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1. INTRODUCTION

Throughout this paper, G denotes a group with identity e. If R is a
G-graded ring, we write R s [ R and we refer to R as the coeffi-g eg g G

Ž . Žcient ring. We denote the category of graded left R-modules i.e., those
left R-modules M with a G-grading M s [ M such that R M :g h gg g G

.M by R-gr.h g

The aim of this paper is to present a method to reduce the study of one
strongly graded ring R to the study of another strongly graded ring RX that
is more tractable. This reduction process has two aspects: reducing the
coefficient ring or reducing the grading. Since we apply this method in our
study of module-theoretic properties such as semisimplicity for graded
rings, we require that this reduction process preserve the category of
modules R-mod and the category of graded modules R-gr. This leads us to
the notion of graded equivalence.
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Ž .In this paper, a Morita context is the usual tuple A, B, P, Q, t , m
where we assume t and m are isomorphisms. A G-graded context is a

Ž X . XMorita context R, R , P, Q, t , m , where R and R are G-graded rings,
ŽX XP and Q are graded bimodules i.e., they have a grading which makesR R R R

them into both graded R-modules and graded RX-modules on the corre-
.sponding side , and t and m are graded bimodule homomorphisms. See

w x14 for details about graded modules and homomorphisms. Given a
functor F: R-gr ª RX-gr, we say that F is a graded equï alence of categories

Ž w x.if any of the following equivalent conditions hold see, for example, 8 :

1. F has an inverse and F (T s T ( F, for every g g G, where Tg g g
denotes the g th suspension.

Ž .2. F s Hom P, ] where P is part of a G-graded Morita contextF
Ž X .R, R , P, Q, t , m .

3. F s Q m ] where Q is part of a G-graded Morita contextR
Ž X .R, R , P, Q, t , m .

4. F lifts to an equivalence of categories FX: R-mod ª RX-mod; that
X XŽ .is, there is an equivalence of categories F , as above, such that F M s

Ž .F M for every M g R-gr.

We say that R and RX are graded equï alent if there is a graded equiva-
lence F: R-gr ª RX-gr.

A special type of graded equivalence arises from the graded isomor-
phism. Given G-graded rings R and RX, we say that R and RX are graded
isomorphic if there is a graded isomorphism f : R ª RX, that is, a ring

Ž . X Xhomomorphism f such that f R s R . In case A s R s R , R is saidg g e e
to be graded A-isomorphic if there is a graded isomorphism f : R ª RX that
induces the identity on A. Of course, graded isomorphic rings have
isomorphic categories of modules and graded modules, but this is too
strong a condition for our purposes.

The reduction process mentioned above can be rephased in terms of
graded equivalences. The main problem of this paper is the following:

Ž .Problem A. Given a strongly G-graded ring, find another G-graded
ring RX that is graded equivalent to R such that either the identity

X Ž Xcomponent R is simpler e.g., R is semiperfect and R is basic semiper-e e e
. X Ž Xfect or the grading of R is simpler e.g., R is a crossed product or a skew

.group ring .

We apply our solution of Problem A to the study of a more concrete
problem:

Problem B. Characterize semisimple strongly G-graded rings.
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The key to our study is the development of an action of graded Morita
contexts on graded rings. For the purposes of this introduction, if C is a
Morita context and R is a graded ring, then RC denotes the action of C

Ž .on R see Section 2 for the details . We use this action to reduce the
coefficient ring. For example, we can apply a graded Morita context on a

Ž .graded ring R whose coefficient ring is of the form M A to obtain an
graded equivalent ring RX whose coefficient ring is A. We also use this
action to reduce the grading. Crossed products and twisted, skew, and
ordinary group rings are examples of gradings that are more tractable than
strongly graded rings. The Cohen]Montgomery duality is an example of
how this action can reduce the grading of a strongly graded ring to that of
a skew group ring. To be more specific, we introduce some notation and
present one of our main results.

Ž .Let R be G-graded and let A s R . A graded invertible R-module is ae
Ž . Ž .bimodule P which is part of a graded Morita context R, R, P, Q, m, t .R R

The class of A-bimodules isomorphic to a given A-bimodule P is denoted
w x Žby P . In addition, we use the following: Here P denotes the identitye

.component of the graded module P.

Ž .Aut A s Group of automorphisms of A
Ž .Inn A s group of inner automorphisms of A
Ž .Aut A s Group of automorphisms of A that extends to a gradedR

automorphism of R
Ž . Ž . Ž .Out A s Aut A rInn A
Ž . Ž . Ž Ž . Ž ..Out A s Aut A r Inn A l Aut AR R R

Ž .Pic A s Picard group of A
Ž . �w x 4Pic A s P : P is a graded invertible R-bimoduleR e

ŽThe next theorem summarizes our results: Here given a group G and
a subgroup H of G, GrH denotes the set of either right of left H-cosets

.of G.

THEOREM A. Let R be a graded ring with coefficient ring A.

1. If R and RX are strongly G-graded rings, then R and RX are graded
˜equï alent if and only if there exists a Morita context C between A and the

X ˜coefficient ring of R , such that C induces a graded Morita context C between
R and RX so that RX and RC are graded isomorphic.

Ž . Ž .2. If R is strongly graded, Pic A rPic A parametrizes the stronglyR
graded rings RX, with coefficient ring A, that are graded equï alent to R but not
graded A-isomorphic to R.



HAEFNER AND DEL RıÓ576

Ž . Ž .3. If R is strongly graded, Pic A rOut A parametrizes the strongly
graded rings, with coefficient ring A, that are graded equï alent to R but not
graded isomorphic to R.

Ž . Ž . Ž . Ž .4. Out A rOut A , Aut A rAut A parametrizes the gradedR R
rings that are graded isomorphic to R, but not graded A-isomorphic to R.

Ž .See Theorem 3.2 and Propositions 4.4 and 4.6. As a consequence of 1 ,
the graded equivalence class of R is completely determined by the Morita

Ž . Ž .equivalence class of its coefficient ring. Statements 2 through 4 give
Ž .parametrizations of the equivalence classes of strongly graded rings with

the same coefficient ring, under graded equivalence, graded isomorphism,
w xor graded A-isomorphism. Finally, synthesizing some results from 14, 5 ,

we reduce the distinction between graded equivalence and graded isomor-
Ž .phism to a cohomology problem see Section 5 and we obtain the

following:

THEOREM B. There are graded equï alent, strongly G-graded rings R and
RX, sharing coefficient ring A, and, for e¨ery g g G, R , RX as A-bimodulesg g
but R and RX are not graded isomorphic.

See Theorem 5.8
Theorem A implies that reducing the coefficient ring A is limited by the

w xMorita equivalence class of A. As an example we obtain a result of 9 : If
R is a strongly graded ring so that R is semiperfect, then R is gradede
equivalent to a strongly graded ring RX such that RX is the basic ring ofe
R . In particular, it follows that RX is a crossed product. As a result, in thee
semiperfect situation, we can reduce not only the coefficient ring, but the
grading as well. Skew group rings and twisted group rings are examples of
gradings that are more tractable than crossed products, and so we ask
whether the process can go further to one of these two cases. However,
reducing to a twisted group ring is impossible if the original graded ring is

Ž .not already twisted Corollary 3.4 . On the other hand, reducing to a skew
group ring is possible via the Cohen]Montgomery duality but at the cost
of complicating the coefficient ring. Nonetheless, this is the best we can
expect because reducing the grading to a skew group ring and keeping a
tractable coefficient ring are somehow incompatible. Specifically, if R ,e
RX is basic semiperfect and R is a skew group ring, then RX is a skewe

Ž .group ring as well Proposition 6.5 .
This result is helpful to the solution of Problem B. In particular, if R is

semisimple, so is R and hence, to solve Problem B, we may assume thate
R is semisimple. By Theorem A, we may reduce R to a crossed producte
over a finite product of division rings. Moreover, since Theorem A deter-
mines how a graded equivalence results from a Morita context of the

Žcoefficient rings, we are very specific on the resulting crossed product see
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. ŽSection 7 . However we cannot expect to go further e.g., to unskew or to
.untwist via graded equivalence. Nonetheless, using the particularities of

these crossed products, we can reduce the semisimplicity of the original
ring to the semisimplicity of a finite set of concrete crossed products over
division rings. We prove:

THEOREM C. Let R be a strongly graded ring with semisimple coefficient
Žring A. Let B be the semisimple basic ring that is Morita equï alent to A so B

.is a direct sum of dï ision rings . Then R is graded equï alent to a crossed
product RX with coefficient ring B. Moreo¨er, there exists a finite collection of

� 4crossed products o¨er dï ision rings, D )G : i s 1, . . . , n , such that R isi i
semisimple if and only if each D )G is semisimple.i i

See Theorem 7.5. Moreover, if the original grading is already ‘‘untwisted’’
Ž .see Section 7 , then we can reduce to skew group rings over division rings
Ž .Corollary 7.7 . Finally, we mention that, when the above mentioned

w xdivision rings are fields, we can apply the results of 2, 3 to characterize all
Ž .the semisimple strongly graded rings of this form Corollary 7.8 .

