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The paper deals with general expansions which give as special cases new results 
involving the Bessel functions, Jacobi, ultraspherical, and Laguerre polynomials, 
where the degree of the function is incorporated in the argument. In fact, the 
theorems unify and extend the Neumann-Gegenbauer expansion and its 
generalization by Fields and Wimp, Cohen, and others, the Kapteyn expansion 
theory, and the Kapteyn expansion of the second kind. New expressions are given 
for the Neumann-type degenerate form of a Gegenbauer addition theorem, the 
Feldheim expansions for the Jacobi and ultraspherical polynomials, and other 
expressions. Also of interest is the new method of proof, involving differential and 
integral operators. 

INTRODUCTION 

The generalization of the Neumann-Gegenbauer expansion has proved to 
be of considerable interest to a number of workers. See Luke [9] for an 
excellent exposition. This interest has resulted in the unification of many 
expansions and has in fact also given new addition theorems and generating 
functions. Fields and Wimp [6] gave us a general addition theorem which 
was extended in different directions. See Luke [9] and Cohen [3] for lists of 
references, which are by no means exhaustive. 

In this paper, we not only present Kapteyn-type expansions, for both the 
first and second kind [Ill, but also show that the Neumann-Gegenbauer- 
type expansion tits into the theory. See Watson [ 12, Chap. XVII] for an 
excellent exposition of theory and application of the Kapteyn series [8]. 
Special cases of our theorems generalize a number of important old results 
such as the degenerate Gegenbauer addition theorem and other expressions. 
The expansions show the degree of the functions incorporated in the 
argument. Previous known results of this type were recently given by Carlitz 
[2] and Cohen [3,4]. 

The addition theorems in this paper involve the Bessel function, Jacobi, 
ultraspherical, Laguerre, Neumann, and allied polynomials, and extended 
polynomials and functions such as those considered in Luke [lo]. The 
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method of proof is quite different 
workers in this area. 

Gegenbauer [7] (see also Watson 
addition theorem 

COHEN 

from the aproach taken by previous 

[ 12, p. 368, Eq. 21) gave an important 

e ircos 6 _ 2”r(“) O” 
- --jT z. (v f n) i”J,+ n(z) cxcos 4) (1.1) 

involving the Bessel function and the Gegenbauer polynomial. A special case 
of Theorem l(b) is the generalization of (1.1): 

ZA 

2-?@)( 1 - f a’z’) 
exp [ izx] 

= f. iyn + n)[(a + ~an)(d - a + fm>l- ta’2 

* c; 
[ [(a + tun)(nu~ a + ta~)11’2 I 

x J*+Jz[(a + +z)(uii -a + ;an>11’21. (1.2) 

A special case of interest in (1.2) is the case La = 2a. Putting a = 0, a = i, 
x = cos (6 reduces (1.2) to (1.1). 

An important new expansion is 

[ I 
1 

x c:, [(a + Un)(lu~ a + an)]‘/* 

Z 

= 2&r(A)(l - fuzz*) cosIxzl* 

(l-3) 

Putting a = 0, a = i, x = cos I$ gives the known Gegenbauer result [ 12, 
p. 369, Eq. 51. 

Watson [ 12, p. 140, Eq. 31 gives the expansion of a Bessel function in 
terms of Bessel functions and modified Jacobi polynomials. 

(jkz)“-“J,(kz) = k’ 5 r’n;;;;;,2n) 2F1 [ -“,‘; ;;“; 
tl==O 

k2] J,,+zn(~). 

(1.4) 
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A particular example of Theorem l(a) extends (1.4): 

e (A t 2n) r(n t n) 
Lo n! [(a + un)(la - a + un)] .a,* J,+,,[z[(a t an)@ - a + ~4l”‘l 

L 
-n,A+n; 2 

.2Fl 1 ;z” c 1 +c; (a+un)(C--a+un) = $; I);u!z2 Jclxzl. 

(1.5) 

Note Au = 2a is a case of interest. 
Putting a = 0, a = i in (1.5) gives essentially (1.4). Letting x = 0, a = 0, 

1 = 0, a = 2 in (1.5) gives a Kapteyn-type result in Watson [ 12, p. 5661. 
Letting x = 0, a = 1, 2 = 1, a = 2 gives a similar result in Watson [ 12, 
p. 5671. 

Watson [ 12, p. 283, Eq. 1 ] gives 

Z” 
-zr 
I-z 

2 An,,(t)J,+,(zh 
tl=O 

(1.6) 

where A,,,(t) is the Gegenbauer polynomial generalization of Neumann’s 
polynomial. A particular example of Theorem l(d) is 

ZA 

(x 
z/s _ zz/s 

G A ;:;qx> 
)(l -iu2z2) = “CO 

where 

2,yJ t 24s) rpt + 24s - k) 
In/s1 

A “,;;qx> = x 
X [ $x[ (a + un/s)(d - a t an/s)] “‘1 2k-(2n’s) 1 

k=O x2’“k! [(a t un/s)(uA - a t un/S)]A’2. 

