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Abstract 

We consider some basic properties of the 2-category Fib of fibrations over arbitrary bases, 
exploiting the fact that it is fibred over Cat. We show a factorisation property for adjunctions in 
Fib, which has direct consequences for fibrations, e.g. a characterisation of limits and colimits 
for them. We also consider oplax colimits in Fib, with the construction of Kleisli objects as a 
particular example. All our constructions are based on an elementary characterisation of Fib as 
a 2-fibration. @ 1999 Elsevier Science B.V. All rights reserved. 

AMS Clussijication: 15D30, 18D20, 18A15, 03B15 

1. Introduction 

The purpose of this paper is to examine some aspects of the 2-category Fib of 

fibrations over arbitrary bases as a 2-fibration over Cat, via the 2-functor which maps 

a fibration to its base category. The main point is that, as well as having the usual 

Cartesian-vertical factorisation property for its morphisms, like any ordinary fibration, 

it also has an analogous factorisation for its 2-cells, which is essential to analyse its 

2-dimensional structure. 

An intrinsic property of 2-fibrations is a factorisation property for the adjunctions 

in the fibred 2-category (Theorem 4.3), which is our main contribution. We show 

some consequences of this fundamental property for ordinary fibrations themselves, 

qua objects of Fib, namely the existence of (co)limits and Cartesian closure for the 

total category of a fibration as related to its fibrewise structure, see Section 4.1. 
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In Section 4.2, as an instance of the construction of limits in the fibre 2-categories 

of a 2-fibration, we describe comma objects in Fib(B) (fibrations over the given base 

@). This description is applied in Section 4.3 to give an abstract 2-categorical proof 

of Benabou’s characterisation of fibrations over fibrations. Our final application of the 

Cartesian-vertical factorisation of 2-celIs in Fib is a construction of oplax colimits for it, 

based on those of its base, Cat, and its fibres Fib(_), the 2-categories of fibrations over 

a given base. An instance of this is the construction of Kleisli objects for comonads 

in Fib in Section 5. 

The above results show the value of regarding Fib as a 2-fibration in order to 

give a non-elementary study of its properties. Incidentally, the motivation to study 

such properties of Fib was to give a category-theoretic account of certain phenomena 

arising in logic and computer science, taking the point of view that a fibration is the 

proper abstract counterpart of a (constructive) predicate logic, over the simple theory 

corresponding to its base category. See [4], which also contains fuller details of the 

main constructions occurring in this paper. Such categorical-logic applications have 

been elaborated in [5-71. 

The reader may consult [12,16] for the relevant 2-categorical concepts involved in 

the present paper, Relevant background material for fibred categories can be found 

in [2,8,13]. A warning should be made about [3], which refers to a 2-fibration as a 

fibration in the 2-category 2-Cat. This concept is weaker than the one we consider 

here. 

2. Fibred 2-categories 

We introduce the relevant notions of Cartesian l-cells and 2-cells appropriate to 

characterise (in elementary terms) 2-fibrations. 

Definition 2.1 (Cartesian l-cell). Let P : 6 -+ LB be a 2-fimctor. 

(i) A l-cell f :X-+ Y in d is l- Cartesian if it is cartesian in the usual sense for 

the underlying functor PO : 80 + 330, i.e. for any l-cell h : Z + Y with Ph = Pf o u for 

some given l-cell u : PZ 4 PX, there is a unique l-cell h : 2 +X with Pi = u and 

foh=h. 

(ii) A l-cell f :X 4 Y in 6 is 2-Cartesian if it is l-Cartesian and for any 2-cell 

cc:g+h:Z--+Y such that 

pg 
I 

PZ u UPK’? PY = 

u 

Pf 
PX- PY 

Ph 

there is a unique 2-cell 4 : 6 + h : Z +X such that f4 = CI and P+ = o. Here, the l-cells 

@ and & are uniquely determined because f is I-Cartesian. 
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Note that the universal property with respect to 2-cells in (ii) above does not 

imply that for l-cells in (i). However, it implies that any l-cell with codomain Y 

whose projection factors through Pf, has a factorisation through f, unique up to 

isomorphism. 

Definition 2.2 (Cartesian 2-cell). Let P : & + ~3 be a 2-fimctor. 

(i) A 2-cell r~ : f + g :X + Y in d is l-Cartesian if, for any 2-cell CI : h + k : Z 4 Y 

for which 

for some given 2-cell y : Ph + Pf o u : PZ +PY, there is a unique 2-cell 4: h+ f 00, 

with v : Z +X and Pv = u, such that Pd = y and tl = (TV o 4, as shown in the diagram 

below. 

(ii) A 2-cell CJ : f + g :X --t Y is 2-Cartesian if it is l-Cartesian and its codomain 

g :X + Y is a 2-Cartesian l-cell. 

In the Appendix we give an adjoint characterisation of l-Cartesian 2-cells, which 

clarifies the fact that 2-Cartesian 2-cells strengthen the universal property of l-Cartesian 

2-cells in a 2-dimensional way. 

Definition 2.3 (2-jibration). A 2-functor P: b--+3? is a 2-jibration if 

(i) For any object X in B and any l-cell u : I + PX in 93, there is a 2-Cartesian 

l-cell u : u*(X) +X with fi = u. 

(ii) For any object X in & and any 2-cell 6: u+ v :I 4 PA’ in 39, there is a 2- 

Cartesian 2-cell cr : f + g : Y -+X with PO = 6. 

As usual, we may assume a given choice of the relevant Cartesian l-cells and 2-cells 

for a 2-fibration. In an ordinary fibration, every morphism factorises as a vertical one 

(i.e. which projects to the identity) followed by a Cartesian one. The same is true about 

2-cells in a 2-fibration, as shown in the following proposition. 



86 C. Hermida I Journal of Pure and Applied Algebra I34 (1999) 83-109 

Proposition 2.4. Let P: 8-99 be a 2-jibration. Every 2-cell c(: h + k :X--i Y in & 

can be expressed as a pasting composite 

where o : Ph o (o) + %I is 2-Cartesian (over Pa = Pa) and Poi = ididpX. 

Proof. Let o : ph + pk :X’ + Y be a 2-Cartesian 2-cell over Pa, and Ph :X” + Y be a 

2-Cartesian l-cell over Ph. Since r~ is 2-Cartesian, there is a unique 2-cell 4 : h +Ph o k : 

X + Y such that oi o C$ = a with PI$ = id+,, . Since Ph is 2-Cartesian, there is a unique 

ti : i + 1 :X -+X” such that Phoi = 4 and Poi = i$dPx. Finally, 1= (0) o i because ph is 

2-Cartesian and (cr) is the unique factorisation Ph =ph(o). 0 

The above vertical-Cartesian factorisation puts in evidence the role of the 2-dimen- 

sional aspect of the universal property of a 2-Cartesian l-cell. Such factorisation will 

be used repeatedly from Section 3 onwards. 

