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Abstract

Based on the setting of exchangeable bets, this paper proposes a subjectivist view of numerical possibility theory. It
relies on the assumption that when an agent constructs a probability measure by assigning prices to lotteries, this proba-
bility measure is actually induced by a belief function representing the agent’s actual state of knowledge. We also assume
that the probability measure proposed by the agent in the course of the elicitation procedure is constructed via the so-called
pignistic transformation (mathematically equivalent to the Shapley value in game theory). We pose and solve the problem
of finding the least informative belief function having a given pignistic probability. We prove that it is unique and conso-
nant, thus induced by a possibility distribution. This result exploits a simple informational ordering, in agreement with
partial orderings between belief functions, comparing their information content. The obtained possibility distribution is
subjective in the same sense as in the subjectivist school in probability theory. However, we claim that it is the least biased
representation of the agent’s state of knowledge compatible with the observed betting behaviour.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Quantitative possibility theory was proposed as an approach to the representation of linguistic imprecision
[43] and then as a theory of uncertainty of its own ([16,18,19], following an approach initiated by Shackle [27]).
In order to sustain this claim for a different uncertainty theory, operational semantics are requested. In the
subjectivist context, quantitative possibility theory competes with probability theory in its subjectivist or
Bayesian views and with the Transferable Belief Model [31,33], both of which also intend to represent degrees
of belief. The term subjectivist means that we consider probability, and other numerical set-functions pro-
posed for the representation of uncertainty, as tools for quantifying an agent’s beliefs in events without nec-
essarily referring to their possible random nature and repeatability (still accepting the idea that beliefs may rely
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on frequencies if the latter are available). An operational definition, and the assessment methods that can be
derived from it, provide a meaning to the value .7 encountered in statements like ‘‘my degree of belief is .7’’.
Bayesians claim that any state of incomplete knowledge of an agent can (and should) be modelled by a single
probability distribution on the appropriate referential, and that degrees of belief coincide with probabilities
that can be revealed by observing the betting behaviour of the agent (how much would the agent pay to enter
a game). In such a betting experiment, the agent provides betting odds under an exchangeable bet assumption.
A similar setting exists for imprecise probabilities [38], relaxing the assumption of exchangeable bets, and more
recently for the Transferable Belief Model as well [32], introducing several betting frames corresponding to
various partitions of the referential. In that sense, numerical values encountered in these three theories are
well-defined.

Quantitative possibility theory seems to be worth exploring as well from this standpoint. Rejecting it
because of an alleged lack of convincing semantics would be unfortunate, simply because it entertains close
formal relationships with other theories: possibility measures are consonant Shafer [29] plausibility measures,
and thus encode special families of probability functions. Since possibility theory is a special case of most
existing non-additive uncertainty theories, be they numerical or not, progress in one of these theories usually
has impact in possibility theory. The recent revival of a form of subjectivist possibility theory initiated by Giles
[23] and pursued by De Cooman and Aeyels [5], along the lines of Walley’s imprecise probabilities, and the
development of possibilistic networks based on incomplete statistical data [1] also suggest that it is fruitful
to investigate various operational semantics for possibility theory. Another major reason for studying possi-
bility theory is that it is very simple, certainly the simplest challenger for probability theory, especially in the
form of fuzzy intervals (e.g. [10]).

The aim of this paper is to propose subjectivist semantics for numerical possibility theory based on
exchangeable bets.1 In the next section, the basic conceptual framework of the proposal is presented, with
comparison with other approaches to the semantics of possibility theory. Section 3 recalls belief functions,
their informational comparison, and the pignistic transformation. Section 4 presents the main results of this
paper, claiming that the least committed representation of the beliefs of an agent supplying a subjective prob-
ability distribution defined via betting rates is a possibility distribution.

2. Basic conceptual setting

In this paper, we assume, in contrast with the Bayesian tradition, that beliefs held by an agent are more
naturally modelled by means of a belief function, thus leaving room for incomplete knowledge [21]. In the
Bayesian setting of exchangeable bets, the agent is in some sense forced to produce a unique distribution.
So, assuming belief states are faithfully modelled by belief functions implies that epistemic states and degrees
of belief are not directly observable by means of the Bayesian elicitation procedure. We consider that the
observed probability distribution is only a trace of the epistemic state of the agent. The questions raised by
this view are then:

(1) what is the formal link, if any, between the belief function supposedly held by the agent and the subjec-
tive probability (s)he supplies through betting rates?

(2) how to reconstruct the epistemic state from an elicited subjective probability?

The first question was solved by Smets [30]. In previous works, he argued that there exists a natural trans-
formation of a belief function into a (so-called pignistic) probability function such that if the agent’s beliefs are
modelled by the former, his betting rates are captured by the latter. He called it the pignistic transformation
and proposed an axiomatisation thereof, justified later on as preserving the linearity of expected utility [36].
This transformation had been previously suggested by Dubois and Prade [13] in the setting of belief functions,
1 A previous version of this paper appeared in a publication of the Technical University of Wroclaw, Poland, entitled ‘‘Badania
Operacyjne i Decyzije’’ (Operational Research and Decisions) 2003, issue 4, pp. 7–22. This invited paper was written as a tribute to the late
Stefan Chanas. Republishing it in IJAR is the best tribute to the memory of Philippe we may think of. This is an extensively revised
version, especially proofs of lemmas were partially rewritten.
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as a generalization of Laplace principle of Insufficient Reason. It also formally coincides with the Shapley
value in game theory [28] as pointed out in [18]. Denneberg and Grabisch [7] have generalized the Shapley
value to so-called interaction weights attached to all subsets (not only to singletons), which have not found
interpretation in the setting of uncertainty modelling so far.

