ofV2(T2) is a tree. Define

V ′
2 = (

V2 − V2(T1)
)∪

{ ⋃
U⊂V

U | V ∈ V1(T1) andU ∈ V2(T1)

}
.

Thus,V ′
2 refinesV1, and the nerves ofV ′

2(T1) andV ′
2(T2) are trees.

Pick T3 ∈ T . SinceT3 is tree-like, there exists a finite open coverV3 that refinesV ′
2

such that the nerve ofV3(T3) is a tree. Define

V ′
3 = (

V3 − (
V3(T1)∪ V3(T2)

))∪
{ ⋃
U⊂V

U | V ∈ V ′
2(T1) andU ∈ V3(T1)

}

∪
{ ⋃
U⊂V

U | V ∈ V ′
2(T2) andU ∈ V3(T2)

}
.

Thus,V ′
3 refinesV ′

2, and the nerves ofV ′
3(T1), V ′

3(T2) andV ′
3(T3) are trees. Continue

in the same manner inductively. Suppose thatVp has been found. Define

V =
(
Vp −

(
p⋃
j=1

Vp(Tj )
))

∪
(

p⋃
j=1

{ ⋃
U⊂V

U | V ∈ V ′
p−1(Tj ) andU ∈ Vp(Tj )

})
.

ThenV satisfies the claim.

If the nerve ofV has at mostk simple closed curves, letW = V and we are done.
Otherwise, sinceX is k-cyclic, there exists a finite open coverU2 of X such thatU2 refines
V and the nerve ofU2 containsn simple closed curves, wheren� k. Let {C1,C2, . . . ,Cn}
be then distinct subsets ofU2 such that the nerve of eachCi is a simple closed curve. If, for
eachj ∈ {1, . . . , p}, noC∗

i is a subset ofV(Tj )∗, then noCi is a subset ofU2(Tj ), and thus,
the nerve ofU2(Tj ) is a tree for eachTj ∈ T , and we are done. Otherwise, suppose that
{Ci1,Ci2, . . . ,Cimj } are the elements of{C1,C2, . . . ,Cn} such thatC∗

il
⊂ V(Tj )∗ for every

l ∈ {1, . . . ,mj }, wheremj � n. LetAj =⋃mj
l=1Cil . Define

W =
(
U2 −

(
p⋃
j=1

Aj

))
∪
(

p⋃
j=1

{ ⋃
U⊂V

U | V ∈ V(Tj ) andU ∈ Aj
})
.

Thus,W is a finite open cover ofX such thatW refinesU1, the nerve ofW contains at
mostk simple closed curves and the nerve ofW(T ) is a tree for eachT ∈ T . ✷
Theorem 14. If A is a proper subcontinuum ofX, thenA is tree-like.

Proof. Let A be the set of all subcontinua ofX that are not tree-like. LetP be a partial
ordering ofA by inclusion and letM be a maximal chain ofP . Let

M =
⋂
A∈M

A.

Claim.M is not tree-like.
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Proof of Claim. The proof is by induction.
Base case.Suppose that there exists a subsetM1 of M such that eachA ∈ M1

is 1-cyclic,M = ⋂
A∈MA = ⋂

A∈M1
A, and thatM is tree-like. Pick anyA1 ∈ M1.

By Lemma 13, there exists a sequence of finite open covers,{Un}∞n=1, of A1 such that
mesh(Un) → 0 asn → ∞, Un+1 refinesUn for eachn, the nerve ofUn has exactly 1
simple closed curve, and the nerve ofUn(M) is a tree.

SinceM =⋂
A∈M1

A, there exist anA2 ∈ M1 which is a proper subcontinuum ofA1
such that the nerve ofU1(A2) is a tree. SinceA2 is not tree-like, there exists an integerN2
such that for everyn�N2, the nerve ofUn(A2) is not a tree. Thus, the nerve ofUN2(A2)

must contain a simple closed curve. Let

V1 = (
UN2 − UN2(A2)

)∪{ ⋃
U⊂V

U |U ∈ UN2(A2) andV ∈ U1(A2)

}
.

