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Abstract Amyloid deposits derived from the amylin peptide
accumulate within pancreatic islet b-cells in most cases of
type-2 diabetes mellitus (T2Dm). Human amylin ‘oligomers’
are toxic to these cells. Using two different experimental tech-
niques, we found that H2O2 was generated during the aggrega-
tion of human amylin into amyloid fibrils. This process was
greatly stimulated by Cu(II) ions, and human amylin was re-
tained on a copper affinity column. In contrast, rodent amylin,
which is not toxic, failed to generate any H2O2 and did not inter-
act with copper. We conclude that the formation of H2O2 from
amylin could contribute to the progressive degeneration of islet
cells in T2Dm.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Type-2 diabetes mellitus (T2Dm) is an incurable disease that

is characterized by hyperglycaemia arising from defects in both

insulin action at responsive tissues and insulin secretion from

b-cells in the pancreatic islets of Langerhans. Amyloid deposits

are found in islet b-cells in up to 90% of patients with T2Dm

[1]. They are derived from a peptide hormone called amylin

[2] (or, alternatively, islet amyloid polypeptide [3]) that is made

and co-secreted along with insulin [1]. In T2Dm, the levels of

amylin are raised in parallel with the increased demand for
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insulin, and this is thought to induce concentration-dependent

amylin aggregation [1]. Islet amyloid formation is associated

with reduced b-cell mass [4] and human amylin ‘oligomers’

(small, soluble aggregates) are toxic to cultured islet cells

[5,6], suggesting that they could contribute to progressive islet

b-cell failure. Amylin oligomers can disrupt membranes [7,8]

and inflict oxidative damage to cells [9], but the precise molec-

ular mechanisms responsible for these effects have not been

established.

The Ab peptide, which accumulates at the centre of senile

plaques in the brain in Alzheimer’s disease (AD), can generate

H2O2 directly from molecular oxygen, apparently via electron-

transfer reactions involving bound redox-active transition me-

tal ions (Fe and Cu) [10]. H2O2 is itself toxic to cells, but, if

formed in the vicinity of redox-active metal ions, such as

Fe(II), is readily converted into hydroxyl radicals, via Fenton’s

reaction. These highly reactive radicals can induce damaging

oxidation, cell toxicity and cell death.

Here, we show that the human amylin peptide also has the

ability to generate H2O2 during amyloid fibril formation

in vitro, and that this process is greatly stimulated by Cu(II)

ions.
2. Materials and methods

2.1. Synthetic peptides
Human amylin (amide) (hA) (Fig. 1) was purchased from American

Peptide Company, Sunnyvale, CA, USA. Its purity was 93.3% as
determined by high-performance liquid chromatography mass spectro-
scopic analysis. The equivalent rodent amylin peptide (rA) (Fig. 1) was
purchased from the same source (purity 99%).

The Ab(1–40) and Ab(1–42) peptides were synthesised on a Milligen
9050 peptide synthesiser as described in detail elsewhere [11]. The con-
trol peptides Ab(40–1) (reverse) and Ab(1–40)Met35Nle were from
Biosource International (Belgium).

2.2. Amplex Red assay
Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine) is a non-fluores-

cent compound that is oxidised by H2O2 in the presence of horseradish
peroxidase (HRP) to yield the highly fluorescent product, resorufin
[12]. Both the Ab and amylin peptides were incubated at 100 lM in
50 mM Na phosphate, 0.14 M NaCl, pH 7.4 (PBS) at 37 �C for se-
lected time periods before testing for H2O2 formation. For the Amplex
Red assays, a 10 mM stock solution of Amplex Red was prepared in
blished by Elsevier B.V. All rights reserved.
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hA KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY-NH2
rA KCNTATCATQRLANFLVRSSNNLGPVLPPTNVGSNTY-NH2
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Fig. 1. Amylin peptides employed for this study. Amino acid
differences between human amylin (hA) and rodent amylin (rA) are
underlined.
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dimethyl sulfoxide (DMSO) and a HRP stock solution (10 U/ml) was
prepared in phosphate-buffered saline (PBS) (both stored at �20 �C).
To produce the Amplex Red working solution, the stock HRP was di-
luted 1/1000 in PBS and this diluted HRP solution (100 ll) and Am-
plex Red stock solution (50 ll) were added to 4.85 ml of PBS.
Standard curves were obtained using H2O2 solutions with concentra-
tions ranging from 0.05 to 1.0 lM. For the assay, a 10 ll sample of
standard H2O2 solution, or test sample, was added to each well of a
black, flat-bottomed, 384-well microtitre plate (Nunc), in triplicate,
and then 10 ll of Amplex Red working solution was added. Similar re-
sults were obtained with 50 ll samples plus 50 ll Amplex Red working
solution, in 96-well plates. Fluorescence of the resorufin product was
read, after 30 min incubation at room temperature, on a Victor2

1420 plate reader, with kEx = 544 nm and kEm = 590 nm. Solutions
containing no H2O2 were used as a measure of background fluores-
cence, which was subtracted from all values.