In general, distinct belief functions may correspond to the same pignistic probability. However, in the
case of possibility distributions, corresponding to consonant plausibility functions, the transformation is
one-to-one. This restricted form of the pignistic transformation has been proposed by several authors in
the fuzzy set context. Kaufmann [24] and Yager [40] proposed a scheme for the random simulation of a
finite fuzzy set: picking a membership grade at random in the unit interval, and then randomly picking a
value of the variable in the corresponding cut of the fuzzy set. In the continuous setting, Chanas and Now-
akowski [2] proposed a more general probabilistic interpretation of fuzzy intervals based on a similar
interpretation.

This paper addresses the second question: given a subjective pignistic probability distribution p provided by
an agent under the form of betting rates, find a suitable least committed belief function whose pignistic trans-
form is p. The principle we apply to this end is the one of minimal commitment: by default, the agent’s knowl-
edge is supposed to be minimal. Such a minimally committed belief function is a cautious representation of the
agent’s belief, assuming minimal statistical knowledge. For instance, if the agent supplies a uniform probabil-
ity, it is assumed by default that the agent has no information. In that case, an unbiased representation is the
vacuous belief function, or equivalently, the uniform possibility distribution, thus reversing Laplace’s principle
of Insufficient Reason. The main result of the paper is that the least committed belief function with prescribed
pignistic transform is unique and consonant, that is, it can be modelled as a possibility distribution. This result
was already announced by the authors in [22], but its proof was not provided. Since the pignistic transforma-
tion is one-to-one for possibility distributions, this result also provides the converse transform with a natural
interpretation. This transformation from probability to possibility was first suggested with a different rationale
by Dubois and Prade [14].

Our subjectivist semantics differs from the upper and lower probabilistic setting proposed by Giles [23],
Walley [38] and followers, without questioning its merit. This school interprets the maximal acceptable buy-
ing price of a lottery ticket pertaining to the occurrence of an event as its lower probability, and the minimal
sale price of the same lottery ticket as its upper probability, both prices being possibly distinct, in opposition
with the exchangeable bets assumption of Bayesians. Walley’s actually questions the ‘‘dogma of precision’’
as a major difference between the Bayesian approach and his own (see Chapter 5 of his book [38]), which
leads him to give up exchangeable bets, as they enforce infinite precision for degrees of belief. Bayesians
consider that a precise probability exists that faithfully represent the agent’s beliefs even if in practice, pre-
cision may be limited. Here, we assume exchangeable bets, just like the Bayesian School, but we consider
that betting rates only partially reflect an agent’s beliefs. In other words, even if betting rates ideally produce
a unique probability distribution, they are induced by the agent’s beliefs without being in one-to-one corre-
spondence with them. For instance, an agent may assign equal probabilities to the facets of a die, either
because the fairness of the die has been experimentally validated, or, by symmetry, just because this agent
does not know if the die is biased or not. Clearly, beliefs entertained by the agent in both situations are very
distinct [17].

Besides, there exists a very different kind of semantics for possibility distributions, relying on the idea of
similarity between a situation and a prototypical one, investigated by Ruspini [26]. This is a purely metric
view of possibility, while we focus on probabilistic-like semantics. Yet another semantics of possibility the-
ory is in terms of likelihood functions [12]. When all that is known about a probability measure is of the
form P(Ajx), x 2 X for some observed event A, it is clear that the probability P(AjB) for another event
B is upper-bounded by maxx2BP(Ajx). Moreover, if P(AjB) is to be understood at all as the likelihood
kA(B) of B when observing A, it is legitimate to consider that kA(B) should be monotonic with B in the
sense of set inclusion. So, as noticed by Coletti and Scozzafava [4], the equality kA(B) = maxx2BP(Ajx)
should be enforced by default, when no other information is available. So, the likelihood function kA( Æ )
behaves like a possibility measure. This technical interpretation of possibility theory takes no side in the
debate between subjectivist vs. objectivist probability, while this paper considers the modelling of subjective
beliefs.
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3. Formal setting

This section is a refresher on belief functions, the pignistic probabilities, and the informational comparison
of belief functions.