Notation. We denote ring automorphisms exponentially; that is, the
Ž . aaction of a g Aut R on r g R is denoted by r . Accordingly ab means,

first a , then b.
Ž iu y1 .If u is a unit, then i denotes the inner automorphism r s u ruu

induced by u.
Let R be a G-graded ring. For every g g G, R denotes the g thg

homogeneous component of R. The notation r is normally used to empha-g
size that r g R . R-gr denotes the category of left graded R-modules.g g

R is said to be strongly graded if R R s R for ever g, h g G. R isg h g h
said to be a crossed product if R contains a unit for every g g G. Crossedg
products are determined by parameter sets: A parameter set of a group G

Ž Ž . Ž .over a ring A is a pair of maps a : G ª Aut A , t: G = G ª U A
satisfying the following conditions:

aka a s t g , h i and t gh , k ? t g , h s t g , hk t h , k .Ž . Ž . Ž . Ž . Ž .g h tŽ g , h.

a Ž .The crossed product A) G defined by the parameter set a , t is the freet
� 4right A-module with basis g : g g G with multiplication given by

a grg s gr , gh s gh t g , h .Ž .

A skew group ring is a crossed product A)a G s A)a G, such thatt
Ž .t g, h s 1 for every g, h g G. A twisted group ring is a crossed product

A)a G s A) G, such that a s 1 for every g g G.t t g
When a map X m Y ª Z is denoted by M, we mean that the map is

Ž .given by M x m y s xy, where the multiplication will be clear from the
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context. Finally, we have frequently abused the notation and identified
X m A, A m X, and X without explicit mention.A A

2. MORITA CONTEXTS ACTING ON GRADED RINGS

We begin this section by defining a general action by Morita contexts.
Let A and B be arbitrary unital rings. By ‘‘Morita context,’’ we mean the

Ž .usual Morita context 6-tuple A, B, P, Q, t , m where P and Q areA B B A
bimodules and t : P m Q ª A and m: Q m P ª B are bimodule isomor-B A
phisms. In the literature, the condition that t and m are bijective is usually
not required and a Morita context satisfying this condition is called a strict
Morita context. But all the Morita contexts used in this paper are strict, so
we just say ‘‘Morita context’’ to mean ‘‘strict Morita context.’’ In particular,
a Morita context shall always induce an equivalence of categories between
A-mod and B-mod.

For shorthand notation, all Morita contexts will be denoted by C with
X Ž X X Xsome modifier. For example, C denotes the Morita context A , B , P ,

X X X.Q , t , m .

DEFINITION 2.1. Let C and CX be two Morita contexts. A morphism of
X Ž .Morita contexts from C to C is a 4-tuple of maps f s a , b , p , D where:

1. a : A ª AX and b : B ª BX are ring homomorphisms,
2. p : P ª PX is an a]b semilinear map,
3. D : Q ª QX is a b]a semilinear map, and
4. the following diagrams are commutative:

mt 6 6

P m Q A Q m P BB A

6 6a bpmD Dmp
X6 6X mtX X X X X X6 6

X XP m Q A Q m P BB A

As with our notation convention for Morita contexts, we shall use
similar rules to denote morphisms of Morita contexts; e.g., the morphism
f is formed by the maps a , b , p , D .1 1 1 1 1

Morita context and the morphisms between Morita contexts define a
category in a natural way.

DEFINITION 2.2. Given two Morita contexts C and CX, with B s AX, we
define the multiplication

C ? CX s A , BX , P m PX , QX m Q,Ž B B

t 1 m t X m 1 : P m PX m X QX m Q ª A ,Ž . Ž . Ž .B B B

mX 1 m m m 1 : QX m Q m P m PX ª BX .Ž . Ž . Ž . .B A B



PICARD GROUPS ON GRADED RINGS 579

It is straightforward to check that this product is well defined and
associative. The next lemma shows that this product can be translated to
the isomorphism classes of Morita contexts.

LEMMA 2.3. The product of Morita contexts is compatible with the isomor-
phism of Morita contexts; i.e., if C , C and CX , CX are Morita contexts so1 1
that B s AX and B s AX , then C ? CX , C ? CX .1 1 1 1

Proof. Let f : C ª C and f : CX ª CX be isomorphisms of Morita1 1
Ž Xcontexts. Then one checks by straightforward computations that a , b , p

X X X X.m p , D m D is an isomorphism of Morita contexts C ? C , C ? C .1 1

We now turn our attention to graded rings. Let R be a G-graded ring.
Ž .As we want a context C s A, B, P, Q, t , m to act on R, we need to make

sure that R can be viewed as an A-bimodule. Thus, for technical reasons,
it is convenient to assume that the coefficient ring R is isomorphic to A.e

Ž .This leads us to the following definition of an A, G -graded ring and the
appropriate context action.

Ž .DEFINITION 2.4. Let A be a ring and G a group. An A, G -graded ring
Ž .is a pair R, f where R is a G-graded ring and f : A ª R is a ringe

isomorphism.
X Ž . Ž .Let a : A ª A be a ring homomorphism, R, f an A, G -graded ring,

Ž X X. Ž X .and R , f an A , G -graded ring. A graded a-homomorphism from
Ž . Ž X X. XR, f to R , f is a graded ring homomorphism F: R ª R which makes
the diagram

f 6

A R

6a F
X 6fX X6

A R

commutative.

Ž . Ž .A, G -graded rings and the 1 -morphisms of A, G define a categoryA
Ž .in a natural way. The graded 1 -isomorphism class of an A, G -gradedA

Ž . w xring R, f is denoted by R, f . Now we define an action of Morita
contexts on graded rings.

Ž .DEFINITION 2.5. Given a Morita context C and an A, G -graded ring
Ž . Ž .C Ž C C .R, f , we define R, f s R , f , where

1. RC s Q m R m P s [ Q m R m P with the product de-A A A g Ag g G
fined by

q m r m p qX m rX m pX s q m rt p m qX rX m pX .Ž . Ž . Ž .Ž .
C Ž . y12. f s 1 m f m 1 m .
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The next lemma shows that this action induces an action of the isomor-
Ž .phism classes of Morita contexts on the class of graded isomorphism

classes of graded rings.

Ž . Ž . Ž X X. Ž X .LEMMA 2.6. Let R, f be an A, G -graded ring, R , f an A , G -
Ž . Xgraded ring, f s a , b , p , D : C ª C a morphism of Morita contexts, and

Ž . Ž X X. fF: R, f ª R , f a graded a-morphism of rings. Then F s D m F m p :
C XCX X Ž .R ª R is a graded b-morphism. In particular, if f : C , C and R, f is

Ž X X. Ž .C Ž X X.C X

a-isomorphic to R , f , then R, f is b-isomorphic to R , f .

Proof. We leave it to the reader to check that Ff is well defined. We
check that Ff is a ring homomorphism. Given q, qX g Q, r, rX g R, and
p, pX g P, then

Ff q m r m p qX m rX m pXŽ . Ž .Ž .
s Ff q m rt p m qX rX m pXŽ .Ž .
s D q m F rt p m qX rX m p pXŽ . Ž . Ž .Ž .
s D q m F r F ft p m qX

F rX m p pXŽ . Ž . Ž . Ž . Ž . Ž .
s D q m F r f Xat p m qX

F rX m p pXŽ . Ž . Ž . Ž . Ž . Ž .
s D q m F r f Xt X p m D p m qX

F rX m p pXŽ . Ž . Ž . Ž . Ž . Ž .Ž .
s D q m F r t X p p m D qX

F rX m p pXŽ . Ž . Ž . Ž . Ž . Ž .Ž .
s D q m F r m p p D qX m F rX m p pXŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
s Ff q m r m p Ff qX m rX m pX .Ž . Ž .

