=
=
View metadata, citation and similar papers at core.ac.uk broughtto you by i CORE

provided by Elsevier - Publisher Connector

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 102, 123-133 (1984)

On Expansion Problems Involving Addition Theorems
and Kapteyn Series

M. E. CoHEN

Department of Mathematics, California State University, Fresno, California 93740

Submitted by R. P. Boas

The paper deals with general expansions which give as special cases new results
involving the Bessel functions, Jacobi, ultraspherical, and Laguerre polynomials,
where the degree of the function is incorporated in the argument. In fact, the
theorems unify and extend the Neumann—Gegenbauer expansion and its
generalization by Fields and Wimp, Cohen, and others, the Kapteyn expansion
theory, and the Kapteyn expansion of the second kind. New expressions are given
for the Neumann—type degenerate form of a Gegenbauer addition theorem, the
Feldheim expansions for the Jacobi and ultraspherical polynomials, and other
expressions. Also of interest is the new method of proof, involving differential and
integral operators.

INTRODUCTION

The generalization of the Neumann-Gegenbauer expansion has proved to
be of considerable interest to a number of workers. See Luke [9] for an
excellent exposition. This interest has resulted in the unification of many
expansions and has in fact also given new addition theorems and generating
functions. Fields and Wimp [6] gave us a general addition theorem which
was extended in different directions. See Luke [9] and Cohen [3] for lists of
references, which are by no means exhaustive.

In this paper, we not only present Kapteyn-type expansions, for both the
first and second kind [11], but also show that the Neumann—Gegenbauer-
type expansion fits into the theory. See Watson [12, Chap. XVII]| for an
excellent exposition of theory and application of the Kapteyn series [8].
Special cases of our theorems generalize a number of important old results
such as the degenerate Gegenbauer addition theorem and other expressions.
The expansions show the degree of the functions incorporated in the
argument. Previous known results of this type were recently given by Carlitz
[2] and Cohen |3, 4].

The addition theorems in this paper involve the Bessel function, Jacobi,
ultraspherical, Laguerre, Neumann, and allied polynomials, and extended
polynomials and functions such as those considered in Luke [10]. The
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method of proof is quite different from the aproach taken by previous

workers in this area.
Gegenbauer [7] (see also Watson [12, p. 368, Eq. 2]) gave an important
addition theorem

e,-zcoswz}_";_(v)_ i v +n) i, (z) C2(cos §) (L.1)

involving the Bessel function and the Gegenbauer polynomial. A special case
of Theorem 1(b) is the generalization of (1.1):

A
z .
PTo) = 1z Pl
= Y i"(A +n)[(a + fan)(ad —a + $an)|~ A2
n=90

x
En [[(a +tan)(la —a + %an)]l/zjl
X Jy . alz{(a + 3an)(@h — a + 3an)]'?]. (1.2)

A special case of interest in (1.2) is the case Aa = 2a. Puttinga =0, a =,
x = cos ¢ reduces (1.2) to (L.1).
An important new expansion is

© (—1)"( + 2n)
ize ((@+an)(Aa —a +an)]

CA X _ ZA
e [ (@ +am)Ga —a +an)]"? ] =y — 1) b
(1.3)

7 Jasl2[(@ +an)(la —a + an)]'?]

Putting a=0, a=i, x=cos¢ gives the known Gegenbauer result [12,
p- 369, Eq. 5].

Watson [12, p. 140, Eq. 3] gives the expansion of a Bessel function in
terms of Bessel functions and modified Jacobi polynomials.

_ & Ty + n)u + 2n) [—n,ﬂ+n; 2]
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A particular example of Theorem 1(a) extends (1.4):

, (A+2n)T(A + n) o
,;, n! [(a + an)(Aa — a + an)]*? Jyianlzl(@ + an)(ha — a + an)]'?]
py | A X’ T+ 1)(;z>“
2 1[ l +c¢; (a+an)(Aa—a+an)]— x°(1 - Laq%? Jolxz).
(1.5)

Note Aa = 2a is a case of interest.

Putting a =0, a =i in (1.5) gives essentially (1.4). Letting x=0, a =0,
A=0, a=2 in (1.5) gives a Kapteyn-type result in Watson |12, p. 566].
Letting x=0, a=1, A=1, a=2 gives a similar result in Watson |12,
p. 567].