V1 is a finite open cover ofA1, and by Lemma 10, the nerve ofV1(A2) is a tree. Since the
nerve ofUN2 contains exactly 1 simple closed curve, the nerve ofV1 must be a tree. Notice
that mesh(V1)� mesh(U1).

Suppose thatUNi has been found. SinceM =⋂
A∈M1

A, there exists anAi+1 ∈ M1
which is a proper subcontinuum ofA1 such that the nerve ofUNi (Ai+1) is a tree. Since
Ai+1 is not tree-like, there exists an integerNi+1 such that for everyn� Ni+1, the nerve
of Un(Ai+1) is not a tree. Thus, the nerve ofUNi+1(Ai+1) must contain a simple closed
curve. Let

Vi = (
UNi+1 − UNi+1(Ai+1)

)
∪
{ ⋃
U⊂V

U |U ∈ UNi+1(Ai+1) andV ∈ UNi (Ai+1)

}
.

Vi is a finite open cover ofA1, and the nerve ofVi (A2) is a tree. Since the nerve of
UNi+1 contains exactly 1 simple closed curve, the nerve ofVi must be a tree. Notice that
mesh(Vi)� mesh(UNi ). Thus, mesh(Vi )→ 0 asi→ ∞. Thus,A1 must be tree-like. This
is a contradiction. Thus,M is not tree-like.

Induction step.Suppose that there exists a subsetMj of M such that eachA ∈ Mj

is j -cyclic, but not(j − 1)-cyclic,M =⋂
A∈MA =⋂

A∈Mj
A, and thatM is tree-like.

Pick anyA1 ∈ Mj . There exists a sequence of finite open covers,{Un}∞n=1, of A1 such
that mesh(Un)→ 0 asn→ ∞, Un+1 refinesUn for eachn, the nerve ofUn has exactlyj
simple closed curves, and the nerve ofUn(M) is a tree.

SinceM =⋂
A∈Mj

A, there exist anA2 ∈ Mj which is a proper subcontinuum ofA1

such that the nerve ofU1(A2) is a tree. Now, sinceA2 is not (j − 1)-cyclic, there exists
an integerN2 such that for everyn� N2, the nerve ofUn(A2) contains exactlyj simply
closed curves. Let

V1 = (
UN2 − UN2(A2)

)∪
{ ⋃
U⊂V

U |U ∈ UN2(A2) andV ∈ UN1(A2)

}
.

V1 is a finite open cover ofA1, and the nerve ofV1(A2) is a tree. Since the nerve ofUN2

contains exactlyj simple closed curves, and the circular chains ofUN2(A2) have been
collapsed, the nerve ofV1 must contain no more thanj − 1 simple closed curves. Notice
that mesh(V1)� mesh(U1).
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Suppose thatUNi has been found. SinceM =⋂
A∈Mj

A, there exists anAi+1 ∈ Mj

which is a proper subcontinuum ofA1 such that the nerve ofUNi (Ai+1) is a tree. Now
sinceAi+1 is not(j − 1)-cyclic, there exists an integerNi+1 such that for everyn�Ni+1,
the nerve ofUn(Ai+1) has exactlyj simple closed curves. Let

Vi = (
UNi+1 − UNi+1(Ai+1)

)
∪
{ ⋃
U⊂V

U |U ∈ UNi+1(Ai+1) andV ∈ UNi (Ai+1)

}
.

Vi is a finite open cover ofA1, and the nerve ofVi (A2) is a tree. Since the nerve of
UNi+1 contains exactlyj simple closed curves, and the circular chains ofUNi+1(A2) have
been collapsed, the nerve ofVi must contain no more thanj − 1 simple closed curves.
Notice that mesh(Vi)� mesh(UNi ). Thus, mesh(Vi)→ 0 asi → ∞, and hence,A1 must
be(j − 1)-cyclic. This is a contradiction. Thus,M is not tree-like, and the claim is proved.