As we would expect, the notion of Cartesian 2-cell enjoys several closure proper- 

ties, summarised in the following proposition (cf. [9, Lemma 2.11 where analogous 

properties are proved for the case of Fib relative to a 2-category with pullbacks). 

Proposition 2.5. Consider a 2-functor P : d---f 93. 

(i) Let o: f =+ g:X + Y be a 2-cell in Q such that g is l-Cartesian (respectively, 2- 

Cartesian) and o is an isomorphism. Then o is a l-Cartesian (respectively 2-Cartesian) 

2-cell. 

(ii) Given l-Cartesian (respectively 2-Cartesian) 2-cells o : g o j + d :X + Y and y : f 

+ g : Z 4 Y with g : Z -+ Y 1 -Cartesian, the pasting composite 

is l-Cartesian (respectively 2-Cartesian). 

Proof. (i) Given a 2-cell CI: h + k : Z + Y with a factorisation of Pa = (Pa)u o y for 

some 2-cell y :Ph +Pf ou: Z + Y, the factorisation of Pk=Pgou and the fact that 



C. Hermidal Journal of Pure and Applied Algebra 134 (1999) 83-109 87 

g is Cartesian implies the existence of a unique o: Z +X such that k = g o v. Then 

$J = C’V o a gives the desired unique factorisation of c1= csv o 4. 

(ii) Given a 2-cell sc:h=+ k: W --f Y with a factorisation of Psc as 

for some 2-cell C$ : Ph + Pf o Pj o 1: PZ + PY, the composite (Py)Pj o C/I gives a fac- 

torisation of Pa through Pa. Since CJ is I-Cartesian, there is a unique 2-cell 8 : h + ,q 0.j 

ok’ : W + Y (where k =d ok’ and Pk’= 1) such that ak’o O=a and PQ=(Py)(Pj) 

I o 4. In turn, this latter factorisation implies the existence of a unique 2-cell 6 : h =+ 

for: W 4 Y such that P29=4 and Q=yrot9. Here Y: W--Z is such that Pr=Pjol 

and gr=gjk’, whence Y = jk’ as CJ is I-Cartesian. So, 6 is the required unique factori- 

sation of GI through the pasting a o (yj). 0 

We examine these closure properties further in order to obtain formulations which 

will provide alternative characterisations of the notion of 2-fibration (Theorem 2.8 be- 

low). In order to do so, we consider a class of 2-cells C in 8 which satisfies the 

conditions of Proposition 2.5, relative to either l- or 2-cartesianness, e.g. any isomor- 

phism with a 1 -cartesian codomain is in C if we refer to 1 -cartesianness conditions and 

likewise for the pasting composite in (ii). In the following proposition we use the term 

‘Cartesian to refer to either I-Cartesian or 2-Cartesian, as appropriate for the closure 

conditions on C. 

Proposition 2.6. Let C be a class of 2-cells in d (for a 2-functor P : d + .%), satis- 

fying the closure properties of Proposition 2.5. Then C satis$es 

(i) Given a : f =+ y :X -+ Y in C, with y Cartesian, and a cartesian l-cell h : Z +X, 

then ah is in z. 

(ii) Given y : f + g and a : g + h in C with g I-Cartesian, then the vertical composite 

aoy: f +h is in C. 

Proof. To show (i), notice that 2.5(i) implies that idyoh is in z, hence by 2.5(ii) the 

pasting composite idgoh 0 ah is in C. 0 

An ordinary hmctor p : E -+ B can be shown to be a fibration in two simple equiv- 

alent ways: either by the existence of the relevant (strong) Cartesian morphisms or 

that of vertical (or weak) Cartesian morphisms closed under composition. A mor- 

phism f :X 4 Y in E is vertical Cartesian (v-Cartesian for short) if for any y : Z + Y 

with pg = p,f there is a unique (vertical) h : Z +X (ph = id) such that 9 = .f’ oh. 
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A similar characterisation is possible for 2-fibrations with respect to cartesian 2-cells. 

The corresponding notion of vertical Cartesian 2-cell that we need is the following: 

Definition 2.7. Let P: 6-B be a 2-functor. 

(i) A 2-cell o : f + g :X + Y in F is v-1-cartesian if, for any other 2-cell ~1: h + k : 

2-Y forwhichPa=Po, thereisaunique2-cell#:h+fov:Z--tY, withv:Z+X 

and Pv = idPX, such that P$J = id ps and a = crv o 4, as shown in the diagram below. 

(ii) A 2-cell 0: f + g :X + Y in d is v-2-cartesian if it is v-l-Cartesian and its 

codomain g :X + Y is a 2-Cartesian l-cell. 

Clearly, the above definition entails a weaker universal property than that of Defini- 

tion 2.2. We now give two alternative characterisations of 2-fibrations: one in terms of 

v-2-Cartesian 2-cells satisfying 2.5(ii) and another ‘local’ one, in terms of the induced 

functors between the horn categories being fibrations, with their Cartesian morphisms 

(2-cells) preserved by horizontal composition. 

Theorem 2.8. Let P: 8 -+ 93. The following are equivalent: 
(i) P is a 2-jibration 

(ii) (v-Cartesian characterisation) P satisJes: 
(1) For any object X in I and any l-cell u : I + PX in B’, there is a 2-Cartesian 

l-cell u:u*(X)+X with PG=u. 
(2) For any object X in & and any 2-cell 6: u + v: I -+ PX in ~49, there is a 

v-2-Cartesian 2-cell o : f =S g : Y +X with PO = S. 
(3) v-2-Cartesian 2-cells satisfy the closure property 2.5(ii). 

(iii) (Local characterisation) P satisJies: 
(1) For any object X in 6’ and any l-cell u : I ---) PX in 99, there is a a-Cartesian 

l-cell ii : u*(X) -+X with PU = u. 
(2) For every pair of objects X, Y in 6, the corresponding functor Px, y : &(X, Y) 

+ .%?(PX, PY) between the horn-categories is a jibration. Furthermore, for 
every I-cell h : Z 4 X in b, the precomposition functor Q(h, Y) : 8(X, Y) 
+ 6(Z, Y) preserves Cartesian morphisms (from Px,y to P~J). 