3.1. Belief functions

Consider beliefs held by an agent on what is the actual value of a variable ranging on a set X, called the
frame of discernment. It is assumed that such beliefs can be represented by a belief function. A belief function
can be mathematically defined from a (generally finite) random set that has a very specific interpretation. A so-
called basic belief mass m(A) is assigned to each subset A of X, and is such that m(A) P 0 "A � X; moreover
X

A�X

mðAÞ ¼ 1: ð1Þ
The degree m(A) is understood as the weight given to the assumption that the agent knows that the value of
the variable of interest lies somewhere in set A, and nothing else. In other words, the probability allocation
m(A) is potentially shared between elements of A, but remains suspended for lack of knowledge. A set E such
that m(E) > 0 is called a focal set. In the absence of conflicting information it is generally assumed that
m(;) = 0. This is what is assumed in the following. A belief function Bel as well as a plausibility function
Pl, attached to each event (or each proposition of interest) can be bijectively associated with the basic mass
function m [29]. They are defined by
BelðAÞ ¼
X
E�A

mðEÞ and PlðAÞ ¼ 1� BelðAcÞ ¼
X

E:E\A 6¼;
mðEÞ; ð2Þ
where Ac is the complement of A. The belief function evaluates to what extent events are logically implied by
the available evidence. The plausibility function evaluates to what extent events are consistent with the avail-
able evidence. A companion set-function, called commonality, and denoted by Q, is defined by reversing the
direction of inclusion in the belief function expression:
QðAÞ ¼
X
A�E

mðEÞ: ð3Þ
Q(A) is the share of belief free to potentially support any proposition in the context where the agent accepts
that A holds true. It can be argued that Q(A) is a measure of guaranteed plausibility of A because it clearly
provides a lower bound of the plausibility of each element in A (and of each subset as well) [9]. When condi-
tioning a mass function on event A, the mass m(E) of each focal set E is allocated to the subset A \ E. The
overall (possibly subnormal) mass finally allocated to a subset C of A is denoted m(CjA). Then Q(A) coincides
with the mass m(AjA) assigned to set A before normalizing. So, up to normalization, Q(A) is a measure of
unassigned belief in the context where the agent accepts that A holds true.

The function Pl restricted to singletons, induced by a mass function m is called its contour function by
Shafer [29], and is denoted pm, defined by pm(x) = Pl({x}). When the focal sets are nested, the plausibility
function is called a possibility measure [43], and can be characterized, just like probability, by its contour func-
tion, then called a possibility distribution p. In such a situation, the primitive object can be the possibility dis-
tribution, and each of the functions m, Pl, Bel, can be reconstructed from it, noticing that
PlðAÞ ¼ max
x2A

pðxÞ: ð4Þ
The set function Pl is then often denoted P. If X = {x1, . . . ,xn}, and letting pi = p(xi), such that
1 = p1 P p2 P � � �P pn P pn+1 = 0, then the mass function generating p is denoted mp such that [13]:
mpðAÞ ¼ pi � piþ1 if A ¼ fx1; . . . ;xig 8i ¼ 1; . . . ; n; ð5Þ
¼ 0; otherwise: ð6Þ
If the mass function m is not consonant the contour function pm is not enough to recover it as in (5) since
retrieving m then needs up to 2jXj terms to be determined, where j Æ j stands for cardinality.
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3.2. Informational comparison of belief functions

There are several methods for comparing belief functions in terms of their informational contents. Some
informational indices extend the probabilistic notion of entropy. Other ones generalize the notion of cardinal-
ity of a set representing incomplete knowledge, yet other ones combine both (see the recent survey by Klir and
Smith [25], for instance). Besides, three partial orderings comparing the information content of two belief
functions in terms of specificity have been proposed by Yager [42] and Dubois and Prade [15]: the precision
ordering, the Q-information ordering, and the specialization ordering.

A first natural specificity ordering of belief functions compares intervals limited by belief and plausibility.
Namely the interval [Bel(A),Pl(A)] is all the wider as the information concerning A is scarce. So, a partial
information order on the set of belief functions over X can be defined as follows: Bel1 is at least as precise

as Bel2 if and only if [Bel1(A), Pl1(A)] � [Bel2(A),Pl2(A)] "A � X; it corresponds to an inclusion relation
between sets of probabilities dominating Bel1 and Bel2. In fact, this ordering can be defined equivalently
and more simply as Pl1(A) 6 Pl2(A) "A � X due to the duality between Bel and Pl.

Interestingly, this partial ordering does not imply any relationship between the commonality functions Q1

and Q2 (see [15] and the counterexample below). Another partial informational ordering between belief func-
tions has thus been defined by comparing the commonality functions: Bel1 is at least as Q-informed as Bel2 if
and only if Q1(A) 6 Q2(A) "A � X. This direction of inequality is natural since it ensures that for singletons,
Pl1({x}) 6 Pl2({x}), due the identity of Pl and Q functions on singletons.

The third partial informational ordering can be described directly from the mass functions m1 and m2. The
idea is that Bel1 is at least as informed as Bel2 whenever it is possible to turn m2 into m1 by consistently reas-
signing each weight m2(E) to subsets of E that are focal sets of m1 (possibly sharing this weight among them).
It is called the specialization ordering. Namely, m1 is more specialized than m2 if and only if there is a stochas-
tic matrix W whose rows correspond to focal sets of m1 and columns to focal sets of m2, such that
m1 = W Æ m2. Here, mass functions are encoded as vectors and entry wij reflects the proportion of the mass
m2(Ej) allocated to focal set Fi of m1, with the condition that Fi must be a subset of Ej for wij to be positive.