If B is a proper subcontinuum ofM, thenB is tree-like. Also, the same properties that
hold forM must hold forhj (M) for everyj . Consider the collection{

M,h(M), . . . , hk(M),hk+1(M)
}

and suppose there existi, j ∈ {0,1, . . . , k + 1} such thati �= j andhi(M)= hj (M). Then
M has period� k + 1 which is a contradiction. Thus, eitherM = X or hi(M) �= hj (M)
for everyi �= j . Supposehi(M) ∩ hj (M) has a componentC that is not tree-like. Since
C is a continuum, andhi(M) andhj (M) are minimal,hi(M) = C = hj (M). This is a
contradiction. Thus, every component ofhi(M) ∩ hj (M) is tree-like. Also, sinceX is
k-cyclic, the number of components ofhi(M)∩ hj (M) must be finite by Corollary 9.

Let C = {C | C is a component ofhi(M) ∩ hj (M) for somei �= j }. We may suppose
thatX is k-cyclic but not(k − 1)-cyclic. Since eachhi(M) is not tree-like, there exists an
ε > 0 such that ifU is a finite open cover ofX such that mesh(U) < ε, then the nerve of
U(hi(M)) is not a tree for eachi. Let {Un} be a sequence of finite open covers ofX such
that mesh(Un) < ε for eachn, the nerve of eachUn has exactlyk simple closed curves,
limn→∞(mesh(Un))= 0, eachUn+1 refinesUn, and the nerve ofUn(C) is a tree for each
C ∈ C.

Claim. There exists an integerN such that for everyn�N and eachi �= j , the nerves of
Un(hi(M)) andUn(hj (M)) contain distinct simple closed curves.

Proof of Claim. Suppose not. Thus, suppose for everyp, there existsn � p such that
in �= jn and the nerves ofUn(hin(M)) and Un(hjn(M)) do not have distinct simple
closed curves. Since there is only a finite number of combinations of{i, j }, there exists
a subsequence{nm} of {n} such thatim = il andjm = jl for all positive integersm, l. For
ease of notation, let{nm} = {n}, i = im andj = jm.

The nerves ofUn(hi(M)) andUn(hj (M)) must both contain a collection of circle-
chains, saySin and Sjn . Since the nerves ofUn(hi(M)) and Un(hj (M)) do not have

distinct simple closed curves, eitherSin ⊂ Sjn or Sjn ⊂ Sin for eachn. Thus, without loss of
generality, we may assume that there exists an infinite subsequence{nm} of {n} such that
Sinm ⊂ Sjnm for eachm. Again, for ease of notation, let{n} represent{nm}.
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Pick ε1> 0 such that

ε1< d
(
hi(M)− U1

(
hi(M)∩ hj (M)), hi(M)− U1

(
hi(M)∩ hj (M))).

There exists integerN1 such that mesh(Un) < ε1/4 for everyn�N1. Consider the circle-
chains ofUN1(h

i(M)) andUN1(h
j (M)). By the choice ofε1/4, if (SiN1

)∗ �⊂ U1(h
i(M) ∩

hj (M))∗, thenSiN1
would contain a circle-chain distinct from any circle-chain ofSjN1

. This

contradicts our hypothesis. Thus,(SiN1
)∗ ⊂ U1(h

i(M)∩ hj (M))∗.
Define

V1 = (
UN1 − SiN1

)∩
{ ⋃
U⊂V

U |U ∈ SiN1
andV ∈ U1

(
hi(M)∩ hj (M))}.

Notice that the nerve ofV1 is a tree. Letδ1 be the Lebesgue number ofV1. There exists an
integerN ′

2 such that for everyn�N ′
2, mesh(Un) < δ1 and thus,UN ′

2
refinesV1.

Let

ε2< d
(
hi(M)− UN ′

2

(
hi(M)∩ hj (M)), hi(M)−UN ′

2

(
hi(M)∩ hj (M))).

Continue in this manner inductively.
Suppose that the Lebesgue number,δl−1, ofVl−1 has been found. There exists an integer

N ′
l such that for everyn�N ′

l , mesh(Un) < δl−1 and thus,UN ′
l

refinesVl−1.
Let

εl < d
(
hi(M)−UN ′

l

(
hi(M)∩ hj (M)), hi(M)−UN ′

l

(
hi(M)∩ hj (M))).