(1.8) 

Putting a = 0, s = 2, a = i gives (1.6). 
Another special case of interest is 

zA cc 
X 2/s -z2,s = n;. K3scwl+,2n,s, [z [(at~)j,l-at~jj”2], 

(1.9) 
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where 

2A(/I + 2n/s)(a + an/s - ak) 
In/s1 

Byy(x) = c 
x (an - a + an/s - ak) I--@ + 2qs - k) 1 

k=O X*/Sk! [(a + un/s)(d - a + an/s)]"" + l 

1 4 K -X 
2 

uA-a i ~s~)(a+~)]“‘]2k-~2”‘“. 

Letting a = i, u = 0, s = 2 gives 
algebra gives [ 12, p. 571, Eq. 21. 

For the Laguerre polynomial, 
Eq. (7.4)]. 

(1.6), while putting s = 2, UA = 2a and 

we extend a result due to [ 1, p. 538, 

<f zlA z2 ‘x (A + 2n)@L 
I-@)( 1 - a a%“) [ I 

-= 
exp 4x “To [(a + un)(-a + fd + an)] “* (-x)” 

. I.;*-*“[x(a + un)(d - a + an)] J,+*“[z[a + un)(-a + al + an)]“*]. 

(1.10) 

Letting a = i, a = 0 gives the known result. If required, one may also 
derive the generalization of [ 1, p. 541, Eq. (7.15)]. 

Special cases of Theorem 1 also give extensions of the important Feldheim 
connection coefficients and expansions, both for the Jacobi and 
ultraspherical polynomials. 

For the Gegenbauer polynomial, we have 

[l/21 
zl-smC~(xzs) = x f,(x) Cy_,,[z[(a + un)(-uv -al - a + an)]-“*], 

?I=0 

(1.11) 

where 

f,(x) = (v + 1- 2n) 2”-‘n 01>, 
(v) n! (1 + v),-,m! 

X m-2k(a + usk)(uv - al - a + a&)(-m),,(-n),, 
[n/s1 
Y- 

X (a + fzr~)“*-~~-~ (-uv - al - a + un)“2-sk-1 1 
‘i-I 

k=O (+2sk(l --ill - m>k k! 

f 22sk-7-v - 1 + n),k 

and m < [l/s]. 
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Letting II = 0, (r = i, s = 1, I= m gives [5, p. 474, Eq. (4.12)], and letting 
a = 0, a = i, s = 1, m = 0 gives [5, p. 480, Eq. (5.17), third equation]. 

For the Jacobi polynomial, we have 

Y ‘-msRln’7d’(xY”> = i g,(x) W,“’ [(a + .,,& _ a + J 5 (1.12) 
fl=O 

where REqd’(x) is the shifted Jacobi polynomial [ 10, p. 4341, and 

[ 

(1 + c + d),,(a + an)‘- ‘(al - CX + an)‘- ’ I! 

g,(x) = 
x (1 + v +p)[-,(A),(-v - Q&d - a’) 1 

m! (1 + c + d), n! (1 + v +P)~~-~(A)~~ 

ail - a 
-m,-d-m,;+ l,--- 

as 
+ 1, A(-n, s), d(l + 4 s); 

Xm2s+4 2s+3 F 
a aA--ff 

-c-d-2m,--, -, A(-/, s), A(+ - 1, s); 
as as 

1 

x(a + an)“(d - a + an)’ 

1 

’ 

/I=-v--p-21- 1, and m < [Us], and 

d(m, s) = m/s, (m + 1)/s ,..., (m + s - 1)/s. 

Putting a = 0, a = i, s = 1, I = m gives [S, p. 472, Eq. (4.6)J, and m = 0, 
a = 0, a = i, and s = 1 gives [5, p. 480, Eq. (5.16), third equation]. 

Note that the expansions given in this section are of special interest for 
aA = 2a. 

The theorem and its constituent parts are enunciated and proved in the 
next section. 

The method of proof developed in the next section involves differential and 
integral operators of a particular kind. Other types of operators, which give 
expansions of a different character, will be presented elsewhere. 

II 

LEMMA 1. For 6, /I real or complex numbers, then for p a non-negative 
integer 

(a) + (-l)#-‘(b + /? + i)(b + i)“(b + 2p + i)” = -I- 
i 
i=O i! (p - i)! (2j3 + 2b + i),, , 2’ (2.1) 

4OY.'lO2;1-Y 



128 M.E.COHEN 

p (-l)p--i(b+/?+i)(b+i)P-1(b+2/3+i)P-’ (b) c 
i=O 

/ 
i! (p - i)! (28 + 26 + i)p+ I 

I 0 PfO = I Pd+ 2P) 
p = 0. 