It is straightforward to see that Ff is graded. Finally we prove that Ff

is a b-homomorphism. Since the diagrams

mf 66 Q m P BA R A

6 6 banda DmpF
X X6 6f mX X X X X6 6

XA R Q m P BA

are commutative, the diagram

f C 6

B Q m R m PA A

6 fb FXXC 6fX X X X6

X XB Q m R m PA A

is also commutative.
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ŽWe close this section by showing that the action of isomorphism
. Ž .classes of Morita contexts on the isomorphism classes of graded rings is

multiplicative.

Ž . Ž . XLEMMA 2.7. Let R, f be an A, G -graded ring and C and C Morita
X Ž .C?C X ŽŽ .C .CX

contexts so that B s A . Then R, F is isomorphic to R, f .

Proof. This follows by showing that the classical isomorphism

QX m X Q m R m P m X PX ª QX m X Q m R m P m X PXŽ . Ž . Ž .A A A A A A A A

XŽ .is an isomorphism of B , G -graded rings.

Notation 2.8. We denote the action of the isomorphism class of the
w x Ž .Morita context C on the isomorphism class R, f of the A, G -graded

Ž . w xCring R, f by R, f .

3. GRADED EQUIVALENCES

The moral of the previous section is that we may consider the equiva-
Ž .lence classes of Morita contexts partially acting multiplicatively on graded

rings. In this section, we show that this action completely characterizes
graded equivalences for strongly graded rings.

The key to graded contexts is that they induce Morita contexts for the
coefficient ring when the ring R is strongly graded. This is the essence of
the following lemma.

Ž . Ž . Ž X X.LEMMA 3.1. Let R, f be a strongly A, G -graded ring and R , f a
Ž X . Ž X X X.strongly A , G -graded ring. If CC s R, R , X, Y, t , m is a graded context,
Ž X y1 X Xy1 X .then C s A, A , P s X , Q s Y , t s f t , m s f m is a Morita context,e e e e

X X X XŽ .Xwhere t : P m Q ª A and m : Q m P ª A are gï en by t p m q se A e A e
Ž . X Ž . XŽ .t 9 p = q and m q m q s m q = p .e

X ŽProof. Since t is surjective, there are x g X and y g Y i si i
. XŽ n .1, 2, . . . , n so that t Ý x m y s 1. We may assume that every x isis1 i i i

homogeneous, say of degree g , and that every y is homogeneous ofi i
degree gy1. For every i s 1, 2, . . . , n, choose r g RX

y1 and s g RX
i i j g i j gi i

Ž . Ž .j s 1, 2, . . . , k so that Ý r s s 1. Then t Ý Ý x r m s y si j i j i j i j i i j i j i
y1 XŽ . y1 XŽ Ž Ž . . y1Ž XŽ n ..f t Ý Ý x r m s y s f t Ý x m Ý r s y s f t Ý x m yi j i i j i j i i i j i j i j i is1 i i

y1Ž .s f 1 s 1. This shows that t is surjective. By symmetry, m is also
surjective.

We can now present our characterization of graded equivalences using
our context action.
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Ž . Ž . Ž X X.THEOREM 3.2. Let R, f be an A, G -graded ring and let R , f be an
Ž X .A , G -graded ring.

w X X x w xC1. If there exists a Morita context C such that R , f s R, f , then R
and RX are graded equï alent.

X Ž .2. If R and R are strongly graded, then the con¨erse of 1 holds; that
is, if R and RX are strongly graded and graded equï alent, then there exists a

w X X x w xCMorita context C such that R , f s R, f .

Proof. 1. It is enough to show that R and RC are graded equivalent.
Let Q m ]: R-gr ª RC-gr be the functor defined as follows: If M g R-grA

Ž .then Q m ] maps M to Q m M with the grading Q m M s Q m MA A A g A g
and the left multiplication by elements of RC is defined by

q m r m p qX m m s qrt p m qX m m.Ž . Ž . Ž .

The action of Q m ] on morphisms is the natural one. It is straightfor-A
ward to see that Q m ] commutes with the suspension functor T and thatA g
Q m ] is a category equivalence. It follows that Q m ] is a gradedA A
equivalence from our discussion in the Introduction. For further details,

w xsee 8 .

Ž X X X.2. Let CC s R, R , X, Y, t , m be a graded context and assume that
X Ž XR and R are strongly graded. By Lemma 3.1 C s A, A , P s X , Q se

y1 X Xy1 X . CY , t s f t , m s f m is a Morita context. Let F: R s Q m R m Pe e e A A
X Ž . XŽ .ª R be defined by F q m r m p s m qr m p .

We first show that F is a ring homomorphism

F q m r m p qX m rX m pX s F q m rt q m qX rX m pXŽ . Ž . Ž .Ž . Ž .
s mX qrt X p m qX rX m pXŽ .Ž .
s mX mX qr m p qX rX m pXŽ .Ž .
s mX qr m p mX qX rX m pXŽ . Ž .
s F q m r m p F qX m rX m pX .Ž . Ž .

It is clear that F is graded.
X X X ŽLet r g R . Since m is surjective, there are x g X and y g Y i sg g i i

. X XŽ .1, . . . , n so that r s m Ý x m y . We may assume that every x isg i i i i
Ž . Ž y1 .homogeneous of degree gh and y is homogeneous of degree h .i i i

X Ž X X . X
y1Then r s F Ý x a m b a m b y , where a g R , b g R , a gg i j i i j i j i k ik i ik h ik h i ji i
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R y1 , bX g R , and Ý a b s 1 s Ý aX bX , for every i. This showsŽ g h . i j g h k ik ik j i j i ji i

that F is surjective.
To prove that F is injective, we first prove mX restricts to a bijection m :g

Y m P ª RX , for every g g G. Indeed, since m s fy1m , m is a bijection.g A g e e
On the other hand the following diagram is commutative

1mm gX X X6

y1 y1R m Y m P R m Rg A g A g A g

6MMm1 6 me X6

RQ m P eA

and so 1 m m is a bijection. Since R y1 is faithfully flat as a rightg g

A-module, m is a bijection.g
Ž . XŽ .Now assume that F Ý q m r m p s 0. Then m Ý q r m p s 0. Wei i i i i i i i

may assume that every r is homogeneous and that they all have the samei
Ž .degree, say g. Then m Ý q r m p s 0 and hence Ý q r m p s 0 ing i i i i i i i i

X m P. Therefore, Ý q m r m p s 0 in Q m R m P.g A i i i i A g A
It only remains to show that the following diagram is commutative

f C
X C6

A R
6F1

X6 f XX 6

RA

C Ž . Ž .Ž . Ž . XŽHowever F f m q m p s F 1 m f m 1 q m p s F q m 1 m p s m q m
X. Ž .p s f m q m p .

The following corollary is a direct consequence of Theorem 3.2

COROLLARY 3.3. If R is a strongly graded ring and A is Morita equï alent
to R , then R is graded equï alent to a strongly graded ring RX such thate
RX s A.e

Since a strongly graded ring R is a twisted group ring if and only if the
homogeneous components of R are isomorphic to R as R -bimodules, wee e
have the following corollary.

COROLLARY 3.4. If R is a twisted group ring, then e¨ery ring graded
equï alent to R is also a twisted group ring.

w xRemark 3.5. We note that the results of 12, 13 are similar to some of
the results found in this and the previous section. For example, Theorem

w x1.1 of 13 compares to Lemmas 2.3 and 2.7, which show that Morita
contexts, as well as their action on graded rings, are multiplicative. More-
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w xover, Theorem 3.4 of 12 is similar in flavor to Theorem 3.2, which shows
that graded equivalences arise from Morita contexts of the coefficient ring.

4. THE PICARD GROUP ACTING ON GRADED RINGS

The philosophy of this section is that, using Corollary 3.3, we have
Ž .reduced the coefficient ring via graded equivalence as much as possible

and, consequently, we now fix the coefficient ring A. That is, we are
interested in all the G-graded rings R, with R s A, and our goal is toe
identify the graded equivalence classes. In this case, the action of Morita

Ž .contexts on graded rings reduces to an action of Pic A on graded rings
and the graded equivalent classes turn out to be the orbits under this
action. For technical reasons, it is more convenient to consider all the
G-graded rings R such that R is isomorphic to A. This does not changee
our study but rather simplifies the proofs.