There exists an integerNl such that mesh(Un) < εl/4 for everyn�Nl . Consider the circle-
chains ofUNl (hi(M)) andUNl (hj (M)). By the choice ofεl/4, if (SiNl )

∗ �⊂ Ul(hi(M) ∩
hj (M))∗, thenSiNl would contain a circle-chain distinct from any circle-chain ofSiNl . This

contradicts our hypothesis. Thus,(SiNl )
∗ ⊂ Ul(hi(M)∩ hj (M))∗.

Define

Vl =
(
UNl − SiNl

)∩{ ⋃
U⊂V

U |U ∈ SiNl andV ∈ Ul
(
hi(M)∩ hj (M))}.

Notice that the nerve ofVl is a tree. Thus,{Vl}∞l=1 is a sequence of finite open covers of
X such that mesh(Vl)→ 0 asl → ∞, Vl+1 refinesVl and the nerve ofVl (hi(M)) is a
tree. Thus,hi(M) is tree-like. However, this contradicts the fact thathi(M) is not tree-like.
Thus, there exist an integerN such that for everyn � N , the nerves ofUn(hi(M)) and
Un(hi(M)) contain distinct simple closed curves. Hence, the claim is proved.

Thus, for eachn, the nerves of{Un(M),Un(h(M)), . . . ,Un(hk(M)),Un(hk+1(M))} all
contain a distinct simple closed curve. Thus, for eachn � N , the nerve ofUn contains
more thank simple closed curves. This is a contradiction. Thus,M must equalX, and
every proper subcontinuum ofX is tree-like. ✷

3. Irreducible continua, tranches and Kuratowski’s theorem

A subsetA of a metric spaceX is ε-densein X if for everyx ∈X, d(x,A) < ε. A map
g :X→ Y is monotoneif g−1(y) is connected for eachy ∈ Y . If X is a continuum, then



Ch. Mouron / Topology and its Applications 126 (2002) 13–28 25

eachg−1(y) is a continuum (possibly degenerate). Also, ifA is any subcontinuum ofg(X),
theng−1(A) is a subcontinuum ofX.

A continuumX is irreducible betweena and b if a, b ∈ X and if A is a proper
subcontinuum ofX, thena /∈ A or b /∈ A. The notation,I (a, b), will be used to imply
thatI (a, b) is a continuum irreducible betweena andb. If K is a subcontinuum ofX and
a, b ∈K, then letIK(a, b) be a subcontinuum ofK irreducible betweena andb.

Theorem 15 (Kuratowski [4]). If X is hereditarily decomposable and is irreducible
betweena and b, then there exists a monotone mapψ :X → [0,1] such thatψ(a) = 0
and ψ(b) = 1. In fact, there exists a minimal monotone onto mapφ :X → [0,1] such
that if ψ :X → [0,1] is any other monotone onto map andφ−1(z) ∩ ψ−1(y) �= ∅, then
φ−1(z)⊂ψ−1(y).

If φ :X → [0,1] is a minimal monotone onto map, then eachφ−1(y) is called atranche
of X. Tranches arenowhere densesubcontinua ofX. That is, int(φ−1(y)) = ∅. Also, if
I (a, x)= I (a, y), thenx andy are in the same tranche ofI (a, b).

The following well-known lemma is needed:

Lemma 16. ContinuumX is indecomposable if there exists distinct pointsa, b andc in X
such thatX is irreducible between each pair ofa, b andc.

Theorem 17. Suppose thatX is neither 1-cyclic nor tree-like and that every proper
subcontinuum ofX is tree-like, thenX is either indecomposable or2-indecomposable.

Proof. If X is decomposable, there exist minimal proper subcontinuaA,B such that
A ∪ B = X. That is, ifA′ is a proper subcontinuum ofA thenA′ ∪ B �= X and if B ′ is
a proper subcontinuum ofB thenA ∪ B ′ �= X. Also, sinceX is not 1-cyclic, it follows
from Theorems 7, 8, and 11 thatA ∩ B must have at least 3 components. LetCx,Cy and
Cz be 3 distinct components ofA ∩ B that contain the pointsx, y and z, respectively.
Let IA(x, y), IA(x, z) and IA(y, z) be subcontinua ofA irreduciblie betweenx and y,
x and z, and y and z, respectively. Suppose thatIA(x, y) is a proper subcontinuum
of A. Then from Theorem 7,B ∩ IA(x, y) is a proper subcontinuum ofX that is not
tree-like which is impossible. Hence,IA(x, y) = A. Similarily, it can be shown that
IA(x, y)= IA(x, z)= IA(y, z)= A. Thus, it may be concluded thatA is indecomposable.
Proof is similar to show thatB is indecomposable.✷
Assumption 4. Suppose thatX is hereditarily decomposable,1-cyclic but not tree-like and
that every proper subcontinuum ofX is tree-like.