Watson |12, p. 283, Eq. 1| gives

v

Z

= i Ay (DT, 4 n(2)s (1.6)

{t—z ey

where A, (¢) is the Gegenbauer polynomial generalization of Neumann’s
polynomial. A particular example of Theorem I(d) is

z* {2 R
=1 —da)
an an |'?
X It anrs) («a+T)(al_a+T) ',
(1.7)
where
[2"(/1 +2n/s) (A + 2nfs — k) }
sy L X [bxl(@ +an/s)(ah—a+anjs)) 20
AT (=3 2 2/s — an
Pt x*k!|(a + an/s)(al — a + an/s)]*/.
(1.8)

Putting a =0, s =2, a =1 gives (1.6).
Another special case of interest is

& - an an\1'?
—W’ﬁ?=;{) “(’C)sznm[z[<a+'s—)(a’1““+7)] }

(1.9)
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where

[2"(/1 + 2n/s)(a + an/s — ak) ]
B () — tzs) X (@A —a + anfs — ak) F'(A + 2n/s — k)
nATx) = ,go x*5k![(a + an/s)(@A — a + an/s)| V!

1 an an 1/292k—(2n/s)
S (e o [ I
2 s s

Letting a=1i, a=0, s=2 gives (1.6), while putting s=2, al =2a and
algebra gives [12, p. 571, Eq.2].

For the Laguerre polynomial, we extend a result due to [l, p. 538,
Eq. (7.4)].

A2y R (A + 2m)(A),
Ta)(1—5a’2) [’43?] = & @+ ami=a+ ai + an[ (7
LA [x(a + an)(@h — a + an)) J, ,p4lz[a + an)(—a + ad +an)] 2.
(1.10)

Letting ¢ =i, a=0 gives the known resuilt. If required, one may also
derive the generalization of [1, p. 541, Eq. (7.15)].

Special cases of Theorem 1 also give extensions of the important Feldheim
connection coefficients and expansions, both for the Jacobi and
ultraspherical polynomials.

For the Gegenbauer polynomial, we have

/2]
Zimeu(xzfy= N f(x) Ci_y,lzl(a + an)(—av — al — a + an)| 2],

n=0
(1.11)
where
(v+l—2n)2"’"l! ),
a1 +v),_,m!

[x""z"(a + ask)(av — al — a + ask)(—m), (—n) ]
[n/s] X (a + an)l/Z—sk—l(___av —al—a + an)l/z—sk~1
K=o (—Dasi(l —p — m), k!

Sulx) =

. 22sk—2k(__v -1 + n)sk

and m < [//s].
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Letting a=0, a =1, s=1, [=m gives [5, p. 474, Eq. (4.12)], and letting
a=0,a=1is=1, m=0 gives |5, p. 480, Eq. (5.17), third equation].
For the Jacobi polynomial, we have
v

!
[=msple.dyysy — \7 RH-p) [ - J, 1.12
y m O (xy*) = 84 R (a +an)(al —a +an) (12)

where R“*?(x) is the shifted Jacobi polynomial [10, p. 434], and

[(l +c+d)yua+an) Y ak —a+an) ! l!]
X (14 v+ ) yA)p(=v — Dolach —a’)

gnlx) = m! (M +c+d), nt (L+v+u)y_,(4),,

Y
—m, _d_m,_a_+ 1, “v-e, 1,4(—n,s), 4(A + n,s);
as as

m
- X 25+4F23+3
a al—a
—e—d~2m >,
as

o , A=l s), A(—v =1, s);

1
x(a + an)*(ak — a + an)’

*

A=-v—u—2-1, and m< [{s], and
A(m, s)y=m/s,(m + 1)/s,..., (m + 5 — 1)/s.

Putting a =0, a=1i, s= 1, [ =m gives [5, p. 472, Eq. (4.6)], and m=0,
a=0,a=1i and s =1 gives [5, p. 480, Eq. (5.16), third equation|.

Note that the expansions given in this section are of special interest for
al = 2a.

The theorem and its constituent parts are enunciated and proved in the
next section.