Proof. (i) + (ii): 2-Cartesian 2-cells are v-2-Cartesian and satisfy Proposition 2.5. 

(ii) + (iii): We must show every horn-fkctor Px,r : &(X, Y) + .G?(PX, PY) is a fi- 

bration. Consider h:X+Y and o:u+Ph:PX+PY. Let a’:ii+Ph:X’+Y be a 

v-2-Cartesian 2-cell over 0. Since ph is a 2-Cartesian l-cell, there exists a unique 
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h’ :x -+X’ such that ph o h’ = h and Ph’ = id&. We claim that 

ii 
h’ 

X-X’ 

Ph 

is a Cartesian morphism in 6(X, Y) over cr. For, given a : k + h :X + Y and y : Ph =+ 

u : PX -+ PY, such that 

Ph 

Pk 

= PX_ ---ij==PY 

Ph 

- 
consider y’ : Ph + ii :X” + Y v-%-Cartesian over y. Since U is 2-Cartesian, there is a 

unique (rr) :X/+X” such that Uo (0) = u” (and P(o) =idp~). By hypothesis, the com- 

posite 

Ph 

is v-2-Cartesian, hence there is a unique 2-cell C$ : k =+ pk o (CT) o h’ such that P4 = idpk 

and 

X&Y 

h 

We then see that (y’(o)h’)o C/I is the required unique factorisation of SI through 

dh’. 

Furthermore, given 1 :Z-+X in 8, we claim a’h’l: Ch’l+ Phh’l: Z -+ Y is carte- 

Sian in &(Z, Y). Simply apply the above argument to o’zv : 1?plv + (Ph)(Pl)v : Z + Y 
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for v : 2 + Z’ the unique factorisation of h’ o 1 through the 2-Cartesian l-cell Pl : Z’ +X 

(over PI), using the fact that a% is v-2-Cartesian by Proposition 2.6(i). 

(iii) + (i): The first condition is the same for both characterisations. In order to show 

the existence of the relevant 2-Cartesian 2-cells, let X be an object of 6 and a 2-cell 

cr:u~u:I-+PX in 9??. 

Let V : I’ +X be a 2-Cartesian 1 -cell over v. Let C’ : u” + V : I’ --f X be the Cartesian 

lifting of o at V for the fibration PI/,X : G(I’,X) --+ Li?(I,PX). Then, CJ’ is the required 

2-Cartesian 2-cell over rr at X. For, given 2-cells a : s a t : Z --+X and 4 : Ps + u ok : 

PZ + PX such that 

with v o k = t, since V is 2-Cartesian, there is a unique 1 -cell t’ : Z + I’ such that V 0 t’ = t 

(and Pt’ = k). By hypothesis, dt’ : iit’ + 2’ : Z +X is Cartesian in &(Z,X) (for Pz,x). 

Hence, there is a unique 2-cell 4’ : s + ~2 o t’ : Z --+X such that 

and P@ = 4, as required. q 

3. Fib as a fibred 2-category 

In this section, we present the paradigmatic example of a 2-fibration, Fib, to which 

we devote the rest of the paper. 

Cat stands for the 2-category of small categories, functors and natural transforma- 

tions. For a given category B, Fib(B) denotes the 2-category of fibrations over B, 

fibred functors (i.e. preserving Cartesian morphisms, and called Cartesian functors else- 

where) and vertical natural transformations between them. We often display fibrations 

as E of’ 8. Then, a fibred functor F: (E --+P D) + (D --+q IEi) is a functor F : IE + D 

with qF = p which preserves Cartesian morphisms. A 2-cell a : F + F’ between two 

such functors is a natural transformation satisfying qa = l,, i.e. its components lie in 

the fibres of q. 

For a fibration E +P B, given an object X in E and a morphism u : I + pX in B, 

we write Up : u*(X)+X for a Cartesian morphism over U. Whenever convenient we 

suppress the superscriptp. 
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The 2-category Fib has fibrations E +P B as objects. Morphisms, called fibred l-cells, 

are given by commuting squares 

where l? preserves Cartesian morphisms. We write (k,K) : p--f q for such a fibred 

l-cell. Given fibred l-cells (I?, K), (L,L) : p + q, a jibred 2-cell from (I?, K) to (L,L) 

is a pair of natural transformations (6 : f? + 1, CT : K + L) with 6 above 0, as displayed 

below 

and we write it as (6,~): (f?,K) + (i,L). We have the obvious 2-functor cod: 
Fib -+ Cat, which maps every fibration E -+P B to its base category El. 

We recall, e.g. from 121, that fibrations are stable under pullback. This means that a 

functor H : A 4 B induces, assuming a choice of pullbacks, a change-of-base 2-functor 

H* : Fib(B) 4 Fib(A). As a consequence, we see that cod: Fib + Cat is an ordinary 

fibration, with Cartesian morphisms corresponding to pullback squares. Since pullbacks 

in Cat enjoy a 2-dimensional universal property (cf. [ 1 l]), they yield 2-Cartesian l-cells 

for cod: Fib + Cat. 

Before examining cod: Fib + Cat as a 2-fibration though, a cautionary remark seems 

in order. The treatment of Fib as a 2-fibration assumes cloven fibrations, i.e. with a 

given choice of Cartesian liftings, e.g. in the proof of Proposition 3.1 below. Since 

we use such properties later on to infer properties about (ordinary) fibrations them- 

selves, the reader should be aware that these latter properties are still valid without 

the assumption of cleavages (which, being a form of choice, is in general not avail- 

able internally in a topos, for instance). See [l] for a deeper analysis of these issues. 

Nevertheless, the global point of view afforded by 

sides its extra generality, allows for conceptually 

proofs. 

As is well-known, cf. [2], the concept of fibration 

functor p : E 4 B is a fibration iff for every category 

eCat(X, p) : Cat(X, E) + Cat(X, E!) is a fibration. 

the 2-categorical treatment, be- 

clearer statements and simpler 

is representable, meaning that a 

X, the post-composition functor 
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Proposition 3.1. cod: Fib + Cat is a 2-jbration. 