Ž .Notation 4.1. Pic A denotes the Picard group of A. If P is an
w x Ž .invertible A-bimodule, P g Pic A denotes the class of invertible A-bi-

modules isomorphic to P.
Given an automorphism s of A, As is the A-bimodule defined as

follows: As s A as a left A-module and right multiplication is given by
Ž . Ž s . sp ? a s ps a a g A, p g A . Similarly, we define A. It is well known

s w s xthat A is invertible and that the map a ¬ A defines a group homo-
Ž . Ž . Ž .morphism Aut A ª Pic A whose kernel is Inn A , the set of inner

Ž . Ž . Ž .automorphisms of A. Accordingly we identify Out A s Aut A rInn A
with the image of this map.

gr Ž .Now let R be a G-graded ring. Then Pic R denotes the group of
graded isomorphism classes of invertible R-bimodules P that occur in a

Ž .graded context R, R, P, Q, t , m .
Ž . Ž .Let R, f be an A, G -graded ring. If s is a graded automorphism of

s grŽ . y1R, then R g Pic R . Moreover, s induces an automorphism s s f s fe
gr Ž .in A. We denote the set of graded automorphisms of R by Aut R and

the set of inner automorphisms of R induced by an invertible element of
Ž .A by Inn R . SetA

w x w x w x grPic A s P g Pic A : P s Q for some Q g Pic R ,� 4Ž . Ž . Ž .R e

Aut A s s g Aut A : fy1s f extends to a�Ž . Ž .R

graded automorphism of R ,4
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and

Out A s Aut A rInn A .Ž . Ž . Ž .R R

Ž . Ž .If R, f is a strongly A, G -graded ring, then G acts on the center of
Ž Ž ..A via the Miyashita action s : G ª Aut Z A . That is, if g g G and

Ž . sga g Z A , then a is defined by

ar s r asg , r g R .g g g g

nŽIn this paper, the coboundary, cocycle, and cohomology groups B G,
Ž Ž ... nŽ Ž Ž ... nŽ Ž Ž ...U Z A , Z G, U Z A , and H G, U Z A are considered with

respect to this action.

Ž .PROPOSITION 4.2. If R, f is a strongly G-graded ring, there is a commu-
tatï e diagram

1 1 1

6 6 6

a b1 116 6 6 6

Ž Ž Ž ... Ž . Ž .B G, U Z A1 Inn R Inn A 1A

j j j6 6 6
a b2 21 gr6 6 66

Ž Ž Ž ... Ž . Ž .Z G, U Z A1 Aut R Aut A 1R

6 6 6T T T
a b3 31 gr6 6 6 6

Ž Ž Ž ... Ž . Ž .H G, U Z A1 Pic R Pic A 1R

6

1

with exact rows and columns of group homomorphisms, and all the ¨ertical
homomorphisms are canonical.

1Ž Ž Ž ...Proof. We first define the morphisms a and b. If c g Z G, U Z A ,
Ž . Ž .Ž . Ž . Ž .then a c : R ª R is given by a c r s r c g g g G and r g R . a2 2 g g g g 1

1Ž Ž Ž ...is the restriction of a to B G, U Z A . So the upper left square is2
commutative and then a is the only group homomorphism making the3
lower left square commutative.

b and b are the restriction maps and b is the map given by1 2 3
Žw x. w x gr Ž . Ž .b P s P . Note that, by Lemma 3.1, b maps Pic R into Pic A .3 e 3
Commutativity of the diagram is straightforward to check. We only have

to prove that b is a group homomorphism and that the rows are exact.3
For the remainder of the proof g denotes an arbitrary element of G and

x g R y1 and y g R are such that Ý x y s 1.i g i g i i i
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X grŽ . X Ž X.Let P, P g Pic R and consider the maps F: P m P ª P m Pe A e R e
Ž X. X Ž X.the inclusion map and C: P m P ª P m P given by C p m p sR e e A e

Ý px m y pX, for p m pX g P m PX .i i i g g

We have to check that C is well defined. Let a g R y1 and b g Ri g i g
such that Ý a b s 1. Let p = pX g P m PX . Theni i i g g

px m y pX s p a b x m y pXÝ Ý Ýi i j j i i
i i j

s pa m b x y pXÝÝ j j i i
i j

s pa m b pX .Ý j j
j

By straightforward computations, one shows that F and C are inverse
A-bimodule isomorphisms. This shows that b is a group homomorphism.3

We leave the details of checking that the first row is exact. For the
Ž .second, let c g Ker a and note that r c g s r , for every r g R . Since2 g g g g

R is faithful as a right A-module, c s 1. Thus a is injective. It is clearg 2
that Im a : Ker b . Let s g Ker b . We claim that, for every g g G,2 2 2

Ž . Ž . Ž .there is a unit c g g A, such that s r s r c g , for every r g R . Letg g g g
Ž . y1Ž Ž .. Ž . Ž . Ž .c g s f Ý x s y . Then s r s s r Ý x y s r c g . If a g A, theni i i g g i i i g

Ž . Ž . Ž . Ž . Ž .r ac g s s r a s s r a s r c g a. Therefore c g is central and, sinceg g g g
Ž . Ž .r ¬ r c g is an automorphism of R , c g is invertible in A. Moreover,g g A g

Ž . Ž . Ž . Ž .sh Ž .for every r g R and s g R , r s c gh s r c g s c h s r s c g c hg g h h g h g h g h
1Ž Ž Ž ...and hence c g Z G, U Z A . Thus s g Im a .2

1Ž Ž Ž ... 1Ž Ž Ž ...For the third row, let c g Z G, U Z A . If c q B G, U Z A g
Ž . Ž . Ž .Ker a , then a c g Inn R . Thus, there exists u a unit in Z A , such3 2 A

Ž . y1 s g y1that r c g s ur u s r u u , for every g g G and every r g R .g g g g g

Ž . sg y1 1Ž Ž Ž ...Consequently, c g s u u and hence c g B G, U Z A . This shows
1Ž Ž Ž ...that a is injective. Since Im a s Ker b and T : Z G, U Z A ª3 2 2

1Ž Ž Ž ... w xH G, U Z A is surjective, Im a : Ker b . Assume that P g Ker b ;3 3 3
this means that P is isomorphic to A as an A-bimodule and hencee
P , R m P is isomorphic to R as a graded left R-module. It follows thatA e
w x w s xP s A for some s g Ker b . Using that the middle exact sequence is2

w xexact, it is now easy to prove that P g Im a .3

Notation 4.3. Set

w xGr A , G s R , F : R , f is an A , G -graded ring� 4Ž . Ž . Ž .
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and

w xStGr A , G s R , f g Gr A , f : R is strongly graded .� 4Ž . Ž .

w x Ž .Every element P g Pic A canonically defines a Morita context

C P s A , A , P , Py1 s Hom P , A , t , m ,Ž . Ž .Ž .A A

Ž . Ž . X Ž . Ž X. Xwhere t p m f s p f and pm f m p s p fp. Moreover if P and P
w x w X xare two invertible A-modules then P , P if and only if there is an

Ž . Ž X.isomorphism f : C P , C P of Morita contexts so that a s b s 1.
By the results from the previous section, we define the following action

Ž . Ž .of Pic A on Gr A, G :

w x Ž .P C Pw x w xR , f s R , f .

Ž .It is clear that StGr A, G is invariant under this action.

w x Ž .We can use Theorem 3.2 to compute the orbit of an R, f g StGr A, G .

w x Ž .PROPOSITION 4.4. Let R, f g StGr A, G .

w x Ž . Ž .1. The orbit of R, f in StGr A, G by Pic A is

w x w X X x XOrb R , f s R , f g StGr A , G : R is graded equï alent to R .� 4Ž .Ž .PicŽ A.

w x Ž . Ž .2. The stabilizer of R, f by Pic A is Pic A .R

3. There is a one-to-one correspondence between the set of isomorphism
Ž .classes of strongly A, G -graded rings, graded Morita equï alent to R, and the

Ž . Ž .set of cosets Pic A rPic A .R

Ž .Proof. 1 This is a consequence of Theorem 3.2.

Ž . Ž .2 Theorem 3.2 shows that Pic A is contained in the stabilizer ofR
Ž . Ž .R, f in Pic A .

w x Ž . Ž .Assume now that P belongs to the stabilizer of R, f in Pic A . Set
Ž . CC s C P and F: R ª R a graded isomorphism making the diagram

commutative

f 6

A R

61 F
C 6f

C6

A R
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1mF tm16 6
Let C be the composition P m R P m Q m R m P R m P.A A A A A
Using this isomorphism, we can endow X s R m P with an R-bimoduleA
structure by defining the left multiplication in the canonical way and the

Ž y1Ž . .right multiplication by xr s C C x r . We check that these two multi-
y1Ž .plications make R m P into an R-bimodule. Assume that t 1 s Ý pA i i

Ž X.m q and that F r s Ý x m s m y . Theni j j j j

r m p rX s C Cy1 r m p rXŽ . Ž .Ž .

s C 1 m Fy1 p m q m r m p rXŽ . Ý i iž /ž /
i

s C p m Fy1 q m r m p rXŽ .Ý i iž /
i

s t m 1 p m q m r m p F rXŽ . Ž . Ž .Ý i iž /
i

s t m 1 p m q m r m p x m s m yŽ . Ž .Ý Ýi i j j jž /
i j

s t m 1 p m q m rt p m x s m yŽ . Ž .Ý Ýi i j j jž /
i j

s t p m q rt p m x s m yŽ . Ž .Ý Ý i i j j jž /
j i

s rt p m x s m yŽ .Ž .Ý j j j
j

s r 1 m p rX .Ž .Ž .

