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Abstract—Here, we give a few examples of weights belonging to the classes Q and 6 As an
application of the first part, we also give a unified method for the proof of continuous imbeddings for
weighted Sobolev spaces. The method we use allows us to estimate the imbedding constants and to
get directly, and in a simple way, all the standard equivalent norms.

1. EXAMPLES

1.1. Examples of Weights Belonging to the Classes Q@ and Q
Let © be an open bounded set of RV, whose boundary dQ is Lipschitzian. That is, we can
decompose § as: Q = U ,Q;, where (£;)i=o..m is a family of open sets satisfying: Qo C Q, there
exist two numbers a > 0, 8 > 0, m systems of local coordinates (z}, z;, )i=1...m and m Lipschitz
functions (@;);=1..m defined on the N — 1-dimensional cube Q; = {z, |x§j| <a,j=1...N-1}
such that:
— any point = of 8Q N J; can be written as z = (1:2, a;(z:-)),
— if U; indicates the open set {(z},zi,), z; € Q;,|ziy — ai(z})| < B}, then Q; = U; NQ =
{(z:"zizv)vz:' € Qi’ai(z:') <ziy < ai(zz) + ﬂ}
Then, we define £(Q) as the class of functions o belonging to W1>°(f), strictly positive in Q
and such that in local coordinates, we have:

co(z) <z, —ai(zl) + bi(z}) < cro(z) Ve,
where c;,c, are two constants strictly positive and b; a function defined on @; such that 0 <
bi(x;) < cs.
We also define £#(Q) as the sub-class of £(2) consisting of the functions o such that on each

connected component of §€2; 8;, there exists one arc I'; C 8Q; (with Hy_,(T;) > 0) on which
the trace of o is strictly positive. Then, we have

PROPOSITION 1. Let Q be an open, bounded, connected, Lipschitzian set, ¢ € X(Q2) and v > 0,
then 0¥ € Q(1Q, N’%}E—f)

PROPOSITION 2. Let Q be an open, bounded, Lipschitzian set, o € L#(Q) and v > 0, then
o’ € Q(Q, Fitty)-

The proof of these two propositions takes inspiration from [1]. We give a few examples of
functions o belonging to the classes £(2) and =#(9Q):

o(z) = dist(z,8Q) : ¢ € £(Q), 7 & T#(Q),
o(z) = dist(z,20), 20 €N : 0 € 2#(0),
ceWl®(Q)suchthat 0 <¢c; <c:0€ E#(Q),
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REMARK. It is shown in [2] that if o belongs to (), then WiP(Q,0%) = VIP?(Q,0") Vp €
[1, 4+o00], Vv > 0.

1.2. Estimates of the Constant Q.

THEOREM 1. Let Q be an open set of RN and v > 0.

i) Let zo € RN, we define the weight function o :c dist(z, g Y. We assume that
4
||, < +00. Then, o belongs to the class Q(Q, £~ 1) and we have tbe estimate:

Q, (9 NN +v 1) < N1+(v/2)(2V—UN—V/2)1/(N+V).
b} + v — -—

(i) Let H be a hyperplane of RV, we define a(z) (dist(z, H))”. We assume that |Q], <
+00. Then, o belongs to the class Q(Q, 7~ N 7t4=) and we have the estimate:

o () s

Notice that the two previous estimates are independant of Q, and if 0 = 1 (that is v = 0), the
isoperimetric constant Q1 (2, ;) is equal to (Naj™)™!

2. WEIGHTED SOBOLEV IMBEDDINGS

Using Theorems 4 and 5 of the first part and basic properties linked to rearrangement, we
obtain continuous imbeddings for weighted Sobolev spaces. This method generalizes and unifies
such of the results already known [1-5] and allows one to estimate the imbeddings constants.

THEOREM 2. Let Q be an open set of RV, a € Q(,q) (¢ > 1) and p > 1. ¢’ (resp p’) will denote
the conjuguate of q (resp p). Then, we have the following continuous imbeddings:
Ifp > ¢', then Wy (Q,a) < L*®(Q) and Yu € Wi"*(Q,a),

'

" 1/p
< IQIillp) /e (.q_.-(-]_p,) Qa(QaQ)“vu”p,a

Ifp=¢q then W}? (Q,a) — L"(Q,a)Vr € [1, +oo and Yu € W2 (Q, a),

o0 1 r
lul-.a < |QY" UD a'/"e'”da] Qa(2,9)[IVul|,, ,

If1<p< ¢, then WyP(Q,a) & L"(Q,a)Vr € [1,p*[ with & = 1 — L and Yu € W3P(Q,a),

ah-aroram (8 NPT (o e M
|u!r,a < IQIG (m) [A (tl—(P /9) 1) dt] Qa(Q’Q)“V“”p,a

REMARKS. If p = 1, we know by definition of Q(R,¢) that W}'}(R2,a) — L!(,a) and |u|s,s <
Q4(22,9) “Vu”l.a‘v’u € Wli(Q,a).