This third ordering leads to more incomparabilities than the other ones and is refined by them. But the Q-
informativeness and the precision orderings are not comparable.

Example 1. Suppose X = {x1,x2,x3}, E = {x1,x2}, F = {x1,x3}, a 2 (0.5,1). Consider the mass function
m(E) = a, m(F) = 1 � a, and the possibility measure p such that
pðx1Þ ¼ 1; pðx2Þ ¼ a; pðx3Þ ¼ 1� a:
It is clear that Pl({x}) = p(x) "x; the consonant mass function associated to p by (5) is
mpðfx1gÞ ¼ 1� a; mpðEÞ ¼ 2a� 1; mpðXÞ ¼ 1� a:
It is obvious that none of the two mass functions m and mp is a specialization of the other since mp has a focal
set contained in none of E or F, and a focal set containing none of them. Now it is obvious that m is at the
same time less precise and more Q-informed than mp. Indeed, Pl(A) P P(A) "A, and Pl({x2,x3}) =
1 > P({x2,x3}) = a. However, Qp(A) P Q(A) "A, and Qp({x2,x3}) = 1 � a > Q({x2,x3}) = 0.

In view of this example, the respective interpretations of the Q-informativeness and precision ordering
would deserve a more careful study. Nevertheless, all three orderings coincide for possibility measures and
come down to the possibilistic ordering of specificity on singletons [41,16]: p1 is at least as informed as p2

if and only if p1 6 p2.

3.3. The pignistic transformation

It is assumed that the actual beliefs of the agent can be faithfully modelled by a mass function on X. A
probability measure induced by a mass function can be built by defining a uniform probability on each set
with positive mass, and performing the convex mixture of these probabilities according to the mass function.
This transformation, which, as pointed out earlier, recurrently appears in various contexts since the fifties, was
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called the pignistic transformation by Smets [30]. Let m be a mass function from 2X to [0,1]. The pignistic
transform of m is a probability distribution BetP = Pig(m) such that
BetPðxÞ ¼
X

A:x2A

mðAÞ
jAj : ð7Þ
It can be viewed as an extension of Laplace indifference principle, according to which equally possible out-
comes have equal probability. It looks like a weighted form thereof, since, by symmetry, each focal set is then
interpreted as a uniform probability. According to Smets [30], the agent’s beliefs cannot be directly assessed.
All that can be known are the values of the ‘‘pignistic’’ probabilities the agent uses to bet on the frame X. Only
the probability distribution BetP, not the belief function accounting for the agent’s beliefs, is obtained by elic-
iting an agent’s betting rates on the frame X.

The pignistic probability depends on the chosen betting frame. Changing X into one of its refinements, thus
modifying the granularity, a different probability is obtained. It has been proved that for any event A, the min-
imal (resp. maximal) value of BetPðAÞ ¼

P
x2ABetPðxÞ over all possible changes of granularity yields back

Bel(A) (resp. Pl(A)) [39]. So, the interval [Bel(A),Pl(A)] contains all possible values of the pignistic probability
of A, across all betting frames. This is related to the fact that all probability functions P dominating the belief
function Bel induced by m (that is P P Bel) can be generated by changing each focal set E into a probability
distribution p( Æ jE) with support E. Namely
pðxÞ ¼
X

E

pðxjEÞ � mðEÞ: ð8Þ
In Bayesian terms, this is an application of the total probability theorem where p(xjE) is the (subjective) prob-
ability of x when all that is known is the piece of evidence E, and m(E) is the probability of knowing this piece
of evidence only. So, in terms of upper and lower probabilities, BetP is the centre of gravity of the set of prob-
abilities dominating the belief function [20]. In terms of game theory, it corresponds to the Shapley value of a
cooperative game [28], which is modelled by a set-function on a set X of agents. This set-function assigns to
each subset of agents, viewed as a potential coalition, a number reflecting its power. In this setting, BetP(x)
represent the power of agent x across all potential coalitions (s)he may be part of.

In the special case of consonant belief functions, the pignistic transformation can be expressed in terms of
the possibility distribution p such that 1 = p1 P p2 P � � �P pn P pn+1 = 0 as follows, letting pi = BetP(xi):
pi ¼
X

j¼i;...;n

ðpj � pjþ1Þ
j

8i ¼ 1; . . . ; n: ð9Þ
It can be checked that p1 P p2 P � � �P pn and that the transformation is bijective between probabilities and
possibilities. Its converse Pig�1 was independently suggested by Dubois and Prade [14]. It reconstructs the pos-
sibility distribution as follows:
pi ¼
X

j¼i;...;n

minðpi; pjÞ 8i ¼ 1; . . . ; n ð10Þ
and we write p = Pig�1(BetP). Note that another probability–possibility transformation exists, of the form
[13,6]:
ri ¼
X

j¼i;...;n

pj 8i ¼ 1; . . . ; n: ð11Þ
The latter transformation of a probability distribution p yields the most specific (=restrictive) possibility dis-
tribution such that P(A) P P(A) "A. When p stems from validated statistical data, one may argue that this
transformation yields its most legitimate possibilistic representation [22] since p represents a complete model
of the studied random phenomenon and (11) yields the most specific possibility distribution respecting the
ordering of elements of X induced by p, in the sense that