In some experiments, catalase (1000 U/ml) was added to the peptide
samples at the end of their incubation period, before they were added
to the Amplex Red working solution. In others, the metal ion chelator
diethylenetriaminepentaacetic acid (DETAPAC) (100 lM) was added
prior to incubation of the peptide solutions.

To study the effects of metal ions, hA (100 lM) was incubated for
various times at 37 �C in the presence of 10 lM of each of the follow-
ing:- CuCl2, ZnCl2, FeCl3, AlCl3, MgCl2; rA was incubated with
10 lM CuCl2 as a control. In these experiments, HEPES buffer
(10 mM N-2-hydroxyethylpiperazine-N 0-2-ethanesulfonic acid, pH
7.4) was used in all treatments (including controls) instead of PBS.
The samples were then tested using the Amplex Red method.

2.3. Electron spin resonance (ESR) spectroscopy
The hydroxyl radical was formed (via Fenton chemistry) from any

H2O2 generated during incubation of the required peptide at 100 lM
in PBS, at 37 �C and detected by ESR spectroscopy, as described pre-
viously [13–15]. The method employed the reaction of this radical with
the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to form the
hydroxyl radical adduct (DMPO-OH), which has a uniquely character-
istic 4-line ESR spectrum with a(N) 1.50 and a(Hb) 1.46 mT [13–15].
Samples of the required peptide (50 ll), incubated both in the absence
and presence of various metal ions (2 lM), were withdrawn at selected
time-points for ESR analysis.
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Fig. 2. Results for Ab, employing the Amplex Red method. (a) Ab(1–40)

Ab(40–1) and Ab(1–40)Met35Nle; (b) Ab(1–42) incubated with and without
2.4. Atomic force microscopy
Samples selected for analysis by atomic force microscopy (AFM) at

various time points were diluted 5 times in MQ water prior to imaging.
The diluted samples (1 ll) were applied to freshly cleaved mica-covered
metal sample stubs and air dried. AFM imaging was undertaken using
a Multimode AFM with a Nanoscope IIIa controller in tapping mode
in air with Si3N4 high spring constant cantilevers (TESP, Veeco, Cam-
bridge, UK). A high-resolution scanner (E-type scanner, Veeco) was
used to allow the best possible resolution of deposits at early incuba-
tion times. Five randomly chosen areas were imaged on each sample
and the subsequent images were then carefully analyzed for ultrastruc-
tural differences.

2.5. Transmission electron microscopy
Samples of incubated peptides were selected for analysis by electron

microscopy (EM) at various time points. They were applied to Form-
var-coated nickel grids for 2 min and air dried prior to negative stain-
ing with 2% (w/v) uranyl acetate for 30 s and wicked using filter paper.
The samples were air-dried and examined on a JEOL 1010 TEM.

2.6. Immobilised metal affinity chromatography
HiTrap chelating columns (Amersham Biosciences, 1 ml) were

charged with either 0.1 M Cu(II) chloride or 0.1 M Fe(III) chloride
and then washed with 5 ml of MQ water and 10 ml of 20 mM sodium
phosphate, 0.5 M NaCl, pH 8 (metal-binding buffer) to remove excess
metal ions. hA or rA (100 lg/ml in metal binding buffer) were then
loaded onto the columns. The peptides were eluted by using several
‘stepwise’ concentrations of imidazole (from 0 to 100 mM in metal
binding buffer). The fractions from the columns were analyzed by 4–
20% Tris–Glycine sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis (SDS–PAGE).
3. Results

We used two quite independent methods in order to deter-

mine if synthetic human amylin peptide (hA), or the equiva-

lent non-amyloidogenic and non-toxic rodent amylin peptide

(rA), can generate H2O2 during incubation in vitro. The first

method employed the dye Amplex Red [12], whereas the sec-

ond method was based on our previously published ESR spec-

troscopy technique [13–15]. We also examined the time period

during which any H2O2 was formed. The ultrastructure of the

peptide aggregates was assessed from a study of AFM and

EM images.
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3.1. Amplex Red assays

We initially carried out experiments with Ab(1–40), Ab(1–

42) and related control peptides to validate the Amplex Red

method. These peptides were incubated at 100 lM in PBS at

37 �C and samples were taken at various times for H2O2 assay.