Proof. We use the local characterisation of 2-fibrations, Theorem 2.8(iii). As we men- 

tioned above, pullbacks give the relevant 2-Cartesian l-cells. Given fibrations E +J’ El 

and D -+q A, we must show the induced functor 

Fib 

Cat( B, A) 

is a fibration. Let (G, G) : p -+ q be a fibred l-cell and o : F + G : B + A be a natural 

transformation. Define p : E + D and 0’ : p + e : E + D as follows: 

Y GX-GY 
Gf 

PX 

I Pf 

PY GX-GY 
Gf 

where cr$ and 0: are Cartesian morphisms (over ax and OY respectively) and 8=f is 

the unique morphism making the upper square commute, induced by the universality 

of IJ~. Then (o’, cr) : (P, F) + (6, G) is Cartesian in Fib(p,q), as is easily seen from 

the above pointwise construction of 0’. 
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Given the pointwise Cartesian character of cr’ it is clear that given another fibred 

1 -cell (fi, H) : r 4 p (with S --+’ T a fibration), the fibred 2-cell 

is Cartesian in Fib(r,q). 0 

Notice in the above proof that Cartesian morphisms in the horn categories are char- 

acterised by the fact that the top natural transformation has Cartesian components. This 

is essentially the representability property of ordinary fibrations mentioned above. In 

order to provide a better understanding of the constructions to follow, we spell out 

the vertical-Cartesian factorisation of 2-cells (given in Proposition 2.4) in this setting: 

given ID, +q A and a natural transformation cr : K + L : B + A, we have 

L*( 

where the squares are the appropriate change-of-base pullbacks and ai has Cartesian 

components. Given a fibred 2-cell (5, o) : (Z?, K) + (i, L) : p + q, we have a factorisa- 

tion 
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where the components of & are obtained by factoring the components 6~ through the 

(Cartesian) components of crh (X an object of lE) 

In the following section we show our main intrinsic property of a 2-fibration for the 

case of Fib, namely the ‘lifiing’ and ‘factorisation’ of adjoints in it. 

4. Adjunctions in Fib 

We now turn to study the interaction between change-of-base and fibred adjunctions, 

that is adjunctions in the 2-category Fib. 

An easy l-dimensional analogy of the characterisation of adjoints we are about to 

give might be helpful. Consider a fibration IE +P B and a morphism f :X + Y in lE. 

f is an isomorphism if and only if pf is an isomorphism and f is Cartesian. Since 

cartesianness of f can be expressed as saying that f is an isomorphism, where 1 

is the vertical factor of f through the Cartesian lifting of pf, the previous statement 

means that isomorphisms in E are characterised in terms of those of El and those in 

the fibres. An analogous result holds for l-cells admitting right adjoints within a fibred 

2-category. We spell this out in Fib. 

The following lemma establishes one important aspect of the change-of-base 

2-functors with respect to adjunctions between the base categories. It is a consequence 

of the fact that an adjunction Y,E: F i G: B ---f A (unit r~ and counit E) induces a bi- 

adjunction G* -1 F* : Fib(B) t Fib(A) by change-of-base. The sense in which the ad- 

junction obtained in the following lemma is Cartesian will become clear in Theorem 4.3 

below. 

Lemma 4.1. Given E +q B and an adjunction QE : F -1 G: 5 + A, change-of-base 

along F yields a ‘Cartesian jibred adjunction 

q*(F) 

F*(E) _I E 

G 
F*(q) ! _I 9 

F 

A, 1 B 
G 

Proof. We will only spell out the data of the resulting adjunction, leaving the veri- 

fication of the adjunction laws to the reader. Details may be found in [4]. To sim- 

plify the presentation, we assume the fibration is split, which allows us to ignore 

the coherent isomorphisms arising from the pseudo-functorial nature of a 

cleavage. 
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We use the following abbreviations: 

q’=F*(q), F’=q*(F), G”=(q’)*(G). 

Consider 

The right adjoint G is G” o (E)~ : q + F*(q), with counit E = E; : F’G =+ 1,. The unit ’ 

is ?j = (r$ (EF)~). 0 

Remark 4.2. The notation G in the preceeding lemma is intended to be ‘dual’ to that 

adopted for Cartesian morphisms. This is because, in this situation, the fibration F*(q) 

is the direct image of p along G. Put in other terms, the right-adjoint l-cell (G, G) is 

(pseudo)cocartesian. Such cocartesian liftings obviously enjoy a 2-dimensional univer- 

sal property dual to that of 2-Cartesian l-cells, which is at the base of the construction 

of oplax (bi)colimits for Fib in Section 5 below. 

The following theorem gives a characterisation of adjunctions in Fib in terms of ver- 

tical fibred adjunctions, i.e. adjunctions in the fibre 2-categories Fib(-), and (ordinary) 

adjunctions in the base 2-category Cat. To express this succinctly let us introduce the 

following auxiliary definition. For a 2-category X, let A’&, be the sub-2-category of 

X, with the same objects and 2-cells but with only those l-cells f : A + B which have 

a right adjoint f -I g. Since the composite of two such l-cells has a right adjoint, 3&d; 

is indeed a sub-2-category. 

Theorem 4.3. cod: Fibladj --+ Catl,dj is a suhjibration of cod: Fib -+ Cat. In more de- 

tail, given E +P B, in, +4 A, QE:F i G:A +B and ajbred l-cell (p,F):p+q as 

shown below 

’ The full expression for the unit without the splitting assumption is ~=(~~,~~GF,F(EF)~)~F~:~, where 

~~GF,F : (FGF’)* + (GF)*F* and 6~+,,* : (Fq)(&F) =s- (EF o Q) are the evident coherent isomorphisms. It 

would only obscure the presentation to include them; they all cancel appropriately to yield the triangular 

laws. 
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let @: p---f F*(q) in Fib(B) be the unique mediating functor in 

9 

B-------A F 

Then, the following are equivalent 
(i) !lG:D-+lE.~i 6(ir1 Cat) such thut (P,F) i(&,G):q+p(in Fib). 

(ii) 3G : F”(q) + p.p -1 C? (in Fib(B)). 

Proof. (ii) + (i): This implication means that it is possible to define a ‘global’ fibred 

right adjoint G given a vertical one G and a base one G. This is achieved by compo- 

sition of adjoints. 

By Lemma 4.1, we get a right adjoint to q*(F), f,E: q*(F) -1 G: q+ F*(q), and 

therefore G = G o C is a right adjoint to p. It only remains to verify that the unit 

6 = C?r@ o f of this adjunction, where 9 is the unit for p -I G;, is over r~: 

pq= p&p o pfj = F*(q)@ = t,/F*(q)fi = yp. 