ŽŽ . X. Ž ŽŽ . X.. Ž .ŽŽ . X. Ž . XTherefore r r m p r s r r 1 m p r s rr 1 m p r s rr m p r1 1 1 1
Ž . X Ž Ž .. Xs rr m p r s r r m p r . We make X into a graded left R-module by1 1

using the grading of R. In a similar way, we make P m R into a gradedA
right R-module. Since C is a graded isomorphism of abelian groups, X
and P m R are graded R-bimodules, so that C is a graded isomorphismA
of graded R-bimodules. Similarly, Y s Q m R and R m Q are isomor-A A
phic R-bimodules.

Now X m Y , P m R m Q m R , P m R m R m Q , P m R mR A R A A R A A A
Q , P m Q m R , A m R , R. Similarly, Y m X , R and these iso-A A A R

w x Ž . gr Ž .morphisms are graded. Since P g Pic A and P m R g Pic R , weA
w x Ž .have shown that P g Pic A . Moreover P , X as A-bimodules.R e

Ž . Ž . Ž .3 This follows from 1 and 2 .
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Ž .The following fact is elementary: Every element of Gr A, G has a
w xrepresentative of the form R, 1 , i.e., a representative, where R s A ande

f s 1. Thus we have the following corollary.

COROLLARY 4.5. Gï en a ring A, there is a one-to-one correspondence
between the graded equï alence classes of strongly G-graded rings R such that

Ž . Ž .R s A and the orbits of Pic A in StGr A, G .e

The above descriptions of the orbit require strongly graded rings.
Ž .However, when we restrict our attention to the action induced by Out A

Ž . Ž .s Aut A rInn A , we can describe the orbits even for non-strongly
graded rings. The key observation is that the homomorphisms b and b1 2
can be defined even if R is not strongly graded. In that case, we set

gr Ž . gr Ž . Ž . XOut R s Aut R rInn R and so there is a homomorphism b :A 3
gr Ž . Ž . Ž .Out R ª Out A making the diagram with exact rows and columnsR

1 1

6 6

b1 6 6

Ž . Ž .Inn R Inn A 1A

6 6

b2gr 6 6

Ž . Ž .Aut R Aut A 1R

X6 6

b3gr 6 6

Ž . Ž .Out R Out A 1R

6 6

1 1

commutative.

w x Ž .PROPOSITION 4.6. Let R, f g Gr A, G .

w x Ž .1. The orbit of R, f by Out A is

w x w X X x XOrb R , f s R , f g Gr A , G : R is graded isomorphic to R .� 4Ž .Ž .OutŽ A.

w x Ž . Ž .2. The stabilizer of R, f by Out A is Aut A .R

3. There is a one-to-one correspondence between the set of isomorphism
Ž .classes of A, G -graded rings, graded A-isomorphic to R, and the set of
Ž . Ž . Ž Ž . Ž ..cosets Out A rOut A or equï alently Aut A rAut A .R R

Ž . Ž s . ŽProof. 1 Let s be an automorphism of A. Then C A see Notation
. Ž s s4.3 is isomorphic to the following Morita context C s A, A, A , A, t ,
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. Ž . Ž . Ž .m , where t a m b s ab and m a m b s s ab . The maps s

Cs
s s 6

A m R m A RA A

a m r m b ¬ arb

Žw x.is a graded ring isomorphism. This proves that Orb R, f is embed-OutŽ A.
ded in the graded isomorphism class of R.

Ž X X. Ž . XAssume now that R , f is an A, G -graded ring and F: R ª R is a
Xy1 Ž .graded ring isomorphism. Let s s f F f g Aut A . Then the followinge

diagram is commutative and consists of ring isomorphisms

my1 1mfm1s s s s s

6 6

A A m A m A A m R m AA A A e A

6 6

sy1 Cs e
f 6

A Re

6 6Fs e
Xf X6

A Re

w X X x w xs Ž .Therefore, R , f s R, f and so 1 holds.

Ž . w x2 The automorphism s stabilizes R, f if and only if there is a
graded isomorphism F: R ª RC which makes the diagram

f 6

A R

61 F
y1 6m 1mfm1s s s s s

6 6

A A m A m A A m R m AA A A A

commutative. But this will hold if and only if the diagram

f 6

A Re

6y1 Fs e6y1 1mfm1M s s s s

6 6

A A m A m A A m R m A

6

A A A e A

6 6M M
1 f 6

A Re

w x y1is commutative. Thus s stabilizes R, f if and only if fs f extends to a
Ž .graded automorphism of R, in other words if s g Aut A .R

Ž . Ž . Ž .3 is an consequence of 1 and 2 .

COROLLARY 4.7. Gï en a ring A, there is one-to-one correspondence
between the graded isomorphism classes of G-graded rings R, with R s A,e

Ž . Ž Ž .. Ž .and the orbits of Out A or Aut A in Gr A, G .
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Our last remark of this section shows that Corollary 4.7 is a generaliza-
w xtion of 11, Proposition 2 .

w xRemark 4.8. By 14, Sect. I.1.3 , the isomorphism classes of strongly
graded rings R such that R s A can be given in terms of a groupe

Ž . Ž w x.homomorphism G ª Pic A g ¬ R and a set of bimodule homomor-g
phisms R m R ª R satisfying certain conditions. Crossed productsg A h g h

w xare determined by parameter sets. In the notation of 11 , two crossed
products R and RX, with R s RX s A, are A-isomorphic if and only ife e
w x w X xR, 1 s R , 1 . Further, two parameter sets define A-isomorphic crossed

w xproducts if and only if they are equivalent in the sense of 11 . Let
Ž . Ž .CP A, G be the subset of StGr A, G formed by the classes that contain a

Ž . Ž Ž .. Ž .crossed product. The action of Aut A or Out A on StGr A, G re-
Ž .stricts to an action on CP A, G and hence this action can be translated to

an action on the set of equivalence classes of parameter sets. Therefore
w xCorollary 4.7 generalizes 11, Proposition 2 .

5. STRONGLY GRADED RINGS WITH
ISOMORPHIC COMPONENTS

The aim of this section is to show that graded equivalent strongly graded
rings with the same homogeneous components are not necessarily graded
isomorphic; see Theorem 5.8. We begin with same notation.

Ž .Notation 5.1. Fix a unital ring A, a group G, and a strongly A, G -
Ž . Ž . �w x 4graded ring R, f . Let Pic A denote the centralizer of R : g g G ;ŽR , f . g

i.e.,

w x w x w xPic A s P g Pic A : P R s R P for every g g G .Ž . Ž .� 4ŽR , f . g g

Ž . �w X X x Ž . w x w X xLet StGr A, G s R , f g StGr A, G : R s R for everyŽR , f . g g
4g g G .

The next lemma is an obvious consequence of Theorem 3.2.

Ž . Ž .LEMMA 5.2. There is a map S: Pic A ª StGr A, G gï en byŽR , f . ŽR , f .
Žw x. w xP w X X x Ž .S P s R, f , whose image is the set of the R , f g StGr A, GŽR , f .

such that RX is graded equï alent to R.

Ž . Ž .The significance of Lemma 5.2 is that Pic A rPic A parametrizesŽR , f . R
the class of strongly graded rings that are graded equivalent to R but not
graded A-isomorphic to R and that have homogeneous components A-
isomorphic to those of R. However, there is another well-documented way

Ž . 2Ž Ž Ž ...to parametrize StGr A, G via the cohomology group H G, U Z A .ŽR , f .
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2Ž Ž Ž ... cDEFINITION 5.3. Given c g Z G, U Z A , R denotes the strongly
graded ring such that Rc s R as an additive group with the multiplication
in Rc defined by

r ? s s r s c g , h , g , h g G, r g R , s g R .Ž .g h g h g g h h

Recall that we have reserved the letter M to denote multiplication
Ž .maps. To distinguish different multiplication maps induced by an A, G -

Ž .graded ring R, f , we denote M s M: R m R ª R .g , h g A h g h

w x Ž .THEOREM 5.4 14, Theorem A.I.3.16 . Let R, f be a strongly G-graded
Ž . 2Ž Ž Ž ...ring. There is a bijection C: StGr A, G ª H G, U Z A gï en asŽR , f .

