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Abstract-Here, we give a few examples of weights belonging to the classes Q and 6. As an 
application of the first part, we also give a unified method for the proof of continuous imbeddings for 
weighted Sobolev spaces. The method we use allows us to estimate the imbedding constants and to 
get directly, and in a simple way, all the standard equivalent norms. 

1. EXAMPLES 

1.1. Ezanaples of Weights Belonging to the Classes Q and &; 

Let Q be an open bounded set of RN, whose boundary af2 is Lipschitzian. That is, we can 
decompose R as: S2 = Ug6sZi, where (C4 i i O....,, is a family of open sets satisfying: I& c R, there ) = 
exist two numbers (Y > 0, p > 0, m systems of local coordinates (~~,t~~)i=~...,,, and m Lipschitz 
functions (ei)i=r,,,m defined on the N - l-dimensional cube Qi = {z:, I%{, 1 < a, j = 1. . . N - 1) 
such that: 

- any point z of 852 f~ &Ii can be written a~ z = (z:, ai(Z 
- if Vi indicates the open set {(t:,ziN),c: E Qi, ]ZiN - ai( < p}, then Ri = Vi f~ R = 

{(~:yZi,,r)r~: E Qi,ai(zi) < ziw c ai +P}. 
Then, we define E(n) as the class of functions Q belonging to kVl@(fI), strictly positive in Cl 

and such that in local coordinates, we have: 

cl g(z) 5 XiN - ai + ai 5 C2 U(2) t/X E Rij 

where cl, c2 are two constants strictly positive and bi a function defined on Qi such that 0 5 
bi(z:) 5 ~3. 

We also define E#(n) as the sub-class of X($2) consisting of the functions u such that on each 
connected component of 80; a$&, there exists one arc l?i c dRi (with H*_l(I’i) > 0) on which 
the trace of u is strictly positive. Then, we have 

PROPOSITI_ON 1. Let R be an open, bounded, connected, Lipschitzian set, c E X(n) and v 1 0, 

then c” E Q(i2, *). 

PROPOSITION 2. Let R be an open, bounded, Lipschitzian set, u E I@(n) and v 1 0, then 

by E Q@ N$$E& 
The proof of these two propositions takes inspiration from [l]. We give a few examples of 

functions u belonging to the classes C(s2) and C#(R): 

U(Z) = dist(t, 80) : U E c(n), U 4 cqfq, 

U(z) = d&(Z,Ze), 20 E an : U E @(n), 

u E W1@(il) such that 0 < cl < u : u E Y@(Q). 

Typeset by d&T@C 

79 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82656371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


80 J.M. RAKOTOSON, B. SIMON 

REMARK. It is shown in [2] that if u belongs to E(n), then WIJ’(fI,uy) = V1~P(fl,uy) Vp E 

[l, -too],Vv 1 0. 

1.2. Estimates of the Constant &(I 

THEOREM 1. Let 0 be an open set of RN and Y > 0. 

(i) Let x0 E RN, we define the weight function U(Z) = (dist(z,ze))“. We assume that 

Ifl(, < $00. Then, u belongs to the class Q(S2, $$) and we have the estimate: 

Qd (q N + ’ ) 5 N’+(Y/~)(~~-YN-Y/~)‘/(N+~). 
N+v-1 

(ii) Let H be a hyperplane of RN, we define u(z) = (dist(z,H))“. We assume that InI,, < 

+oo. Then, u belongs to the class Q(fi, e) and we have the estimate: 

Qo (CZ, N +V ) 5 (21+‘)‘~(~+“). 
IV+v-1 

Notice that the two previous estimates are independant of Q, and if u = 1 (that is v = 0), the 

isoperimetric constant Qr(f& A) is equal to (NcrzN)-l. 

2. WEIGHTED SOBOLEV IMBEDDINGS 

Using Theorems 4 and 5 of the first part and basic properties linked to rearrangement, we 
obtain continuous imbeddings for weighted Sobolev spaces. This method generalizes and unifies 
such of the results already known [l-5] and allows one to estimate the imbeddings constants. 

THEOREM 2. Let Cl be an open set ofRN, a E Q(n, q) (q > 1) andp > 1. q’ (respp’) willdenote 
the conjuguate of q (resp p). Then, we have the following continuous imbeddings: 

Ifp > q’, then W,‘lP(fl,a) c-* LOO’(R) and Vu E W~lp(Q,a), 

lulm 5 ppp’)-(l’q) 5 L > 
VP' 

Q&h dIIV41p,y 

Ifp = q’ then Wi*q’(R, a) c-* L’(C2, Q) Vr E [l, +OO[ and VU E W,‘lq’(R, a), 

14r,a I 1~1:‘~ [lm uriqe-odu]l’r Qa(f4q)llV41q,,a. 