Proof of Lemma l(a). 

1 D[x”(xD)p[xb(l -x)“]]’ dx 
0 

= 2~;xb(xDy[xb(l -x)“] 

x f. (-p)i(b + i)P(b t/l t i)xb+B+i-‘ dx 
ii 
i=O i! 

= 2 + (-l)P(-p)i(b t p + i)(b t i)P(b t 2/3 t i)” 
L 
i=O i! 

(2.2) 

(2.3) 

P-4) 

= 2 5 (-l)P(-p)i(b t i)P(b + 2p + i)P(b + p + i)p! r(2b + 2p t i) 

i=O i!r(2b+2p+itpt 1) 
(2.6) 

Going from (2.3) to (2.4) involves expanding (1 - x)~ and operating. 
Integrating (2.4) p times gives (2.5). The integral in (2.5) is now the beta 
function, reducing to (2.6). Now integrating (2.3) directly gives 

p! p!. (2.7) 

Equating (2.6) and (2.7) and simplifying completes the proof. 

Proof of Lemma l(b). The proof involves the consideration of 

i lDIX~(XD)P-IIXb(l -x)“]]‘dx. P-8) 
0 

Proceeding as in Lemma l(a) and simplifying results in Lemma l(b). 

THEOREM l(a). For a, A, a real or complex numbers, ck, d, arbitrary 
functions of k, then for s a positive integer 

1 -la5 kzo (XZS)k ck= "go @ + 2n)Rn(x)Sn(z)9 (2.9) 
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where 

IWsl xkc,(a + un)“-sk(h2 - a + anyk r(A + n + Sk) 
RI(x)= 2 (n - sk)! ; 

k=O 

S,(z) = f (-I) 
p zn+Jya + an)yAz - a + any 

.D=o p!qA+2n+p+l) * 

THEOREM 1 (b) 

1 $ C”(XZY 
1 - QZZS L 7 = f (A+ 4) U,(x) V&h (2.10) 

n=o * n=O 
where 

IdsI c 
U”(X) = c n-skX 

n-sk(a + un/~)~(uA - a + an/s)” r(A + 24s - k) 

k=O (n - sk)! k! 

V”(Z) = f (-lJPz n+ps(a + ~~n/s)~(ul- a + ~7n/s)~ 

p=o p!r(A+2n/s+p+l) * 

THEOREM l(c) 

cc 
(XZS)k Cdsk 

k?. k! (a + usk)(uA - a + ask) 
= f (A + 2n)F,(x) G,(z), (2.11) 

n=O 

where 
‘n’s1 (-l)“-Skck(a+un)“-sk-‘(ul-a+un)“-sk-’T(L+n+sk)xk 

F,(x) = r 
k:O (n - sk)! k! 3 

O” 
G,(z) = r, 

(a + CWZ)~(U~ -a + un)P dn+pz”+P 

p=o p!I-@+2n+p+ 1) a 

THEOREM l(d). 

F (xz)” CA 
m 

ZO n! (a + un/s)(d - a + an/s) = n = o ‘i 
il + $) ‘4,(x)B,(z), (2.12) 

where 

(-l)k c”-,L(a t m/s)“-’ 
IdSI 

A,(x)= ‘y 
X(u~-atun/s)k-‘~(~+2n/s-k)x”-“k I 

k=O (n - sk)! k! 

m B,(z)= c d,, + Sp(a + un/~)~(uA - a t u~/s)~ z~+‘~. 

p=o p!iq+2n/s+p+ 1) 
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THEOREM l(e). 

xp = P! (a + asp&A - a + asp) 

cP 

x .y 
L 

(/I + 2n)(cr + unyyzA - a + unyn F (x) 
(sp - n)! q/l + sp + n + 1) n 

(2.13) 
VI=0 

THEOREM l(f). 

xn = n! (a t un/s)(ul - a + an/s) 

cn 

ws1 (A + 2n/s - 2p)(a t an/s - ~p)~(uA - a + an/s - up)” 
xc 

p=o p! r(A + 24s -p + 1) 

x 4--sp(x), (2.14) 

where (zexp(1 -z’)“‘[l + (1 -z*)“*]-‘I ( 1, and the left-hand sides of 
(2.9) through (2.12) are assumed to be the convergent. The condition given 
above is su@ient for convergence, but not necessary. 

Proof of Theorem 1 (a). 

f (A -I- 2n) ‘Y’ 
c,x”(a + un)“-sk(;lu - a f un)“-sk r(A + n t sk) 

!I=0 k50 (n - sk)! 