An Amplex Red signal, which increased rapidly during the

early course of aggregation, was detected from both Ab(1–

40) and Ab(1–42) (Fig. 2). Overall, these results were compat-

ible with our published ESR data showing that H2O2 is gener-

ated during the early stages of Ab aggregation [16]. Inclusion

of catalase at the end of the peptide incubation period blocked

the Amplex Red signal, as did the presence during incubation

of the metal-ion chelator DETAPAC. Ab(1–40)Met35Nle and

Ab(40–1) (reverse peptide), both of which have been shown

previously not to generate H2O2 [17], failed to produce any sig-

nal in the Amplex Red assay.

We then proceeded to measure the levels of H2O2 in simi-

larly incubated solutions of hA and rA. In the case of hA,

H2O2 formation was detected during the course of peptide

aggregation, reaching a maximum at around 72 h incubation

time, before declining to background levels at longer incuba-

tion times (Fig. 3a). In contrast no H2O2 was detected during

the incubation of rA. The rate of decay of the H2O2 self-gen-

erated from hA, and hence its stability, depends upon two fac-

tors. Firstly, direct reaction with the peptide and, secondly, on

the availability of metal ions to convert it to hydroxyl radicals.

A classic example of the differences in this rate of decay can be

found when comparing H2O2 levels generated by Ab (slow de-

cay) with those from ABri (rapid decay) [16].

Freshly dissolved hA peptide showed no clear structures

(Fig. 4a) but analysis of EM and AFM images obtained during

the early stages of H2O2 formation (3–6 h) revealed the pres-

ence of numerous short ‘protofibrils’ (Fig. 4b and c) whereas

samples examined after prolonged incubation periods (24–

72 h) revealed the presence of longer amyloid fibrils

(Fig. 4d). The peroxide was, therefore, generated during amy-

loid fibril formation. The AFM images of the protofibrils

formed from hA (Fig. 4c) were similar in appearance to those

observed with Ab [16]. When hA was incubated in the presence
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Fig. 3. Results for amylin, employing the Amplex Red method. (a) hA, with a
hA and rA. In addition to those shown, Al(III) and Mn(II) had no significa
of various metal ions, only Cu(II) stimulated the formation of

H2O2 to any great extent (Fig. 3b). In the presence of Cu(II),

the Amplex Red signal from hA again reached a peak at

around 72 h incubation time, but there was a 6-fold increase

in H2O2 levels compared with those obtained from hA alone.

The ultrastructural appearance of the hA aggregates formed

during incubation, or the aggregation time, did not appear

to be markedly changed by the presence of Cu(II) ions

(Fig. 4e and f). It should be noted that no distinct fibrils were

observed with rA incubated with or without Cu(II) ions.

In all of these experiments, any positive signal from hA was

always blocked by the addition of catalase at the end of the

peptide incubation period (confirming the detection of H2O2)

or by the inclusion of DETAPAC during peptide incubation

(suggesting that metal ions are involved) (Fig. 3a). The pres-

ence of Cu(II) ions during the incubation of rA failed to stim-

ulate the formation of H2O2 (Fig. 3b).

3.2. ESR measurements

For the ESR method, hA was incubated (as before) in the

presence or absence of various metal ions, and any H2O2

formed was detected by its conversion into hydroxyl radicals,

which were trapped with DMPO [13–15]. A weak 4-line spec-

trum corresponding to the hydroxyl radical adduct was often

observed without added metal ions, but this was sometimes ab-

sent altogether (Fig. 5a). However, the intensity of this spec-

trum was greatly enhanced when hA was co-incubated with

Cu(II) ions (Fig. 5b). All of the ESR spectra obtained from

hA could be blocked with catalase (Fig. 5c) or DETAPAC

(Fig. 5d) and no spectra were observed under any conditions

from rA (Fig. 5e).