P
j¼1;...;nrj is minimal (minimal cardinality of the fuz-

zy set with membership grades rj). This transformation is easily interpretable in terms of finding the most spe-
cific confidence sets induced by p for various levels of confidence. On the real line, using a unimodal
probability density, the a-cut of the possibility distribution thus obtained is the narrowest confidence interval
with confidence level 1 � a [11].
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In contrast, in the subjective probability case, it is questionable whether the expert possesses a complete
model of the phenomenon referred to, even if the betting framework enforces it. If the parameter under con-
cern is random, the agent may have only partial knowledge about it. If the parameter is not random (just ill-
known), a complete model should come down to knowing its precise value. Hence the optimal (maximally spe-
cific) transformation (11) does not convincingly apply to subjective probabilities.

There are yet other transforms that change belief functions to probabilities, like the probabilistic renormal-
ization of the contour function (called plausibility transformation by Cobb and Shenoy [3]). Even, if this trans-
form is consistent with the application of Dempster’s combination rule, the resulting probability measure is
generally not in agreement with the belief function it comes from, namely P(A) may fail to lie in the interval
[Bel(A),Pl(A)] for some event A.

4. The most cautious belief function inducing a subjective probability

The knowledge of the values of the probability p allocated to the elements of X by the agent is not suf-
ficient to reconstruct a unique underlying belief function whose pignistic transform is p. Many belief func-
tions induce the same pignistic probability distribution. As already said, for instance, uniform betting
rates on X either correspond to complete ignorance on the values of the variable, or to the knowledge that
the variable is random and uniformly distributed. So, all that is known about the mass function that repre-
sents the agent’s beliefs is that it belongs to the ones that induce the available subjective probability. Under
this scheme, we do not question the exchangeability of bets, as done by Walley [38], Giles [23] and others.
What we question is the assumption of a one-to-one correspondence between the betting rates produced by
the agent, and the actual beliefs entertained by this agent. Betting rates do not tell if the uncertainty of the
agent results from the perceived randomness of the phenomenon under study or from a simple lack of infor-
mation about it.

The belief functions whose pignistic transform is p are called isopignistic belief functions and form the set
IP(p). A cautious approach among isopignistic belief functions is to obey the least commitment principle. It
states that one should never presuppose more beliefs than justified. Then, a reasonable choice is to select the
least committed element, that is, the least informed one, in the family of isopignistic belief functions corre-
sponding to the pignistic probability function prescribed by the obtained betting rates.

One may try to define the least debatable representation of an agent’s belief as a minimally informative iso-
pignistic mass function according to information content comparison techniques presented in Section 3.2.
While the merit of these partial ordering relations is to provide an ordinal foundation to the comparison of
belief functions, they often lead to incomparability. So, unicity may easily fail for least informative mass func-
tions, as the corresponding optimization problem comes down to a kind of vector-maximization.

4.1. Using expected cardinality

An easier problem is to maximize an information index. A natural measure of non-commitment of a belief
function is its expected cardinality viewed as the average of its focal sets, weighted by the mass function m:
IðmÞ ¼
X
A�X

mðAÞ � jAj: ð12Þ
It is the simplest imprecision measure. It is easy to see that I(m) is the cardinality of the fuzzy set whose mem-
bership function coincides with the contour function of m [8], namely, IðmÞ ¼

P
x2XpmðxÞ.

It is clear that this index is compatible with the specialization ordering, namely that if m1 is more specialized
than m2 then I(m1) 6 I(m2). However, as it only depends on the contour function, it cannot discriminate
between belief functions that share the same contour function, while the commonality and plausibility order-
ings might discriminate among them (not always in the same way as shown by Example 1).

We define a least biased belief representation, for an agent supplying a pignistic probability p, as any belief
function whose mass function m* maximizes I(m) among isopignistic belief functions whose pignistic trans-
form according to Eq. (10) is p. The following result is now established. It compares the respective specificities
of m and the possibility distribution obtained from Pig(m) via (10):
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Lemma 1. For any belief function with mass function m, I(Pig�1( Pig(m))) P I(m).

Proof. Let p = Pig(m), such that p1 P p2 P � � �P pn and p = Pig�1(p). It is such that 1 = p1 P
p2 P � � �P pn P pn+1 = 0. It can be checked that I(Pig�1(p)) is the sum of entries in the n · n matrix with coef-
ficients min(pi,pj)

2:
2 In
IðPig�1ðpÞÞ ¼
X

i¼1;...;n

pi ¼
X

i¼1;...;n

X
j¼1;...;n

minðpi; pjÞ ¼
X

i¼1;...;n

ð2i� 1Þ � pi
(since there is only one entry containing p1, three entries containing p2, etc.).
Now, since pi ¼

P
E:xi2E

mðEÞ
jEj , it all boils down to proving that
X

i¼1;...;n

ð2i� 1Þ �
X

E:xi2E

mðEÞ
jEj P

X
i¼1;...;n

X
E:xi2E

mðEÞ:
Subtracting the right-hand side from the left-hand side, and factoring m(E), it is enough to prove that the mul-
tiplicative coefficient of each m(E) is positive, that is, denoting by lE the indicator function of E:
cðEÞ ¼
X

i¼1;...;n

ð2i� 1Þ � lEðxiÞ
jEj �

X
i¼1;...;n

lEðxiÞP 0:
Let E ¼ fxi1 ; . . . ;xikg such that pðxi1ÞP pðxi2ÞP � � �P pðxik Þ. Note that by construction, ij P j.