(i) + (ii): The unit y : ln + GF induces (Y)~ : (GF)*(p) + p. Consider the follow- 

ing diagram: 

F*(q) 
q*(F) 

-4 

F *fG’) 

(GF)*(p) 
CC* (P))*(F) 

P 

where G’ = (q, 6) is the uniquely determined functor into the pullback. Then G = (v)~ o 

F*(G’) is the desired right adjoint. The unit y^: 1, + Gp is obtained as the vertical 

factor of the fibred 2-cell (ii, q). The counit 6: FG + lo* is the vertical factor of the 

fibred 2-cell 

(Eq*(F) o &,F*(G’),&F 0 Fr]) : (h?‘, F) + (q*(F),F) 

noting that the base 2-cell is the identity. The triangular laws are verified using the 

universal property of 2-Cartesian 2-cells. 0 
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4. I. Fihred limits and Cartesian closure 

We will apply Theorem 4.3 to give a characterisation of the completeness of the 

total category of a fibration in terms of that of its fibres and its base category. Jn 

order to do so, we shall make use of the following simple property of the exponential 

2-functor (_)’ (for 0 a small category) in Cat, i.e. the 2-fun&or such that A’ is the 

functor category. 

Proposition 4.4. Given u jibration p : E 4 B and a smull category 0, the jimctor 

p” : E’ --) I%” is a ,jibration. 

Proof. A natural transformation R : F + G : 0 + E is PO-Cartesian iff every component 

is p-Cartesian. Thus a p’-Cartesian lifting is obtained from p-Cartesian liftings, point- 

wise. 0 

Remark 4.5. The above proposition actually shows that Fib has cotensors, as in Cat, in 

the sense of [l 11. This means that we have the following isomorphism of 

categories 

Fib(q, p*) Z Cat( 0, Fib(q, p)) 

2-natural in q. 

We shall also use the following property of right adjoints in Cat/A and Cat’. 

It turns out that such right adjoints preserve Cartesian morphisms. 

Lemma 4.6. (i) Given $brations IE +P B, D +4 5 and a l-cell G: q+ p in Cat/B, 

{f there is F : p + q such that F -1 G in Cat/B then G is u ELFbred l-cell. 

(ii) Given jibrations E --tP B, D --tq G und u jibred 1 -cell (G, G) : q - p in Cat’. 

if there is (F, F): p 4 q such that (F;,F) -i (G, G) in Cat’ then (C?, G) is a $bred 

2-cell. 

Proof. The first part of the lemma is a consequence of the fact that fibrations over 

a given base and fibred l-cells between them are the algebras and pseudomorphisms 

for a Kock-Z6berlein monad on Cat/B. The second part follows from the first and 

Theorem 4.3, since the construction there shows that a right adjoint in Cat’ whose 

source and targets are fibrations can be factored into a pair of cocartesian and vertical 

right adjoints. Hence if the second factor is fibred so is the original functor. 

Definition 4.7. For any small category 0, a fibration p : iE + B has fibred O-limits 

(respectively colimits) iff the fibred fun&or & : p + Ar(p’), uniquely determined in 



98 C. HermidalJournal of Pure and Applied Algebra 134 (1999) 83-109 

the diagram below, has a fibred right (respectively left) adjoint At -I Lxt 

where Ai : B -+ So and & : E + E’ are the diagonal functors taking objects A to constant 

functors (I H A). 

Dually, we speak of cofibred O-limits/colimits for a cofibration. 

Remark 4.8. Similar to Remark 4.5, the fibration A:($) is a cotensor in Fib(B), as 

we have 

Fib(Wq, A:@)) g CaW,Fib(Wq, P)). 

Hence, the above definition of fibred O-limits for a fibration is analogous to the definition 

of O-limits for an ordinary category, relative to its 2-categorical universe Cat. 

Now we can characterise fibred limits as follows: 

Corollary 4.9. Let 0 be a small category and E -+P B be a jibration such that B has 
O-limits. Then p has jibred O-limits ifs E has and p strictly preserves O-limits. 

Proof. Apply Theorem 4.3 to the following data (where p’ : IE’ --+ B’ is a fibration by 

Proposition 4.4). 

Limo 

E has and p strictly preserves O-limits means precisely that the above diagram can 

be completed to an adjunction (At, Ai) i (Lxi, Limo) in Cat’, which by Lemma 

4.6(ii) is an adjunction in Fib. 0 

In a 2-category K with cotensors, we can say that an object X admits O-limits if the 

corresponding diagonal A :X +X0 admits a right adjoint. Then, the above corollary 

states that, given E +P EL where B has D-limits, p has O-limits in Fib if and only if it 

has O-limits in Fib(B). 
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By mere duality, we have the following characterisation of colimits 

category. 

99 

in a cofibred 

Corollary 4.10. Let r : D --f A be a cojbration, i.e. r”P : D*P + A’P is a jbration, such 

that A has I-colimits. Then r has cojibred O-colimits ifs D has and r strictly preserves 
O-colimits. 

Remark 4.11. Notice that whenever a functor p has the isomorphism-lifting prop- 

erty [lo], if it preserves given limits/colimits up to isomorphism, it is possible to 

‘reindex’ the given limits/colimits along the isomorphism so as to get preservation 

‘on-the-nose’. Thus the above corollaries can be strengthened by requiring the fibra- 

tion (respectively cofibration) p to preserve limits (respectively colimits) in the usual 

sense. 

We should point out that the above characterisation of limits and colimits is well- 

known, e.g. from [2]. What is new here is the way they arise from our characterisation 

of adjunctions in Fib, which yields the simple proofs above. 

We conclude this section showing how to infer Cartesian closure of a fibred category. 

In order to do so, we call a jbred-ccc a fibration such that every fibre is Cartesian 

closed, and the reindexing fimctors preserve such structure (of course, we could give 

an elementary choice-free definition). Given a fibration IE +P B, where the base [EB has 

finite products, we say that p admits simple B-products if, for every I in B, the fibred 

functor (XJ) : p--f (_ x Z)*(p) - induced by the natural transformation 7c_I : _ xl + ln 

given by first projection - has a fibred right adjoint II, : (- xZ)*(p) +p. This amounts 

to the usual formulation in terms of right adjoints to reindexing functors rc&, sat- 

isfying the Beck-Chevalley condition. Now we can formulate the following 

corollary. 

Corollary 4.12. Given E -+P B such that p is a jibred-ccc with simple B-products, 
if B is a ccc then E is a ccc and p strictly preserves the Cartesian closed structure. 

Proof. From Corollary 4.9 we know lE has finite products 2 : E x [E--j E. Then, for ev- 

ery X E EAA, we must supply X3-: [E -+ IE such that the following is a fibred adjunction: 

(-)ZX 

EllE 
X=,(_) 

P 

I I 

P 

L) xA 

ELI-B 

-A 
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By Theorem 4.3, it is sufficient to define a fibred right adjoint G : (_ x I)*(p) + p to 

_zi : p + (_ x z)*(p). 