The method of proof developed in the next section involves differential and
integral operators of a particular kind. Other types of operators, which give
expansions of a different character, will be presented elsewhere.

n

LEMMA 1. For b,f real or complex numbers, then for p a non-negative
integer

(=1 b+ B+ DB +iIYB+ 2B+ 1
P R ES TR 7 (2.1)

409/102/1-9
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P (=P B+ Db+ P+ 28+ i)y
® 2 T (p—D! QB+ 2b+ Dye,
~ 0 p#0 22)
= : .
o+ T
Proof of Lemma 1(a).
jl D[x*(xDY[x?(1 — x)*]]* dx (2.3)
=2 f xB(xDY [x°(1 — x)?]
« i (=p)b + i) (b ::/f +xt 2.4)
— oy EDEP)b+E+ DG+ 1P+ 28+ 1)
o il
Xfx“’”‘”"“(l—x)" dx (2.5)
-2 i (1P Ep)b+ i) (b +28+i1Y(0+B+)p! (26 + 28 +1)
T A itreb+28+i+p+1) '

(2.6)

Going from (2.3) to (2.4) involves expanding (1 —x)? and operating.
Integrating (2.4) p times gives (2.5). The integral in (2.5) is now the beta
function, reducing to (2.6). Now integrating (2.3) directly gives

p'pl. 2.7)
Equating (2.6) and (2.7) and simplifying completes the proof.

Proof of Lemma 1(b). The proof involves the consideration of

jl D[x*(xDY ' [x*(1 — x)*]]? dx. (2.8)

0

Proceeding as in Lemma 1(a) and simplifying results in Lemma 1(b).

THEOREM l(a). For a, A, a real or complex numbers, c,, d, arbitrary
Sfunctions of k, then for s a positive integer
1 w

3 xzfYoe, = i (A 4 2n) R, (x) S,(2), (2.9)

2
l1—az =,
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where
n/s) xke (@ +an)"*(la—a +an)"**I'(A + n + sk
R,) = il )" ) (. );
iz (n — sk)!
—1Y z"P(a + an)’(Aa — a + an)”
Sn(z) Z ( ) ’ ( )( ) .
P pIrA+2n+p+1)

THEOREM 1(b)

1_1(12 : ,.Zo "(:!Z) "}i (,1+£—> U, Vo(z),  (2.10)
where
U (x) = ["’S' Co_x X" @ +an/s) (@l — a + an/s)* I'(A + 2n/s — k)
" ‘:0 (n — sk)! k!
V(2) = {2 (1Y 2"*P(a + an/s)’(al — a + an/s)’ .
o pPIrA+2n/s+p+1)

THEOREM 1(c)
w (xz°)* erdy = ¥ @+ Fx) Gz), (211)

S
= k! (a +ask)(ad —a +ask) ‘=,

where
& )" c(a+an)"**"YaA~a+an)" * "' (A +n+sk) x*

F =
W= 2 (n— k)L &l
D . n+p
G ()= Y’ (¢ +any(@h—a+an)d, ,z
= PITA+2n+p+1)

THEOREM 1(d).

& (xz)'c,d, x 2n
Y TN s T - o, <’1 + T) Anx) Byfz), (212)
where
[(-1)1( cn—sk(a +an/s)kh1 ]
iy X (al — a 4+ an/s)* ' T(X + 2n/s — k) x"
An¥)= X (1 — sk)L k!

k=0
B,(z)= 1 sp(@ +an/sy’(ak —a + an/s)? z"**"
! H pP!'TA+2n/s+p+1) .

p=0
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THEOREM 1(e).
= p! (a + asp)(ad — a + asp)

b

& (A +2n)(a + an)’?""(aA - a + an)* "
> F 2.13
. n=0 (Sp—n)!r(,l+sp+n+1) n(X) ( )
THEOREM 1(f).
« _ hl(a+an/s)(al —a + an/s)
= -
y (31 (A + 2n/s — 2p)(a + an/s — ap)P(ak — a + an/s — ap)?
pr(A+2n/s—p+1)

(2.14)

p=0

X Ay gp(x),

where |z exp(1 —z?)"2[1 + (1 —2z2)"?|7'| < 1, and the lefi-hand sides of
(2.9) through (2.12) are assumed to be the convergent. The condition given

above is sufficient for convergence, but not necessary.

Proof of Theorem 1(a).
¢, x*(a + an)""*(da — a + an)"~** I + n + sk)

[n/s]
(n — sk)!