Then, cðEÞ ¼ 2i1�1
k þ

ð2i2�1Þ
k þ � � � þ ð2ik�1Þ

k

� �
� k. It is minimal for ij = j for all j = 1, . . . ,k. Hence
cðEÞP 2� 1

k
þ 4� 1

k
þ � � � þ 2k � 1

k

� �
� k ¼

2 �
P

j¼1;...;kj
� �

k
� k � 1 ¼ 0:
Hence c({x1,x2, . . . ,xk}) = 0 "k, and c(E) > 0 otherwise. h

The next result proves the consonance of the maximally imprecise isopignistic belief function:

Lemma 2. I(Pig�1(Pig(m))) = I(m) only if m is consonant.

Proof. For suppose m is not consonant. Then m has at least two non-nested focal sets E and F. Hence at least
one of them, say E, is not of the form {x1,x2, . . . ,xk}. Hence c(E) > 0, so m(E) Æ c(E) > 0, hence
I(Pig�1(Pig(m))) > I(m), using Lemma 1. h

Since there is only one consonant belief function in Pig�1(Pig(m)), the following result is obtained:

Theorem 3. The unique mass function which maximizes I(m) under the constraint Pig(m) = p exists and is

consonant. It is the possibility distribution p defined by the converse of the pignistic transform applied to the

pignistic transform of m.

Proof. Since function Pig is a bijection from possibility to probability measures, it follows, using the above
lemmas, that the consonant mass function associated to Pig�1(p) is the unique maximum of I(m). h
4.2. Comparing commonality functions

Smets [34] suggested that the least specific isopignistic belief function according to the commonality order-
ing is also Pig�1(Pig(m)). There is indeed a unique minimally Q-informative belief function in IP(p), and it is
precisely the one found by maximizing I(m). In order to prove it, we first prove that, for ensuring compara-
bility in the sense of the Q-informativeness ordering between a consonant belief function and a belief function,
it is enough to rely on contour functions:
fact, this is the Gini index of p.
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Lemma 4. Consider a belief function with mass function m and a possibility distribution p with respective

commonality functions Q and Qp. Then Qp(A) P Q(A) "A � X if and only if p(x) P Pl({x}) "x 2 X.

Proof. It is obviously enough to prove the ‘‘if’’ part since Q({x}) = Pl({x}). Besides, note that for possibility
measures Qp(A) = minx2Ap(x). Now assume p(x) P Pl({x}) "x 2 X. Then, Qp(A) = minx2Ap(x) =
p(x*) P Pl({x*}) = Q({x*}) P Q(A) since function Q is antimonotonic with respect to inclusion. h

The following result is a strong form of Lemma 1.

Lemma 5. Consider a belief function with mass function m, p = Pig(m), and p = Pig�1(p). Then, p is not more

specific than the contour function of m, i.e. p P pm.

Proof. Consider p = Pig(m), such that p1 P p2 P � � �P pn and p = Pig�1(p). It is such that 1 = p1 P
p2 P � � �P pn P pn+1 = 0. Using Eq. (10), note that pk = p(xk) is defined in terms of m as
pk ¼ k � pk þ
X

j¼kþ1;...;n

pj ¼ k �
X

E:xk2E

mðEÞ
jEj þ

X
j¼kþ1;...;n

X
E:xj2E

mðEÞ
jEj :
We must show that this expression is not less than
P

E:xk2EmðEÞ ¼ PlðfxkgÞ ¼ pmðxkÞ. To this end we proceed
focal set by focal set, with fixed cardinality. Denote by ck(E) the multiplicative coefficient of m(E) in the expres-
sion of pk, namely, denoting by lE the indicator function of E:
ckðEÞ ¼
k � lEðxkÞ
jEj þ

X
j¼kþ1;...;n

lEðxjÞ
jEj :
Let us show that ck(E) P 1 whenever xk 2 E (otherwise m(E) does not contribute to pm(xk)).
First, assume jEj = n. It means that E = X. The coefficient cn(X) of m(X) is k

nþ n�k
n ¼ 1 since all terms in the

second summand of the expression of cn(E) are present.
Now, assume jEj = i > k. There are at least i � k terms in the second summand of the expression of ck(E).

Then ckðEÞP k
i þ i�k

i ¼ 1.
Assume jEj = i 6 k. Then the second summand of the expression of ck(E) may be zero since E may fail to

contain any xj for j > k. It is no problem since then ckðEÞP k
i P 1 by assumption. h

Theorem 6. The unique consonant mass function in IP(p) (induced by the possibility distribution defined by (10)),

is minimally Q-informative.