The latter can be expressed as the following composite: 

(_jh 
P - (C-1 x 0*(P) = 

(n-.1) (-hNn:,,)X 
PA (- x O*(P)- ((-1 x O*(P) 

where 8 : p x p + p stands for the fibred product. The hypothesis guarantees the 

existence of fibred right adjoints for both factors, whence the right adjoint for 

(-ja : p+((_) x I)*(p) 

is given by ZI, o ((x!,~) + -), where + stands for the fibred exponential. 0 

Remark 4.13. It was the above corollary on Cartesian closure which spurred the analy- 

sis of adjunctions in Fib. It provides a categorical account of logical predicates for the 

simply typed A-calculus. See [4] for details, where we also provide a counterexample 

to the converse of the above corollary. 

4.2. Comma objects in Fib 

As a preliminary to our treatment of fibrations over fibrations in Section 4.3 below, 

and also as an illustration of limits in a fibred 2-category, we show that Fib and its 

fibre 2-categories Fib(B) admit comma objects in the sense of [17]. The construction is 

entirely analogous to that of ordinary limits in fibred categories in Corollary 4.9. That 

is, we first build comma objects in Fib, and then obtain them in the fibres by restriction 

along the diagonal. We make the details explicit in the following proposition, as we 

need them in Section 4.3. 

Proposition 4.14. Fib and Fib(B) admit comma objects. 

Proof. Comma objects in Fib are inherited from Cat’, where they are computed 

pointwise. In more detail, given 

F 
A’- @‘- G 5’ 

A-C- 
F G ’ 
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in Fib, i.e. p, q and Y are fibrations, and F and 6 preserve Cartesian morphisms, their 

comma object is given by 

where the top and bottom rows are comma objects in Cat, i.e. the usual comma 

categories, and p 1 q is the morphism between comma categories uniquely induced by 

the universal property of the bottom comma object from the 2-cell determined by the 

front, right and top faces of the cube. 

The functor p 1 q : F j_ e + F I G acts thus as follows: 

(n,F=a L Gb,b) ++ (pa, Fpa 2 Gqb, qb) 

with a similar action on morphisms. 

The universal property of the above construction in Cat’ follows easily from the fact 

that limits in a (2-)functor category are computed pointwise. It only remains to show 

that p .j, q : F 1 C? 4 F 1 G is actually a fibration. This is shown in the following diagram: 

b;qb’ b’ 
i! c*(b’) - b’ 

u 
a -pa’ a’ u*(af) LI a’ 

where 21; is a q-Cartesian lifting of o,G is a p-Cartesian lifting of u and h” is the unique 

such morphism making the right square commute, with 4” = h. It is clear then that 

ii0 and it, preserve Cartesian morphisms. 

InFib(B)given I-cellsK:p+randH:q + r, regard them as fibred l-cells (in Fib) 
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and construct their comma object in Fib as above. Then, their comma object in Fib(B) 
is obtained as the left fibration in the following pullback square: 

K&H- K&H 

1 1 
(P,Y) 

B 
(Ll) 

-8’ 

where B’ = 1 1 1, and (1,1) : B -+ B -* is the ‘diagonal’, uniquely induced by the 

identity square 

B-5 

li l 1 1 

575 

and thus maps every object to its identity arrow. That is, in K 1~ H we only consider 

the vertical morphisms of the comma category K J H. It is clear then that it enjoys the 

required universal property within Fib(B). I7 

Remark 4.15. The existence of the appropriate 2-categorical limits in Fib(B) follows 

from its algebraic treatment in [ 171. The construction above shows the special case of 

comma objects as an instance of a limit in a fibre of a 2-fibration, thereby making 

explicit its relation to the corresponding limit in the total 2-category, which is essential 

for our algebraic proof of Benabou’s characterisation of fibrations over fibrations in 

Section 4.3 below. 

4.3. Fibrations over jibrations 

The notion of fibration can be internalised in any 2-category in a representable 

fashion: a l-cell p : E + B in a 2-category X is a fibration iff for all objects X, 

the hmctor .X(X, p): X(X,E) -+ X(X, B) is a fibration in Cat. If the 2-category X 

admits comma objects, it is possible to give a purely algebraic internal description 

of fibrations in it, as in [ 171. Given such a Xx, for a l-cell p : E + B consider the 

diagram 
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where up : E + B j, p is induced by the outer identity 2-cell into the comma object 

B 1 p. Since all the constructs are preserved by representables, the l-cell d : B L p + B 
is the free fibration on p. In fact, this construction sets up a Kock-Zoberlein monad 

on X,‘B, whose (pseudo) algebras are fibrations over B and the algebra (pseudo) 

morphisms are those which preserve the fibration structure. So, p is a fibration when 

Q : p 4 d has a right adjoint in X/B. This means that the l-cell qP : E + B 1 p has 

a right adjoint %e: B l pt E such that the counit is mapped to the identity 

by d. 
Since Fib(B) admits comma objects, we can consider fibrations in it, that is, given 

a fibred l-cell f: (E +P E!) --) (ID iq EL) we can ask for it to be a fibration 

over 4. The following is a standard result of fibred category theory, due to 

Benabou: 

Theorem 4.16. ,f : E + ED is a jibration over q if and only i it is an ordinary fibrution 
ouer III. 

Btnabou’s argument relies on a very exact application of his fibred Yoneda lemma. 

We give here a purely algebraic elementary proof of this result as an immediate con- 

sequence of Theorem 4.3. 

According to Street’s characterisation of fibrations in a 2-category above, ,f: 

(E +P E!) + (D +q E!) is a fibration in Fib(B) if and only if I// : ,f ---f d in the 

following diagram has a right adjoint (in Fib(B)/q): 

In view of the construction of comma objects in Fib(B), yf is obtained as depicted 

in the following diagram: 

B-B’ 
(131) 
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where the square is a pullback and 

sothat (f,l):lE -+ ID 1 f is induced by the universal property of the (codomain) comma 

object. Since (I,l):B+B’ has a right adjoint, (1,1) ids, with identity unit and 

counit 0 : (1,l)de + 1, we can apply Theorem 4.3 to conclude that ~]f has a right 

adjoint (over EE) precisely when (f, 1) : E -+ ED If has a right adjoint (over do). This 

latter means that f : E + D is a fibration. We must simply check that both adjoints live 

equivalently over ED. 