Lemma 18. Under Assumption4, there existsa, b ∈ X and distinct minimal subcontinua
I (a, b) andI ′(a, b) irreducible abouta, b such thatX = I (a, b)∪ I ′(a, b).

Proof. SinceX is decomposable, there exist minimal proper subcontinuaA,B such that
A∪B =X. SinceA andB are proper subcontinua, they must be tree-like. Also, it follows
from Theorems 7, 8, and 11 that sinceX is 1-cyclic but not tree-like,A ∩ B must have
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exactly 2 components. LetCa,Cb be the distinct components ofA ∪ B wherea ∈ Ca
andb ∈ Cb. Let IA(a, b) be a subcontinuum ofA irreducible abouta, b and letIB(a, b)
be a subcontinuum ofB irreducible abouta, b. SinceIA(a, b) ∩ IB(a, b) has exactly 2
components,IA(a, b)∪IB(a, b) cannot be tree-like. Hence,IA(a, b)∪IB(a, b)=X. Also,
sinceA andB are both minimal with respect to the decomposition ofX, IA(a, b)=A and
IB(a, b)= B. ✷
Theorem 19. Under Assumption4, there exists a minimal monotone mapΦ :X → S,
where S is a simple closed curve.

Proof. Let IA(a, b) and IB(a, b) be described as in Lemma 18. SinceIA(a, b) and
IB(a, b) are both hereditarily decomposable and irreducible betweena andb, there exist
minimal monotone mapsΦA : IA(a, b) → [0,1] and ΦB : IB(a, b) → [1,2] such that
ΦA(a) = 0, ΦA(b) = 1 = ΦB(b), andΦB(a) = 2. Now let S be formed by identifying
0 to 2 on the interval[0,2]. LetΦ :X→ S be defined in the following manner:

Φ(x)=ΦA(x) if x ∈ IA(a, b),
Φ(x)=ΦB(x) if x ∈ IB(a, b).

Now, if there exists ay ∈ (0,1) such thatΦ−1
A (y) ∩ IB(a, b) �= ∅, thenIA(a, b) and

IB(a, b) are not both minimal with respect to the decomposition ofX. Same is true if
there exists ay ∈ (1,2) such thatΦ−1

B (y) ∩ IA(a, b) �= ∅. Clearly, if y ∈ (0,1) then
Φ−1(y) = Φ−1

A (y) and is therefore connected. Similarly, ify ∈ (1,2) thenΦ−1(y) =
Φ−1
B (y) and is also connected. Now,Φ−1(0)= Φ−1(2)= Φ−1

A (0) ∪Φ−1
B (2). Since both

Φ−1
A (0) andΦ−1

B (2) are connected anda ∈ Φ−1
A (0) ∩ Φ−1

B (2), it follows thatΦ−1(0)
(equivalentlyΦ−1(2),Φ−1

A (0) ∪ Φ−1
B (2)) is connected. Proof is similar to show that

Φ−1(1) is connected.
Next, it must be shown thatΦ is minimal. LetΨ :X→ S be another monotone map.

If y ∈ (0,1) andΦ−1(y) ∩ Ψ−1(z) �= ∅, thenΦ−1(y) = Φ−1
A (y) ⊂ Ψ−1(z) sinceΦA is

minimal. Likewise, if y ∈ (1,2) andΦ−1(y) ∩ Ψ−1(z) �= ∅, thenΦ−1(y) = Φ−1
B (y) ⊂

Ψ−1(z) sinceΦB is minimal. So, suppose thatΦ−1(0) ∩ Ψ−1(z) �= ∅. SinceΦA andΦB
are both minimal,Φ−1