X Xy1 cŽ . w x Žw x. ŽX Xfollows: C c s R , f and C R , f s c the homology inducedŽR , f .
. Ž .X X X Xby c where the following map is right multiplication by c g, h , forŽR , f . ŽR , f .

e¨ery g, h g G,

My1 d md M dy1
g , h g h g , h g hX X X6 6 6 6

R R m R R m R R Rg h g A h g A h g h g h

and d : R ª RX is an isomorphism of A-bimodules for e¨ery G g G.g g g

Ž .The key to the main result of this section Theorem 5.8 requires an
w x w xexample computed in 5 and the map f defined in 6 . Recall that if R is a

Ž Ž ..strongly graded ring, then s : G ª Aut Z R denotes the Miyashitae
Ž .action induced by R see Notation 4.1 .

w x Ž .Notation 5.5. Every P g Pic A defines an automorphism a ofP
Ž . Ž . Ž .Z A defined by pz s a z p for all p g P and z g Z A . This gives riseP

Ž . Ž Ž .. w x w x Ž .to an action a : Pic A ª Aut Z A via P ¬ a . If P g Pic A ,P ŽR , f .
then a commutes with s for every g g G. Therefore, P induces anP g

2Ž Ž ..automorphism b of H G, Z A and so we have another action b :P
Ž . Ž 2Ž Ž ... w xPic A ª Aut H G, Z A via P ¬ b . We denote the image ofŽR , f . P

Ž .x g Pic A under b by b .ŽR , f . x

w xPROPOSITION 5.6 5 . There is an exact sequence

a b3 31 gr6 6

1 ª H G, U Z A Pic R Pic AŽ . Ž . Ž .Ž .Ž . ŽR , f .

f 26

H G, U Z R ,Ž .Ž .Ž .e

where a and b are the group homomorphisms from Proposition 4.2 and for3 3
Ž . Ž . Ž . Ž Ž ..e¨ery x, y g Pic A , f xy s f x b f y .ŽR , f . x

w x Ž .Now, to use 5 , we must show that the maps f and C(S: Pic AŽR , f .
2Ž Ž Ž ...ª H G, U Z A are strongly related. This is precisely what the next

lemma does.
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Ž .y1LEMMA 5.7. f ( ] s C(S; i.e., the following diagram

Ž .y1y 6

Ž .Ž . Pic APic A ŽR , f .ŽR , f .

6 fS 6

C 26

Ž . Ž Ž Ž ...StGr A , G H G, U Z AŽR , f .

ŽŽ .y1 .is commutatï e ] denotes the in¨erse map .

w x Ž . Ž .Proof. Let P g Pic A and A, A, P, Q, t , m be a Morita con-ŽR , f .
Žw x. Ž .Žw x.text. We need to show that f P s CS Q .

Fix g, h g G.
There is an A-bimodule isomorphism g : P ª R y1 m P m R . Fol-g g A A g

w x Žw x.lowing the proof of Proposition 5.6 in 5 , one can obtain f P in terms
y1Žw x. Ž y1 y1of the map g . More precisely, f P s c where g M m 1 mg g h h , g

.Ž . Ž .M 1 m g m 1 g is left multiplication by c g, h .g , h g h

Ž .Ž .Ž y1 . y1Let d s r m 1 1 m g m 1 1 m t where r : R m R m P ª Pg g g g g A g
Ž . Ž .y1 y1is given by r r m s m p s r s p.g g g g g

Ž .Žw x.By Theorem 5.4, C(S Q s d where, for every g, h g G,
y1 Ž . y1 Ž .d M d m d M is right multiplication by d g, h . Fix r g R andg h g , h g h g , h g

Ž . Ž .s g R . We show that rsd g, h s rsc g, h and so it will follow that c s d.h
Ž .We are going to use a Sweedler-like notation. For p g P, let g p gg

R y1 m P m R be denoted byg A A g

g p s p y1 m p 0 m p .Ž . Ýg Ž g . Ž g . Ž g .
gg

y1Ž .Set t 1 s Ý p m q g P m Q. Theni i i A

d r s r m 1 1 m g m 1 1 m ty1 rŽ . Ž . Ž .Ž . Ž .g g g

s r m 1 1 m g m 1 r m p m qŽ . Ž . Ýg g i iž /
i

s r m 1 r m p m p m p m qŽ . Ýg i i i iy1 0Ž g . Ž g . Ž g .ž /
i , gg

s rp p m p m q .Ý i i i iy1 0Ž g . Ž g . Ž g .
i , gg

Similarly,

d s s sp p m p m q .Ž . Ýh j j j jy1 0Žh . Žh . Žh.
j, g h
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Thus

M d m d My1 rsŽ .Ž .g , h g h g , h

s M rp p m p m q m sp p m p m qÝ Ýg , h i i i i j j j jy1 0 y1 0Ž g . Ž g . Ž g . Žh . Žh . Žh.ž /ž /ž /i , g j , gg h

s rp p m p m q m sp p p m qŽ .Ý i i i i j j j jy1 0 y1 0Ž g . Ž g . Ž g . Žh . Žh . Žh.
i , g , j , gg h

s rp p m p a p m q , 5.1Ž .Ý i i i i j jy1 0Ž g . Ž g . Ž g . Žh.
i , g , j , gg h

Ž .where a s m q m sp p . Note thati i j jy1 0Žh . Žh .

p a s t p m q sp p s sp p . 5.2Ž . Ž .Ý Ýi i i i j j j jy1 0 y1 0Žh . Žh . Žh . Žh .
i i

y1Žy1 y1 y1Let 1 s Ý x m y , where x g R and y g R . Since g Mk k k k h k h g h h , g
.Ž . Ž .m 1 m M 1 m g m 1 g is left multiplication by c g, h , one hasg , h g h

gy1 y p m p m p apÝg h k i i i jy1 0Ž g . Ž g . Ž g . Žh.ž /
gg

s gy1 M y1 y1 m 1 m 1 y m p m p m p m apŽ . Ýg h h , g k i i i jy1 0Ž g . Ž g . Ž g . Žh.ž /
gg

s gy1 M y1 y1 m 1 m 1 1 m g m 1 y m p m apŽ . Ž . Ž .g h h , g g k i jŽh.

s c g , h gy1 y m p m ap . 5.3Ž . Ž .Ž .h k i jŽh.

Thus

1 m gy1 m 1 ry1 m 1 M d m d My1 rsŽ .Ž .Ž . Ž .g h g h g , h g h g , h

s 1 m gy1 m 1 ry1 m 1 rp p m p ap m qŽ . Ž . Ýg h g h i i i j jy1 0Ž g . Ž g . Ž g . Žh.ž /
i , g , j , gg h

by 5.1Ž .

s 1 m gy1 m 1 rx m y p m p m p ap m qŽ . Ýg h k k i i i j jy1 0Ž g . Ž g . Ž g . Žh.ž /
i , g , j , g , kg h

s rx m c g , h gy1 y m p m ap m q by 5.3Ž . Ž .Ž .Ý k h k i j jŽh.
i , j , g , kh
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s rx m c g , h gy1 y m p m ap m qŽ . Ž .Ý k h k i j jŽh.
i , j , g , kh

s rx m c g , h gy1 y m sp p m p m q by 5.2Ž . Ž .Ž .Ý k h k j j j jy1 0Žh . Žh . Žh.
j, g , kh

s rx m c g , h gy1 y sp m p m p m qŽ . Ž .Ý k h k j j j jy1 0Žh . Žh . Žh.
j, g , kh

s rx m y sc g , h gy1 p m p m p m qŽ . Ž .Ý k k h j j j jy1 0Žh . Žh . Žh.
j, g , kh

s rx y sc g , h m gy1 p m p m p m qŽ . Ž .Ý k k h j j j jy1 0Žh . Žh . Žh.
j, g , kh

s rsc g , h m p m qŽ .Ý j j
j

s rsc g , h m ty1 1 .Ž . Ž .