This theorem generalizes perfectly the classical Sobolev inequalities. Indeed, by Poincaré in-
equality, we know that the weight function a = 1 belongs to the class Q(Q,%). Namely,
g= Nj—\_r—l and ¢ = N.

Of course, we can apply this theorem to the weights that we have introduced in the preceding
paragraph (then, the exponent ¢’ is N + v) and take back the estimates of the constants Q.
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We also deduce a weighted Trudinger inequality:

THEOREM 3. Let Q be an open set of RN and a € Q(R,q) (¢ > 1). Then for all u € Wol’ql(Q,a)
and for all A > Q.(R, q), we have:

ex M)q] a(z)dz L
h/ P [(’\“V“”q:,a (z)dz < 1 (Q‘f’ )q

Namely, exp(c|u|?) € L}(Q, a).

THEOREM 4. Let Q be a (connected) open set of RN, a € Q(Q,q) (¢ > 1) and p > 1. Then, we
have the following continuous imbeddings:
Ifp> ¢, then V}?(Q,a) — L*®(Q) and Yu € V1?(Q,a),

1/p'

|te,a(8) — ua,a(s")| < 21-C/D éa(ﬂ,q)HVu”p’a Vs,s' € Q,

/:I k_”l(a) do

where
k() = min (trl/q, (19a — a)l/q),

in particular,
Jea(s) = aal < CJIVAll,,  VseQ,

where

_ 1

Uy g = m/u‘,a(a’) do

n.

and ,

we-aro (a4 V" 5

C= 2|Q|a — Qs(2,9),
q—p

moreover,

luleo < C|IVul|, , + [0 ul1,0-

Ifp=¢', then V1 (Q,a) — L™ (Q,a)Vr € [1,+oo[ and Yu € V14'(Q,q),

tea() = theg (";'“)

, 1 o0 1/1‘ ~
C =21 |Q| Ir [/ ol1e=7 da'] Q4(Q,9),
0

a

ql’a!

< C||Vu||

where

moreover,
1/r)-1
lulr,a < C|IVul],, , +2]2[07 fuly,a.

If1<p<¢,then V'?(,a) — L"(Q,a)Vr € [1,p*[ with oz =

Ua,a(.) — Vs ,a (|Q2’a)

1 -3 and Vue V'2(Q,a)

< C||Vu||
.

p,a’

where

1/r

, e’ p1 , /' ~
C = Ve |q|(M/P)- (/A1) (p’ g q) [/ (=10 1) &t Gu(@,9),
- 0



82 J.M. RAKOTOSON, B. SIMON

moreover,
lulr.a < C[1Vul], , +2]2|%7 7 uly,a.

REMARK. We get directly the following equivalent norms; for instance, if 1 < p < ¢":

Iulvl”(ﬂ,a) ~ “V“”Lr(n,a) + |“|L-(n,a) 1<s<p

Ifa=1, 0§ Q,75) U, ﬁh—_r-f) the relative isoperimetric constant [6]. It is known for
some domains [7], for instance:

e IfQisaballof RN, U (Q, -ﬁli—l) = ﬁ (%an)l_(lﬂv) (where oy, is the measure of the

unit ball in R™).
e If Q is a rectangle (in R?) whose sides have lengths a and b, a > b, U(£2,2) = a'/?(2b)~1/2.
o If Q is a triangle (in R?) whose the smallest of its angles is w, U(Q, 2) = (2w)~1/2.

3. REGULARITY

THEOREM 5. Let Q be an open set of RN and a € Q(Q,q) (¢ > 1). Let u € WP (R, a) solution
of —div(a|Vul|P~2Vu) = f. We assume that h = l%l € L™(Q,a) (r > 1). Then,

(Ju])s,a(s) < (Qa(Q,q))pl /‘lﬂlu a"'%l' (/00 ha,a(T) dr)pllp do Vs € Q,

and if r > %, then u € L>°(2) and we have the estimate:

/

1 —y . P, p
lulo < 21013 (Qa(@,0)" |72 withy=1-7-+-5.

Details of the proof will be given in [8,9] (these proofs are very easy). Other estimates of 6,,
will be also given. The proof of Theorem 5 follows the ideas of [10] (see also [11]).
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