3.3. Copper ion binding to hA

hA was retained on a HiTrap metal-chelating column

charged with Cu(II) ions and could be subsequently eluted

with 25 mM (but not 10 mM) imidazole (Fig. 6a). This peptide

failed to bind to a similar column charged with Fe(III) ions

(Fig. 6b). Furthermore, rA did not bind to either of these

metal-loaded Hitrap columns (Fig. 6c).
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Fig. 4. Ultrastructural appearance of hA aggregates. (a) EM image at zero incubation time; (b) EM image of ‘protofibrils’ at 6 h incubation; (c)
AFM image of ‘protofibrils’ at 6 h incubation; (d) EM image of fully-formed amyloid fibrils at 72 h; (e) AFM image at 3 h incubation, in the presence
of Cu(II); (f) EM image at 72 h incubation, in the presence of Cu(II).
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Fig. 5. ESR spectra recorded from amylin peptides. (a) hA; (b) is (a)
incubated in the presence of Cu(II) (2 lM); (c) is (b) incubated in the
presence of catalase; (d) is (b) incubated in the presence of DETAPAC;
(e) rA incubated in the presence of Cu(II) (2 lM). A control
experiment containing no peptide gave spectra similar to those shown
in (a), (c), (d) and (e).

Fig. 6. Elution of amylin from metal-loaded HiTrap columns. (a) hA
binds to Cu(II) and is eluted with 25 mM imidazole: C = hA control;
A,B = 0 mM imidazole; C,D = 10 mM imidazole; E,F = 25 mM imid-
azole; G,H = 50 mM imidazole; I,J = 100 mM imidazole. (b) hA fails
to bind to Fe(III) and is eluted with the first wash: lanes as before; (c)
rA fails to bind to Cu(II): lanes as before.
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4. Discussion

Although it has been established previously that exposure to

the hA peptide increases H2O2 levels in cultured cells [18], our

results, employing two completely independent techniques

(i.e., Amplex Red and ESR spectroscopy), demonstrate, for

the first time, that H2O2 is generated directly during the aggre-

gation of hA in vitro, and also that the formation of H2O2 in
this way is selectively stimulated by Cu(II) ions. The accumu-

lation of H2O2 was confirmed by the experiments with cata-

lase, which blocked both of the Amplex Red and ESR

signals. Similar experiments with DETAPAC suggest the

involvement of metal ions, even when these are not added

externally to the peptide.

The demonstration of an interaction between hA and the

copper-loaded HiTrap columns suggests a mechanism for the

generation of hydrogen peroxide involving the binding of

Cu(II) ions to hA. This would potentially result in the forma-

tion of a redox-active complex. The donation of electrons from

the peptide to Cu(II) ions would result in the formation of a

Cu(I)-peptide complex, which could also be formed by the di-

rect binding of the peptide to Cu(I) ions. The Cu(I)-complex

could stimulate the formation of H2O2 from O2 and result in
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a consequent return to the Cu(II) oxidation state. Subsequent

cycling of this redox system could occur, resulting in the gen-

eration of hydroxyl radicals from H2O2 via Fenton chemistry.

The formation of H2O2 from hA by this type of mechanism

could explain the well-established toxicity of this peptide to-

wards cultured islet cells. This would be in accord with previ-

ous reports that the cytotoxicity induced by hA involves

oxidative damage [9] and can be reduced by anti-oxidants

[19]. The ready formation of hydroxyl radicals from H2O2 in

the presence of redox-active transition metal ions could also

contribute towards in vivo damage to the pancreas in T2Dm,

for which there is extensive evidence for the involvement of

reactive oxygen species [1].

Our results also add weight to the emerging hypothesis that

oxidative damage during early oligomer formation could rep-

resent a common mechanism of toxicity for many amyloido-

genic proteins and peptides [8,13–17,20]. This hypothesis is

further supported by the fact that rA, which is not toxic to cells

[21,22], failed to generate any H2O2 in our experiments, pre-

sumably due to its inability to aggregate and/or to interact with

copper ions.

A possible role for copper ions in T2Dm has already been

implied by the finding that the level of copper is significantly

higher (while those of zinc and magnesium are lower) in serum

from diabetic patients than controls [23]. This suggest that

copper could play an important role in the pathogenesis of

T2Dm, possibly including the facilitation of H2O2 generation

from amylin, and, ultimately in the degeneration and death

of pancreatic islet cells. Our data provide a new rationale

and added impetus for the clinical use of copper chelators in

T2Dm [24] as well as opening up additional avenues of re-

search into the etiology, pathogenesis and treatment of this

disease.

Acknowledgements: We thank The Ford Foundation (USA) for an
International Postgraduate Research Studentship (to A.M.) and The
Wellcome Trust for a Project Grant (GR065764AIA).
References
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