A (0)⊂ Ψ−1(z) andΦ−1
B (2)⊂ Ψ−1(z). Hence,Φ−1(0)=Φ−1(2)=

Φ−1
A (0) ∪Φ−1

B (2)⊂ Ψ−1(z). Proof is similar to show that ifΦ−1(1)∩ Ψ−1(z) �= ∅, then
Φ−1(1)⊂ Ψ−1(z). Thus,Φ is a minimal, monotone map.✷
Theorem 20. Under Assumption1, if h is any homeomorphism ofX onto itself, there exists
a homeomorphismf of the circle, S, onto itself such that the following diagram commutes:

X

Φ

h
X

Φ

S
f

S

Proof. First, it will be shown that ify, z ∈ S such thath(Φ−1(z)) ∩ Φ−1(y) �= ∅, then
h(Φ−1(z))=Φ−1(y).
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Let Ψ = Φ ◦ h andΓ = Φ ◦ h−1. Notice thatΨ andΓ are monotone maps. Suppose
y, z ∈ S such thatΓ −1(z) ∩Φ−1(y) �= ∅. Then, sinceΦ is minimal,Φ−1(y)⊂ Γ −1(z)=
h(Φ−1(z)).

Also,
Φ−1(z) ∩ Ψ−1(y) = Φ−1(z) ∩ h−1(Φ−1(y)) = h−1 ◦ h(Φ−1(z)) ∩ h−1(Φ−1(y)) =

h−1(h(Φ−1(z))∩ h−1(Φ−1(y)))= h−1(Γ −1(z)∩Φ−1(z)) �= ∅.
Thus, sinceΦ is minimal,Φ−1(z)⊂ Ψ −1(y)= h−1(Φ−1(y)). Therefore,h(Φ−1(z))⊂

Φ−1(y). Hence,Φ−1(y)= h(Φ−1(z)).
Let f (y) = Φ ◦ h ◦ Φ−1(y). To show thatf is an one-to-one function, pick any

distinct z1, z2 ∈ S. There existsy1, y2 ∈ S such thath(Φ−1(z1)) ∩ Φ−1(y1) �= ∅ and
h(Φ−1(z2)) ∩ Φ−1(y2) �= ∅. So by the previous arguement,Φ−1(y1) = h(Φ−1(z1))

andΦ−1(y2) = h(Φ−1(z2)). SinceΦ−1(y1) ∩ Φ−1(y2) = h(Φ−1(z1)) ∩ h(Φ−1(z2)) =
h(Φ−1(z1) ∩ Φ−1(z2)) = ∅, y1 and y2 must be distinct. Hence,y1 = Φ(Φ−1(y1)) =
Φ ◦ h(Φ−1(z1)) = f (z1) andy2 = Φ(Φ−1(y2)) = Φ ◦ h(Φ−1(z2)) = f (z2) are distinct
points ofS. Thus,f is a one-to-one function.

To show thatf is continuous, letE be closed inS. ThenΦ−1(E) is closed and therefore
h−1(Φ−1(E)) is closed and hence compact. Therefore,f−1(E) = Φ ◦ h−1(Φ−1(E)) is
compact and therefore closed. Thus,f is continuous.

Sincef is a continuous, one-to-one mapping from a compact space to a Hausdorff
space,f is a homeomorphism. Also, sincef ◦ Φ(x) = Φ ◦ h(x), the diagram com-
mutes. ✷

Since it has already been determined that each proper subcontinuum ofX is tree-like,
each point inverseΦ−1(s)must either be degenerate or a tree-like subcontinuum. IfΦ−1(s)

is degenerate for eachs ∈ S, thenΦ is a homeomorphism andh cannot be expansive from
Theorem 1. If for somes, Φ−1(s) is nondegenerate, thenh cannot be expansive from
Theorem 2. Hence, the main result (Theorem 5) now follows.

The following questions remain open:

Question 1 (Kato). If X admits an expansive homeomorphism, mustX contain a non-
degenerate indecomposable subcontinuum?

A continuumX is hereditarily indecomposableif every proper subcontinuum is
indecomposable.

Question 2 (Kato). Does there exists an hereditarily indecomposable continuum that
admits an expansive homeomorphism?
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