To be precise, we must know the equivalence of the following: 

(i) 31.qfiI in Fib(B)/q 

(ii) 3R. (f, 1) iR in Cat/D. 

(i) + (ii): Given the counit ~1 : qfZ+ id such that d;.sr = id, the counit 

satisfies df& = id, where E’ : (1, l)& =S id is the counit of the adjunction obtained ‘lift- 

ing’ (1,1) i do. - - 
(ii) +(i): First, fR=df implies that fI= fR(I, 1) =df(l, 1) =di. As for the counit, 

let (E, E) be the counit of (j, do) -1 ((f, I), (1,l) ). Then, ~1, the counit of ~]f -i I is the 

vertical factor of the 2-cell F( 1, 1)) and thus 

d;q =df(l,l)ar =d,E=id 

as required. 

The above result that a fibration over a fibration amounts to an ordinary fibration 

over the total category has important consequences. Let us just mention one such: the 

slice of a presheaf topos is again a presheaf topos Yet@“/F E 9et”t(F)op, where &h(F) 
is the category of elements of the presheaf F : Cop + Yet. Benabou’s argument for this 

equivalence uses the above result and the following basic facts: 

l We may identify a presheaf with a discrete fibration, that is, a discrete object in 

Fib(B). Recall that an object A in a 2-category X is discrete if for every ob- 

ject X, X(X, A) is a discrete category. When viewing a presheaf F : Cop ---f Yet as a 

discrete fibration, its total category is precisely &h(F). 
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l Any l-cell with a discrete codomain is a fibration. Using Street’s formalization of 

fibrations, this observation follows from the fact that, for any l-cell p : B + A, with 

A discrete, the following diagram 

BI-B 

is a comma-object square. 

This presheaf slicing result is applied in [14] to show that the Yoneda embedding 

preserves locally Cartesian closed structure. 

5. Oplax colimits: Kleisli objects in Fib 

Corollary 4.10 shows how to construct colimits in a category ID, for a given cofi- 

bration r : IBID ---f A, provided the base and the fibres have colimits. Briefly put, given a 

diagram D : 0 + D, we first construct a colimit in A for rD : 0 -+ A, obtaining a colimit 

cocone nr~ : rD ==s C. Using the cocartesian lifiings of the Dl’s (I an object in 0) along 

the cocone components QDI, we obtain an U-diagram in the fibre DC. The colimit of 

this latter diagram in DC gives the desired colimit in ID. 

An entirely analogous construction yields oplax colimits in Fib, using the 2-dimen- 

sional property of the cocartesian liftings. The fibres Fib(B) have oplax colimits, cre- 

ated by the forgetful 2-fimctor dom : Fib(B) ---f Cat, which sends a fibration E --tP B to 

its total category LE. Clearly, the base Cat admits oplax colimits [ 111. To be precise, the 

pseudo-cocartesian liftings of Fib imply that we would obtain only oplax bicolimits, 

i.e. unique up to equivalence rather than up to isomorphism. The relevant definitions 

of (op)lax functors and their (co)limits can be found in [ 161. 

We illustrate this construction of oplax colimits with the simplest case, which never- 

theless contains all the essential details: oplax colimits for oplax functors G: 1 + Fib, 

where 1 is the terminal (one-object) category. In this case G amounts to a comonad 

(G, G) : p + p in Fib, and its oplax colimit to its ‘Kleisli object’ ~(i;,~) [ 151. To struc- 

ture the proof, we state some auxiliary lemmas first, in line with the construction of 

colimits outlined above. We omit the laborious calculations involved in the verification 

that the constructions provided satisfy the relevant properties/axioms; details can be 

found in [4]. 

In any 2-category X, given a comonad (G : A -+ A, E, 6), we write (U, 2) for an oplax 

cocone for it, i.e. U : A + C and i, : U + UG satisfying Us o I = 1 u and 3,G o jk = lJ8 o i.. 

Recall, e.g. from [ 151, that when (U, 2) is a colimiting oplax cocone, U has a left 

adjoint F which gives a resolution for the comonad G, i.e. the adjunction F i U 

generates the comonad (G : A + A, E, 6). 

Lemma 5.1. Given 

l a comonad ((e, G) : (E +P B) --f (E +P B),(E,c),(8,ii)) for E +P B, 
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l a jibred oplax cocone ((i,L) : (E +P B) + (ID --+q C), (6, CT)) , 

0 an oplax cocone (K : B +A,v:K+KG)for G, and 
a a functor J : A + @ such that JK = L and Jv = 0. 

There is a unique oplax cocone (L’ : E + J*( ED), .t : L’ + L’@ such that ((L’, K), 
(v, c)) is a Jibred oplax cocone for (I?‘, G), q*(J)L’ = L and q*(J)ot = 6. 

Proof. L’ and O+ are uniquely determined by the (2”dimensional) universal property 

of the pullback J*(D). 0 

Lemma 5.2. Given a comonad (e, G) : (E +P S) -+ (E +P D), let (U : B -+ &, 1) be 

the Kleisli object for the base comonad G. The corresponding resolution q,e : F -I U : 

B + BG for G induces a comonad G : F*(p) + F*(p) on F*(p), the direct image 
of p along U, in Fib(&) (see Remark 4.2). 

Proof. The data for the comonad ?? is given by (assuming everything is split, for 

simplicity) 

l G= (F~)F*(&. Recall that fi: p --f G*(p) is obtained by factoring C? : E + E 

through the pullback of G and p. 
l The counit is Z = (Fq)F*(E^), where B: (I? + (E) is the fibred 2-cell obtained by fac- 

toring E” : C? + 1~ through E : G + lg. 

l The comultiplication is 8 = (Fq)F* (8), where 8 : &+ (6) o G*(d) o e is the 

D-fibred 2-cell obtained by factoring 8 : 6 +- e2 through 6 : G + G2. 0 

Notice that the above lemma means that we can ‘factorise’ the given oplax diagram, 

namely the comonad (6, G) through the cocartesian lifting of the oplax colimit for 

the base diagram, namely the Kleisli object for the (base) comonad G. We must then 

construct the corresponding oplax colimit for the ‘vertical’ diagram so determined, and 

upon pasting it with the cocartesian lifting mentioned above, obtain the desired oplax 

colimit for (C?, G). 

Lemma 5.3. Consider a comonad (6, G) : (E +P B)(E +P ES). Let (U : B -+ E&A) 

be the Kleisli object for the base comonad G. A fibred oplax cocone for (6, G) over 

(U&7 ((fi’, UW +p B) + (D -9 @)), induces an oplax cocune ( U’ : F*(p) + q, R’) 
in Fib( Bc)for the comonad G associated to the KleisZi resolution F -1 U : B + 5~ (cf. 