Proof. Based on the lemma above, we know that p P pm for p = Pig�1(Pig(m)). Due to Lemma 5, it implies
that p is not more Q-informative than m. Setting p = Pig(m), this property holds for all belief functions in
IP(p), and p 2 IP(p), by construction. Hence p is not more Q-informative than any belief function in IP(p). h

Note that Lemma 5 implies Lemma 1 since the latter compares the sum
P

i¼1;...;npi to the sumP
i¼1;...;npmðxiÞ. However, the proof of Lemma 1 is more direct. Moreover, Lemma 5 shows that when com-

paring mass functions in terms of commonality, one of them being consonant, commonality functions play
no particular role. Only contour functions matter. So, the optimality of the possibility measure in IP(p) is
really in the sense of the pointwise comparison, in the fuzzy set inclusion sense, of the plausibility functions
on singletons, i.e. the contour functions.

Let us now turn to the issue of unicity of the least informative mass function in the sense of the pointwise
comparison of contour functions. The unicity problem can be stated as follows: given a possibility distribution
p on X, whose pignistic transform is a probability distribution p = Pig(p), is there another (non-consonant)
mass function m 5 mp such that p = Pig(m) and p = pm? The following result shows this is not the case.

Theorem 7. For any probability distribution p on X, the mass function m with the least specific contour function

pm such that p = Pig(m) is unique, consonant and is such that pm = Pig�1(p).
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Proof. Fix the probability distribution p such that p1 P p2 P � � �P pn and p = Pig�1(p). It is such that
1 = p1 P p2 P � � �P pn P pn+1 = 0. From Lemma 5, the condition p = pm must be enforced. The mass func-
tion m must then satisfy the following constraints, for k = 1, . . . ,n:
X

E:xk2E

mðEÞ
jEj ¼ pk; ð13ÞX

E:xk2E
mðEÞ ¼ k � pk þ

X
j¼kþ1;...;n

pj ð¼ pkÞ ð14Þ
and moreover,
P

EmðEÞ ¼ 1.
Let us show, using backward recursion on the size of subsets E, that "k = n downward, the only focal set E

with cardinality at most k such that xk 2 E is Ek = {x1,x2, . . . ,xk}.
For k = n, it holds that pn = n Æ pn so that Eqs. (13) and (14) lead to
X

E:xn2E

mðEÞ ¼ n �
X

E:xn2E

mðEÞ
jEj

 !
:

It reads
P

E:xn2EmðEÞ � 1� n
jEj

� �
¼ 0, hence m(E) = 0 whenever xn 2 E, and jEj < n. So the only focal set con-

taining xn is X. So, all such masses m(E) in the pair of equations number k = n are zero except m(X) = n Æ pn.
Denote Ej = {x1, . . . ,xj}. Suppose all masses m(E) = 0 whenever xj 2 E, jEj < j in the pairs of equations

j = k + 1, . . . ,n, except m(X) = n Æ pn, and m(Ej) = j(pj � pj+1). Consider the pair of equations number k. Eq.
(13) reads
X

xk2E�Ek

mðEÞ
jEj þ

mðEkÞ
k
þ

X
j¼kþ1;...;n

mðEjÞ
j
¼ pk:
Since the only focal sets with more than k elements are of the form Ej for j > k. Note that
P

j¼kþ1;...;n
mðEjÞ

j ¼ pkþ1

by definition. So (13) reads
k �
X

xk2E�Ek

mðEÞ
jEj þ mðEkÞ ¼ kðpk � pkþ1Þ:
Now (14) reads
X
xk2E�Ek

mðEÞ þ mðEkÞ þ
X

j¼kþ1;...;n

mðEjÞ ¼ k � pk þ
X

j¼kþ1;...;n

pj:
But since m(Ej) = j(pj � pj+1) for j > k, it holds that
X
j¼kþ1;...;n

mðEjÞ ¼ ðk þ 1Þðpkþ1 � pkþ2Þ þ ðk þ 2Þðpkþ2 � pkþ3Þ þ � � � þ nðpn � 0Þ ¼ ðk þ 1Þpkþ1 þ
X

j>kþ1

pj:
Simplifying, it yields
X
xk2E�Ek

mðEÞ þ mðEkÞ ¼ kðpk � pkþ1Þ:
For equalities (13) and (14) to hold simultaneously, it requires the equality
k �
X

xk2E�Ek

mðEÞ
jEj ¼

X
xk2E�Ek

mðEÞ:
That is,
P

xk2E�Ek
mðEÞ 1� k

jEj

� �
¼ 0. But since jEj < k, it enforces m(E) = 0 "E � Ek such that xk 2 E. So the

only focal set E with cardinality k is Ek = {x1,x2, . . . ,xk} with mass k(pk � pk+1).