. f (-l)p z”+“(a t un)P(Au - a t un)D 

p=o p! r(J. t 2n +p + 1) 
(2.15) 

(I. + 2sk t 2n) ckxk(a + ask + un)“+P 

z: f 2 x (IZu - a + ask + un)“+P r(3, + n t 2sk) 1 
n=O p=O k=O n! 

(-1)~ Z”+p+sk 

‘p!f(A+2sk+2ntp+ 1) 
(2.16) 

L 

zptSk(A + 2sk + 2n) ckxk(a + ask + un)p 

3 F + X(~u-a+usk+un)pT(Atnt2sk)(-1)p-n 1 
kti0 p&O n4, n!(p-n)!r(A+2sk+p+n+ 1) 

(2.17) 

= f 5 (zu’)” ZSkCkXk (2.18) 
k=O p=O 

= 1 -lzu2 i. (XzS>k ‘k (2.19) 
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which completes the proof. Equation (2.17) reduces to (2.18) by Lem- 
ma l(a). 

Proof of Theorem l(b). 

q n-skX n -sk(a i- an/s)k(u~ - a + an/s)” r(A + 2n/s - k) 

ZO (n - Sk)! k! 

. fz (-1)P z”+ps(a + un/s)“(d - a + an/s)P 

PYO p!qA$2n/s+p+ 1) 
(2.20) 

(A + 2k + 2n/s) c,x”(a + ak + un/~)~+~ 

=-? ?- ? x (an - a -b ak + un/~)~+” 

,zll keo pco n! k! 

Z-Q + k + 2n/~)(-l)~ z”+~‘+~~~ 
p!I-(Af2n/.s+2k+p+ 1) 

= \“- F + 
,=O p:O ,(:O 

(2.2 i) 

(A + 2k + 2n/s) c,x”(a + ak + an/~)~ 

X 
~(uA-a+uk+un/s)~~(;l+k+2n/s)((-1)~-~~”*~~ 

n!k!(p-k)!I-(A+k+2n,‘s+p+l) (2.22) 

+b 

c Xnz”tPs U 2P 

= 
,zo pYo n! 

(2.23) 

1 m c,(xz)” 
= 1 - lzZzS n;O n! (2.24) 

and Theorem 1 (b) is proved. Lemma l(a) is employed in going from (2.22) 
to (2.23). 

Proof of Theorem 1 (c). 

ck(-l)npsk(a + un)“-sk-’ 

X (aA - a + ~7n)“-~~-’ r(A + n + sk) xk I 
(n - sk)! k! 

Fz n+p(a + ~n)~(ui, -a + a~)~ d,,, 

p=o p! I-(2 + 2n +p + 1) (2.25) 

(A + 2sk + 2n) ck(-l)“(a + ask + an)“ip-’ 

-Gq: x (al -a -t ask + an)“tP-l 1 = hi 
n-0 k=O p’O n! k! 
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l-(1 + n + 2sk) xkzn+sk+pd,,+p+sk 
p!T(A+2n+2sk+p+ 1) (2.26) 

=f?? k, 

zP+skckxkdp+sk 

k=o p=o 

(A + 2sk + 2n)(-1)” 
~(a+usk+an)~-‘(uLa+ask+an)P-’ I 

II=0 n! (p -n)! 

I-@ + n + 2sk) 

r(A+n+hk+p+ 1)’ 
(2.27) 

The summations over n and p reduce with the aid of Lemma l(b) to give 
Theorem 1 (c). 

Proof of Theorem l(d). 

C-1) k X”-skC,-,k(a + un/s)k- l 
x (aA - a + an/s)“- ’ I-@ + 24s - k) I 

(n - sk)! k! 

.n+sPd 
n + ,(a + an/s)p(al - a + an/s)P 

p=o p! r(n + 24s +p + 1) 
(2.28) 

(A + 2n/s + 2k)(-l)k x”c,(a + uk + un/s)p+k-l 
X (al - a + uk + un/s)P+k-’ r(3, + 2n/s + k) I 

n=O p=O k=O n! k! 

Z 
n+Sk+spd 

n+sk+sP 

p!T(A+2n/s+p+2k+ 1) 
(2.29) 

((A + h/s + X)(-l) k x”c,(a + uk + un/s)P-l 
~(ul-a+uk+un/s)~-‘~(d+2n/s+k) I 

n! k! 

Zn+sPd 
it+sp 

(p-k)!r(A+2n/s+p+k+l) 

Equation (2.30) reduces to Theorem l(d) using lemma l(b). 

Proof of Theorem 1 (e). Consider Theorem 1 (c), and compare coefficients 
of powers of z. 
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Proof of Theorem l(f). Consider Theorem I(d), and compare coefficients 
of powers of z. 

Putting a = 0, a = i, s = I= 1 in Theorem 1 (c, d) gives [6]. See also [ 10, 
Sect. 11.3.6.2, p. 446; 3, Theorem 51. 
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