If 1 < p < q’, then W$p(s2,a) L, L’(R,a)Vr E [l,p*[ with 5 = i - 5 and Vu E WilP(SZ,a), 

Iulr,. I I”1 (dl+(ll’d+(l/r) (p’ “_ q) l”’ [i’ (t’-(P’/d _ f”’ &] 1’r Q,(~,q)llVullp,,. 

REMARKS. If p = 1, we know by definition of Q(Q,q) that kV,‘~‘(G?,a) c-* Lq(tI,a) and ]u]~,~ < 

QaP,q) (IW(,,aVu E F%W. 
This theorem generalizes perfectly the classical Sobolev inequalities. Indeed, by Poincare’ in- 

equality, we know that the weight function a = 1 belongs to the class Q(n, A). Namely, 

P = A and q’ = N. 

Of course, we can apply this theorem to the weights that we have introduced in the preceding 
paragraph (then, the exponent q’ is N f v) and take back the estimates of the constants Qo. 
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We also deduce a weighted Trudinger inequality: 

THEOREM 3. Let R be an open set of RN and a E Q(Q, q) (q > 1). Then for all u E WgBg’(sZ, a) 
and for all A > Qa(R, q), we have: 

Namely, exp(clujq) E L’(R, a). 

THEOREM 4. Let R be a (connected) open set of RN, a E f!&Ck,q) (q > 1) and p > 1. Then, we 
have the following continuous imbeddings: 

Ifp > q’, then V’~p(R,a) L, L=‘(R) and Vu E V’J’(R,a), 

IU*,a(S) - U*JS’)I 5 2l-@/9) (~d’k-p’(c)dc~ ij.(R,q),lVul,p,~ Vs,s’ E R’, 

where 

in particular, 

k(u) = min (c119, (InI. - a)‘/*), 

I+$) - u*,al 5 cp41p,a vs E Q’, 

where 

and 

WP’Hllq) Q ( > 
UP' 

C=21RI, - 
Q-Pp’ 

a4-b Q)r 

moreover, 

I400 5 qlwlp,a + Iqp114,.. 

If p = q’, then V’J’(S2, a) c-* L’(Q, a) Vr E [l, +oo[ and Vu E V’*q’(Cl, a), 

u*,a(.) - u*,a F ( >I I qlwIq~,a’ 
I- 

where 

moreover, 

Iul,,a L cp41q,,a + +-4?‘l41,.. 

If 1 < p < q’, then V’+‘(R,a) Q L’(Q,a)Vr E [l,p*[ with 5 = i - $ and Vu E VIPp(R,a), 

u*,a(.) - u*,a p ( >I I qIwlp,a~ 
r 

where 

c = 2l’plnl ;,P’)-(l/d+(l/r) (p’ “_ () l”’ [J/o’ (+tP%) _ 1)“” &] 1’r a$, q>, 
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moreover, 

lulr,a I cpullp,a + 2ply)-‘IUIl,a. 
REMARK. We get directly the following equivalent norms; for instance, if 1 < p < q’: 

I4 V’*P(rl,a) N IIWl,,(,,.) + IUIL*(n,.) 1 5 s < p+* 

If a = 1, cm&) I WQ , A): the relative isoperimetric constant [S]. It is known for 

some domains [7], for instance: 

l If Q is a ball of RN, U (Q, &) = -& ($r~)‘-@‘~) (where (Y,,, is the measure of the 

unit ball in IP). 
l If R is a rectangle (in Iw’) whose sides have lengths a and b, a 16, U(s2,2) = a1/2(2b)-‘/2. 
l If Q is a triangle (in W2) whose the smallest of its angles is w, U(Q, 2) = @J)-‘/~. 

3. REGULARITY 

THEOREM 5. Let n be an open set of RN and a E Q(Q, q) (q > 1). Let u E Wi’P(Q, a) solution 

of - div(alVul Pm2Vu) = f. We assume that h = y E L’(Q,a) (r 2 1). Then, 

(IuI)a,a(s) < (&a(R, q))” /‘“” 6% (I” h&) dr)“” da vs E R’, 
8 

and if r > $, then u E Loo(n) and we have the estimate: 

with 7 = l- f+$. 

Details of the proof will be given in [8,9] (th ese proofs are very easy). Other estimates of Go 
will be also given. The proof of Theorem 5 follows the ideas of [lo] (see also [ll]). 
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