(A+2n) Y
0

8

)

n=

(=1 z"*?(a + an)’(Aa — a + an)’

-
= PITA+2n+p+1)
[(,1 + 2sk + 2n) ¢, x*(a + ask + an)"** }
:{3, %‘l {‘2 X (Aa — a + ask + an)"*? T'(A + n + 2sk)
ARV AN n!
n=0 p=0 k=0 *

(__l)p zhtp+sk

PTG+ 2k +2n+p+ 1)
2P*SK(Q + 25k + 2n) ¢, x(a + ask + an)?

[ X (Aa — a + ask + an)? T + n + 2sk)(—1)"~

k=0
(2.15)

(2.16)

|

n(p—n)'IA+2sk+p+n+1)

(2.17)

(2.18)

(2.19)
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which completes the proof. Equation (2.17) reduces to (2.18) by Lem

)

[

ma 1(a).
Proof of Theorem 1(b).
& it 20\ R ¢ gx"""(a + an/s)*(ak — a + an/s)* T4 + 2n/s — k)
= 5 ] (n — sk)! k!
v (1P 2" P(a + an/s)(ak —a + an/s)? (2.20)

pPITr(A+2n/s+p+1)
(A + 2k + 2n/s) ¢, x"(a + ak + an/s)"“’}

ptO
e %0, é‘; [ (ah ~— a + ak + an/s)**+*
== n! k!
(2.21)

=0

3

T(A + k + 2n/s)(—1) z7+ks+os
PITA+2n/s+2k +p + 1)

[e¢] [e 0] p
=N ¥ ¥
20 p=0 Ao
[( 2k + 2n/s) c,x"(a + ak + an/s)? }
(@A — a + ak + anfs)’ T(A + k + 2n/s)((—1)"~* z"+7*
kU (p—kNIT(A+k+2n/s+p+1) (2.22)
el se} Cnxnzn+psa2p
=2 ¥ l (2.23)
(2.24)

and Theorem 1(b) is proved. Lemma 1(a) is employed in going from (2.22)

to (2.23).
Proof of Theorem 1(c).
[C (_l)nfsk(a _+_an)n——sk ( }
[n/s) X (al —a + an)" k' [ + n + sk) x*
(n — sk)! k!

\j (A+2n) ¥
n=0 i=o
""(a+an)(ad—a+an)d
prrA+2n+p+1)
(4 + 25k + 2n) e,(~1)"(a + ask + an)"”‘]]
X (ad — a + ask + an)" P!
n! k!

(2.25)

n+p

oo}
<
p=0
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=N ¥ ¥
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i
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x
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T+ n+2sk)xkz" e, L 226
PIA+2n+2sk+p+1) (2.26)

0 ee] zp+skckxkdp+Sk
- Z Zo k!
[(/1 + 2sk + 2n)(~1)" ]
y i X (a + ask + an)’"'(al — a + ask + an)’ ™!
n!(p—n)!

T'(A + n + 2sk)
I'A+n+2sk+p+1) (2.27)

The summations over n and p reduce with the aid of Lemma 1(b) to give

Theorem 1(c).

Proof of Theorem 1(d).
. [(—1)" x"~ke (o +an/s)k! ]
n\ s X (@A —a + an/s)*~' (A + 2n/s — k)
<l * ) kgo (n — sk)! k!

"%, (a+ an/s)’(al — a + an/s)” (2.28)
p!T(L+2n/s+p+1) .

l:(/l + 2n/s + 2k)(—1)" xnc”(a + ak + an/s)p+k—1 ]
X (ad —a + ak + an/s)P**~' (A + 2n/s + k)

-5 32 nt k!

[o o]

¥

n=0

3

p=0

n+sk+spd

(2.29)

. z n+sk+sp
P!I(A+2n/s+p+2k+1)

[((,l + 2n/s + 2k)(—1)* x"¢, (@ + ak + an/s)P~! ]
X (ak —a +ak + an/sy’~' I'(A + 2n/s + k)

=§§i n! k!

Z"denup 5 30)
(p—kKNIA+2n/s+p+k+1) 2

Equation (2.30) reduces to Theorem 1(d) using lemma 1(b).

Proof of Theorem 1(e). Consider Theorem 1(c), and compare coefficients

of powers of z.
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Proof of Theorem 1(f). Consider Theorem 1(d), and compare coefficients

of powers of z.

Putting a =0, a=1i, s =1/=1 in Theorem 1(c, d) gives [6]. See also [10,

Sect. 11.3.6.2, p. 446; 3, Theorem 5].

»
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