Lemma 5.2) 

Theorem 5.4. Fib admits Kleisli objects for comonads. 

Proof. Given a comonad (6, G) : (E +P B) + (E +P ES), let (U : B + DC, 1) be the 

Kleisli object for G and F -1 U its associated resolution. By Lemma 5.2, this resolution 

induces a comonad ?? : F*(p) --t F*(p) in Fib(BG), which admits a Kleisli fibration 

F*(P)E :F'"W~--t~c. 
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This is then the fibration corresponding to the Kleisli object for (e, G). The 

corresponding oplax cocone is ((U,&,U): ~+F*(p),,(i’,i.)), given as 

follows: 

l CJl : F*(p) + F*(ph is the fibred functor corresponding to the Kleisli object (Ul, in ) 

for ?? in Fib( EL,). The associated resolution is FI -I UI 

l (U,,U): p+F*(p) is the right adjoint (in Fib) to (p*(F),F):F*(p)+p (change- 

of-base square), given in Lemma 4.1. 

l i.’ is obtained from the resolution p*(F)E;‘, -1 U, U2 for c given by the adjunctions 

FI i U1 and p*(F) i U2. 

The universal property of the oplax cocone (( UI ri,, U) : p 4 F*(p),, ( j.‘, k)) fol- 

lows from Lemmas 5.1 and 5.3: given another oplax cocone ((LJ) : (IE +P IE!) - 

(D +Y C),(c,cr)), we get a functor .I: DC; + C by universality of (U,2). Apply- 

ing Lemma 5.1 we get a fibred oplax cocone ((L’, U): p ---I*(q),(o’,i)). This co- 

cone then yields, by Lemma 5.3, an oplax cocone for G: F*(p) -F*(p), which 

yields the desired mediating fibred functor between F*(p)c; and q (composing with 

(q*(J)J):J*(q)+q). q 

We end up mentioning that Kleisli objects in Fib are applied to construct ‘fibrations 

with indeterminates’ for polymorphic A-calculus in [4,6]. 

6. Concluding remarks 

The purpose of the paper was to analyse some aspects of Fib based on its 2-fibred 

structure over Cat. We have thus given a non-elementary analysis of those aspects, 

based on the existence of Cartesian-vertical factorisation for fibred 2-cells. Although 

the characterisation of a 2-functor admitting such property was given in elementary 

2-categorical terms, it is possible to give a more abstract formulation of 2-fibrations. 

The notion of fibration in a 2-category can be made completely internal to it, i.e. 

without relying on representability. This requires the presence of comma objects in the 

2-category, cf. [3, 171. The situation for 2-fibrations is much more delicate, as they are 

not simply ‘fibrations in the 3-category 2-Cat’. The appropriate setting for 2-fibrations 

is actually ‘weakly tricategorical’: the formal definition of a 2-fibration in the above 

style takes place in (a mild variant of) Gray’s 2-Cat% [3, 1.4.251. Since the latter is 

not a 2-category, most of the algebraic properties of adjunctions in a 2-category (or 

bicategory) are lost. We must therefore postpone a full-fledged formal treatment of 

2-fibrations until the subtle coherence issues arising in the above setting are settled 

down. 

Other properties of Fib qua 2-fibration have been studied by Btnabou, notably the 

appropriate version of the Beck-Chevalley condition for cocartesian liftings (or di- 

rect images), alongside a number of preservation properties of these latter, although 

no explicit definition of 2-fibration appears in the material available to the 

author. 
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Appendix A. Cartesian 2-cells and right adjoints 

For an ordinary functor [E --+P B, we can characterise Cartesian morphisms in [E with 

codomain X as follows (cf. [2]): 

p has Cartesian liftings with codomain X if and only if the functor 

p/X : L!jX + lB/pX has a right adjoint right inverse. 

The functor p/X takes a morphism f to pf. The above statement means that a carte- 

Sian morphism is a right adjoint value for p/X. We now show such a characterisation 

is also possible for l-Cartesian 2-cells. 

Given a 2-functor P : & 4 93’ and an object X in d define the following 2-category 

&“tx: 

Objects. 2-cells with (0-)codomain X, ~1: a + b : Z +X. 

l-cells: For objects ~1: a + b : Z -+X, cl’ : a’ + b’ : Z’ +X, a l-cell consists of a l-cell 

h : Z -+ Z’ in 6, and a 2-cell y : a + a’h such that b’h = b and 

a’hoy = c1 

that is, a l-cell amounts to a lax triangle between the domain l-cells of ~1, CI’ and strict 

triangle between the codomain ones, plus the obvious coherence requirement. 

2-cells: For l-cells (h, y) and (h’, y’), a 2-cell is 8 : h + h’ such that 6’8 = b and 

(a’g)oy’ = y : a + a’h’. 

The 2-functor P : 6’ + 23 induces P A,lX : d I,lX + 98 4 PX, applying P to the relevant 

components. We write 3$0 for the underlying (1-)category of a 2-category A’I We then 

have 

Proposition A.l. Consider a 2-functor P : E -+ 54Y. 

(i) P admits I-Cartesian 2-cells with codomain X tf and only tf the functor 

(P.&X), : (L?I.l.X)s + (39J.LPX)o admits a right adjoint right inverse, i.e. with iden- 

tity counit. 

(ii) Furthermore, tf P admits 2-Cartesian 2-cells with codomain X, the above ad- 

junction becomes a 2-adjunction (adjunction in the 2-category 2-Cat) between d JJX 

and BJLPX. 
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Proof. For 2-cell CI : a =+ b : Z +X in & and (T : f + 9 : I 4 PX the bijection 

(8 4x)0(% g’) 

(.@ up~)o(pa, 0) 

means precisely that CT’ is l-Cartesian over CT (Pa’ = CJ is the requirement that the right 

adjoint be a right inverse). 

Furthermore, this bijection extends to 2-cells if the codomain of G’ is 2-Cartesian: 

given a 2-cell 0 : h + h’ : PZ --j I between Pa and CT, ga = Pb implies there is a unique 

2-cell 8t : ht =s- (h’)t with PO+ = 0, where (_)t denotes the adjoint transpose. 0 

Although this result does not give a full characterisation of 2-cartesianness, it cer- 

tainly indicates that the 2-categories d J,lX should play a similar role in the abstract 

theory of 2-fibrations to the one that ordinary slices play in ordinary fibred category 

theory. 
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