Finally

rsd g , h s dy1M d m d My1 rsŽ . Ž .Ž .g h g , h g h g

s 1 m t 1 m gy1 m 1 ry1 m 1 M d m d My1 rsŽ . Ž .Ž .Ž . Ž .g h g h g , h g h g

s 1 m t c g , h rs m ty1 1Ž . Ž . Ž .Ž .
s rsc g , h .Ž .

Now we are ready for the main theorem of this section

THEOREM 5.8. There are strongly G-graded rings R and RX satisfying

1. R s RX .e e

2. For e¨ery g g G, R and RX are isomorphic as R -bimodules.g g e

3. R and RX are graded equï alent.
4. R and RX are not graded isomorphic.

w x ŽProof. By 5 , there is a strongly graded ring R actually a skew group
.ring for which the map f is not trivial. By Lemma 5.7, CS / 1 which

together with Lemma 5.2 proves the theorem.

A specific example of the above theorem now follows:

Ž .EXAMPLE 5.9. Let A be a unital ring, G a group, and a : G ª Aut A
Ž . Ž .a group homomorphism. Let w g Aut A and b : G ª Aut A be given

Ž . y1 Ž .by b g s w a g w. Let R s A G the skew group ring associated to thea
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action a and RX s A G the skew group ring associated to the action b.b

w X x w x Aw XThen R , 1 s R, 1 , so R and R are graded equivalent. Moreover, if
w w x Ž . w X x w xA g Pic A , then R s R for every g g G. However the fol-ŽR , f . g g

w xlowing example from 5 shows that they may be non-graded isomorphic.
Ž . 3Let K s Q e , a where e is a primitive third root of unity and a s d

Ž .3 Ž .g Q y Q e for example, let a be the real cube root of 3 . Let
Ž . ² :G s Gal K, Q be the Galois group of this extension. Then G s p , t ,

S where p and t are given by3

e p s e , a p s ea , e t s e 2 , and a t s a .
X X Ž 2 . Ž .p X Ž p p . Ž .t X Ž .Let p , t g Aut K be given by a, b s a , b and a, b s b, a .

2w X xLet A be the skew polynomial ring K X ; p . Let y be the inner
Ž 2 .automorphism of A given by a , a and w the automorphism of A which

acts as t X on K 2 and X w s X.
² : Ž .Let G s y, w : Aut A , the group of automorphisms of A generated

Ž .by y and w. Let a : G ª Aut A be the inclusion map, R s A G, b :a

Ž . Ž . y1 Ž . XG ª Aut A be given by b g s w a g w and R s A G. Clearly Aw sb
w w X x Žw w x. w x w x Ž . Žw x.A and R , 1 s S A . By 5 , Aw g Pic A and f Aw / 1.ŽR , 1.

Thus, RX and R are graded equivalent and R and RX are isomorphic asg g

Žw X x. Ž .Ž wy1 .A-bimodules. However, by Lemma 5.7, C R , 1 s C(S A / 1.
Finally, by Theorem 5.4, RX is not graded isomorphic to R.

6. APPLICATION I}STRONGLY GRADED RINGS
GRADED EQUIVALENT TO A CROSSED PRODUCT

In this section, we complete our study of Problem A from the Introduc-
tion by using the results of the previous sections to show that graded
equivalence is a viable tool for reducing the study of strongly graded rings.

Ž wBy the structure of projective modules over semiperfect rings see 2,
x. Ž . Ž .Theorem 27.11 , if A is a basic semiperfect ring, then Pic A s Out A .

Therefore, strongly graded rings with basic semiperfect coefficient rings
are crossed products. Corollary 3.3 now implies the following result which

w xfirst appeared in 9 :

COROLLARY 6.1. If R is a strongly graded ring and R is semiperfect, thene
R is graded equï alent to a crossed product RX whose coefficient ring is the
basic ring of R .e

In order to give our solution to Problem B in the next section, we need
to describe the parameter set of the crossed product from the above
corollary. Let R be a strongly graded ring, so that R s A is semiperfect.e

ŽLet e be a basic idempotent of A and C s A, B s eAe, P s Ae, Q s
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.eA, t , m , the Morita context, where both t and m are multiplication maps.
Since RC is a crossed product, for every g g G, Q m R m P , B asA g A
right B-modules and so Q m R , Q as right A-modules. Let C : Q mA g g A

R , Q be an isomorphism of right A-modules for every g g G. Theng
there is a automorphism a of B such that C is an isomorphism ofg g

a g w xB]A-bimodules Q m R , Q 6, Theorem 55.12 . On the other hand, forA g
every g, h g G, the composition of the following isomorphisms

y1 Cy1m1 1mr CC g g , h g hh 6 6 6 6

d : Q Q m R Q m R m R Q m R Qg , h A h A g A h A g h

Ž .is an isomorphism of right A-modules. Therefore there exists a unit t g, h
Ž . Ž .of B so that d q s t g, h q, for every q g Q.g , h

Ž .LEMMA 6.2. With the abo¨e notation, a , t is a parameter set of G o¨er B
and RC is graded isomorphic to B)a G.t

Ž .Proof. To check that a , t is a parameter set, it suffices to check that
a wthe multiplication in the crossed product R) G is associative 15, Lemmat

x1.1 . So to prove the lemma, we need only to show that there is a bijection
RC ª R)a G that preserves addition and multiplication.t

C a Ž . Ž Ž . .Let G: R ª B) G be defined by G q m r m p s g m C q m r m pc g g g
and extended linearly. G is an additive group isomorphism and we check
that it preserves multiplication.

G q m r m p qX m rX m pXŽ .Ž .Ž .g h

X X Xs ghm C m 1 q m r t p m q r m pŽ .Ž . Ž .g h g h

X X Xs ghm C q m r t p m q r m pŽ .Ž .Ž .g h g h

X X Xy1s ghm d C C m 1 1 m r q m r t p m q r m pŽ .Ž . Ž .Ž .ž /g , h h g g , h g h

X X Xs ghm d C C m 1 q m r m t p m q r m pŽ .Ž . Ž .Ž .g , h h g g h

X X Xs ghm d C C q m r m t p m q r m pŽ .Ž .Ž .ž /g , h h g g h

X X Xs ghm d C C q m r t p m q m r m pŽ .Ž .Ž .ž /g , h h g g h

X X Xs ghm d C m C q m r m p q m r m pŽ .Ž .ž /ž /g , h h g g h

ah X X Xsghm d m C q m r m p C q m r m pŽ .Ž .Ž .ž /g , h g g h h

ah X X Xsght g , h m C q m r m p m C q m r m pŽ . Ž .Ž .Ž .Ž .g g h h

X X Xs g m C q m r m p hm C q m r m pŽ .Ž .Ž .Ž .g g h h

s G q m r m p G qX m rX m pX .Ž .Ž .g h
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Our next reduction application comes from a specific family of strongly
w xgraded rings and crossed products studied by Saorın 16 and Jespers and´

w xOkninski 7 .´
w xRemark 6.3. Saorın 16 proved that if R s A)G is a left perfect´

Ž .crossed product such that R rJ R is a finite direct product of finite-di-e e
mensional simple algebras over an algebraic closed field, then G is finite.
Actually his result is stated for strongly graded rings but, as it was pointed

w xout by Jespers and Okninski 7 , Saorın’s proof is not correct for strongly´ ´
w x w xgraded rings because 16, Lemma 7 is based on a false statement in 14 .

w xJespers and Okninski gave a correct proof in 7 for strongly graded rings.´
However, relying on Saorın’s proof for crossed products, one can easily´
extend the result for strongly graded rings using Corollary 6.1.

w xCOROLLARY 6.4 7 . Let R be a perfect strongly G-graded ring such that
Ž .R rJ R is a finite direct product of finite-dimensional simple algebras o¨ere e

an algebraic closed field. Then G is necessarily finite.

Proof. Let A be the basic algebra of R . By Corollary 6.1, R is gradede
Ž .equivalent to a crossed product A)G and ArJ A is a finite direct

w xproduct of copies of an algebraic closed field. Now, by 14 , G is finite.

Another reduction application using graded equivalences appears in
w x10 , in which the reduction process is used to simplify the study of finite
representation type for orders.

The results above indicate that it is possible, using graded equivalence,
to reduce from strongly graded rings to crossed products. If the crossed
product obtained is not a twisted group ring we cannot expect to reduce to

Ž .another twisted group ring see Corollary 3.4 . As our final analysis of
Problem A, we wish to investigate when we can make a further reduction
to skew group rings. It is well known that, using the Cohen]Montgomery
duality theory, every G-graded ring R with G finite is graded equivalent to

Ž . Ž w x.the skew group ring RaG )G see 8 . But while this process simplifies
Žthe grading, the coefficient ring becomes more complicated as a subring

< < < < .of G = G matrices over R . Consequently, we close this section by
considering the question: When is a strongly graded ring R graded
equivalent to a skew group ring RX so that R , RX ? This question has ae e
very general negative answer.