Finally, since p1 = 1, m(E) = 0 as soon as x1 62 E.
Overall only subsets of the form E = Ek, k = 1, . . . ,n may receive positive mass if the mass function has

pignistic transform p and contour function p = Pig�1(p). Hence, m is consonant, and because there is only one
consonant mass function in IP(p), it precisely yields the one underlying Pig�1(p). h
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Putting together Theorems 6 and 7, the minimally Q-informative mass function with pignistic probability p

exists, is unique and is consonant. It is actually the mass function having the least specific (i.e. pointwisely
maximal in X) contour function, hence also least precise in the sense of the comparison of Bel–Pl intervals
restricted to singletons.

Remark. Theorem 7 can also be viewed as a corollary of Lemma 5 and Theorem 3 conjointly. Note that the
total ordering induced by the non-specificity index I refines the partial specificity order according to the
pointwise comparison of contour functions. So, in theory the optimal isopignistic solutions in the sense of I

form a subset of the maximal isopignistic solutions according to the latter partial ordering, and Theorem 7
does not follow from Theorem 3 alone. But Lemma 5 says such maximal isopignistic solutions have the same
contour functions as Pig�1(p), hence cannot be discriminated by index I. As Theorem 3 shows that the
isopignistic belief function maximizing I is unique, it is also the unique maximal isopignistic maximal solution
according to the pointwise comparison of contour functions. However, it is interesting to provide a self-
contained proof of Theorem 7.

Our results also suggest that most of the time, a unique least precise non-consonant mass function in IP(p)
in the sense of the comparison of Bel–Pl intervals for all events will not exist. Indeed if m 2 IP(p) is a least
precise mass function different from the one inducing p = Pig�1(p), then p(x) < pm(x), for some x 2 X, due
to the unicity result in Theorem 3. Since m is among minimally precise ones, it must also hold that
Pl(A) > P(A) for some non-singleton event A. So m and mp are not comparable in the sense of Bel–Pl inter-
vals. That this non-unicity situation does occur can be checked from Example 1.

Example 1 (continued). Assume a ¼ 1
2
. So, mðfx1;x2gÞ ¼ mðfx1;x3gÞ ¼ 1

2
. The pignistic probability p induced

by m is clearly: pðx1Þ ¼ 1
2
; pðx2Þ ¼ 1

4
; pðx3Þ ¼ 1

4
. Then, p = Pig�1(p) is pðx1Þ ¼ 1; pðx2Þ ¼ 3

4
; pðx3Þ ¼ 3

4
. The

contour function of m is pmðx1Þ ¼ 1; pmðx2Þ ¼ 1
2
; pmðx3Þ ¼ 1

2
. It is more specific than Pig�1(p) as expected.

Note that Pl({x2,x3}) = 1, while Pðfx2;x3gÞ ¼ 3
4
. Hence m and Pig�1(p) are not comparable in the sense

of the comparison of Bel–Pl intervals; they are both minimally precise in IP(p).

Remarks

• There is no point carrying out the similar study on the plausibility transform by Cobb and Shenoy [3] as for
the pignistic transform, since the belief functions having the same plausibility transform also have the same
contour function.

• Besides, in the case of objective probabilities, when p is frequentist and represents the available (rich) infor-
mation, a counterpart to the above approach would be to look for the most specific belief function domi-
nating p, but this is p itself, so we cannot follow this line in order to justify the probability–possibility
transformation (11).
5. Conclusion

The main result of this paper is that, on finite sets, the least committed mass function, in the sense of the
pointwise comparison between contour functions, among the ones which share the same pignistic transform,
is unique and consonant. That is, the corresponding plausibility function is a possibility function. It is the
unique one in the set of plausibility functions having this prescribed pignistic probability, because the pignistic
transformation is a bijection between possibilities and probabilities. So this possibility function corresponds to
the least committed mass function whose transform is equal to the subjective probability supplied by an agent.
This consonant belief function is also the least informative isopignistic one in the sense of the commonality
information ordering. It suggests a new justification to a probability–possibility transform previously suggested
by two of the authors [14]. An adaptation of this result to the continuous setting is outlined by Smets [37].

This result provides an operational basis for defining subjective possibility degrees, hence the membership
function of (discrete) fuzzy numbers. It tentatively addresses objections raised by Bayesian subjectivists
against the use of fuzzy numbers and numerical possibility theory in decision-making and uncertainty mod-
elling tasks. Interestingly, our approach refutes neither the Bayesian operational setting (unlike Walley [38]
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and De Cooman and Aeyels [5]) nor the use of standard expected utility for decisions (since the pignistic prob-
ability is tailored to respect the expected utility criterion as recently shown by Smets [36]). It only questions the
interpretation of betting rates as full-fledged degrees of belief. Bayesians may then claim that our approach
makes no contribution, since the underlying possibility distribution is not used for selecting decisions. How-
ever, the proposed subjective possibility approach, just like the Transferable Belief Model, does differ from the
Bayesian approach in a dynamic environment. In our non-classical setting, when an event is known to have
occurred, the revision of information takes place by modifying the possibility distribution underlying the pig-
nistic probability, not this probability directly. It means that the new probability distribution obtained from
the agent is no longer assumed to coincide with the result of conditioning the original pignistic probability, but
that the agent would bet again based on a different frame supporting the revised knowledge (see e.g. [21,35], on
this matter).
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