PROPOSITION 6.5. Let A be a basic semiperfect ring and let R and RX be
graded equï alent strongly graded rings with R , RX , A. If R is a skewe e
group ring, then so is RX.

X Ž .Proof. Consider R and R as A, G -graded rings via the isomorphisms
X X w x Ž .f : A , R and f : A , R . By Proposition 4.4, there is P g Pic A soe e

w X X x w xw P x bthat R , f s R, f . If A is basic semiperfect, then P s A for some
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Ž .b g Aut A . Since R is a skew group ring, there is a group homomor-
aŽ .phism a : G ª Aut A so that R , A) G. For every g g G, let g s 1 m

y1b b Ž .Ž .g m 1 g A m Ag m A . Then gh s 1 m g m 1 1 m h m 1 s 1 m ghA
Xw P xm 1. This shows that R is a skew group ring and hence so is R .

7. APPLICATION II. STRONGLY GRADED SEMISIMPLE RINGS

In this final section, we analyze Problem B from the Introduction. Our
goal is to characterize when a strongly graded ring R is semisimple; see
Theorem 7.5. Particular cases appear in Corollaries 7.7 and 7.8.

It is well known that if R is semisimple, then R is semisimple. Thus, wee
assume, for the remainder of this section, that R is a direct product ofe
finite matrix rings over division rings.

Our strategy is the following. First we use Lemma 6.2 to compute a
w xcrossed product graded equivalent to R. Then we use ideas from 8 to

reduce the study to the case of crossed products over division rings.
Finally, in the case when R is a direct product of matrix rings over fields,e
we can reduce to crossed products over fields and then use the results of
w x4 to give specific conditions for the semisimplicity of these crossed
products.

Ž . Ž .Notation 7.1. Given an automorphism a g Aut D D a ring and
Ž .positive integers n, m, there exists a group automorphism of M D ,n, m

Ž . Ž a .given by a ¬ a . We abuse the notation and denote this map alsoi, j i, j
Ž . Ž . Ž .a a aby a . It is clear that if a g M D and b g M D , then ab s a b .n, m m , l

Ž .Given an element x in a direct product Ł X , and i g I, x i stands fori i

the ith coordinate of x.

Now we describe, up to graded isomorphisms, all the strongly graded
rings R, such that R is semisimple. This characterization is essentiallye

w xbased on the discussion in 14, A.I.3 and the use of a factor set, but our
description is more explicit.

k Ž .Fix a semisimple ring A s Ł M D where n is a positive integeris1 n i ii

and D is a division ring for every i. Assume that if D and D arei i j
isomorphic, then they are equal.

� 4Let P be the subgroup of permutations s of 1, 2, . . . , n such that
k Ž .D s D , for every i. P acts on Ł Aut D by permuting the coordi-i s Ž i. is1 i

Ž .Ž . Ž y1Ž .. k Ž .nates, i.e., s a i s a s i , for a g Ł Aut D . Let H be theis1 i
k Ž .semidirect product induced by this action, i.e., H s Ł Aut D = P asis1 i

Ž .Ž . Ž Ž . .a set and the product is given by a , s b , t s as b , st .
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Ž . Ž . k Ž .For every a , s g H, let A a , s s Ł M D , with the follow-is1 n , n is Ž i. i

ing bimodule structure:

Ž Ž ..a s iap i s a s i p i , pa i s p i a i ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
a g A , p g A s , a .Ž .

Ž . w Ž .x Ž .LEMMA 7.2. For e¨ery a , s g H, A a , s g Pic A and the map f :
Ž . Ž . w Ž .xH ª Pic A , a , s ¬ A a , s , is a group epimorphism whose kernel is

k Ž .Ł Inn D = 1.is1 i

Ž . Ž . Ž Ž . .Proof. Let F: A a , s m A b , t ª A as b , st be the map givenA
Ž .Ž . Ž Ž .. b Žt Ž i.. Ž . Ž .by F p m q i s p t i q i . To prove that A a , s is invertible

and f is a group homomorphism it is enough to show that F is a bimodule
isomorphism. First we check that it is well defined:

Ž Ž ..Ž Ž .. b t ib t i
F pa m q i s pa t i q i s p t i a t i q iŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .Ž .

Ž Ž .. Ž Ž .. Ž Ž ..b t i b t i b t is p t i a t i q i s p t i aq iŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .
s F p m aq i .Ž . Ž .

Next we check that F is a bimodule homomorphism:

Ž Ž ..b t i
F ap m q i s ap t i q iŽ . Ž . Ž . Ž . Ž .Ž .

Ž Ž ..b t iŽ Ž ..a st is a st i p t i q iŽ . Ž . Ž .Ž . Ž .Ž .
Ž Ž .. Ž Ž .. Ž Ž ..a st i b t i b t is a st i p t i q iŽ . Ž . Ž .Ž . Ž .

Ž Ž ..Ž Ž ..as b st is a st i F p m q iŽ . Ž . Ž .Ž .
s aF p m q i ,Ž . Ž .Ž .

Ž Ž ..b t i
F p m qa i s p t i qa iŽ . Ž . Ž . Ž . Ž .Ž .

Ž Ž ..b t is p t i q i a iŽ . Ž . Ž .Ž .
s F p m q i a iŽ . Ž . Ž .
s F p m q a i .Ž . Ž .Ž .

Now we prove that f is surjective. Let e , e , . . . , e be the primitive1 2 k
w x Ž .central idempotents of A. Let P g Pic A . For every i s 1, 2, . . . , k,

Ž . Ž .Pe , M D for some m g N. Theni A e m , n i ii i i

k kf

A s End P , End Pe , M D .Ž . Ž . Ž .Ž .Ł ŁA ei m ii i
is1 is1
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k Ž .Let f , f , . . . , f be the primitive central idempotents of Ł M D .1 2 k is1 m ii
Ž .Then there is a permutation s g P, such that m s n and f e s fi s Ž i. i s Ž i.

XŽ . Ž .for every i. Moreover, f restricts to an automorphism a i of M D . Byn ii
Ž .the Skolem]Noether theorem, there is an automorphism a i of D , suchi

XŽ . Ž .y1 Ž .that a i a i is inner. It follows that a i induces an isomorphism of
Ž .A-bimodules P , A a , s .

k Ž . Ž .Finally we show that Ker f s Ł Inn D = 1. Assume that a , s gis1 i
Ž . Ž .Ker f. Then e A a , s e s A a , s e e and so s s 1. This implies thati j s Ž i. j

Ž . a Ž i. Ž . Ž . ŽAe , A a , 1 e , Ae for every i, and hence a i is inner inA i A i i
Ž .. Ž .M D for every i. But this implies that a i is inner.n ii

To define a strongly graded ring we need a notion a bit more compli-
cated than a parameter set.

DEFINITION 7.3. Let A be as above and let G be a group. A factor set
of G in A is a triple of maps

k k
Ub : G ª Aut D , s : G ª P , t : G m G ª DŽ .Ł Łi iž /is1 is1

satisfying the following conditions for every g, h, k g G and i s 1, 2, . . . , k
Ž .the images of g by b , s , and t are denoted by b , s , and t :g g g ,’h

1. s is a group homomorphism.
Ž .2. b i s b s b .g h t g g hg , h

Ž . Ž Ž .. bkŽs kŽ i.. Ž . Ž .3. t i t s i s t i t i .g h, k g , h k g , hk h, k

Ž . Ž .Given a factor set b , s , t , we define the G-graded ring A b , s , t s
Ž .[ A b , s where the product is given byg gg g G

Ž Ž ..b s ih hr r i s t i r s i r i .Ž . Ž . Ž . Ž . Ž .Ž .g h g , h g h h

Ž . Ž X X X.Two factor sets b , s , t and b , s , t are said to be equï alent if
s s s X and there exists a map u: G ª Ł k DU such thatis1 i

Ž Ž ..b s iX X h hb s i b and u gh i t i s t i u g s i u iŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .g u g g , h g , h h hg

for every g, h g G and i s 1, 2, . . . , n.

PROPOSITION 7.4. E¨ery strongly G-graded ring R, with R s A, is A-iso-e
Ž . Ž .morphic to a ring of the form A b , s , t for some factor set b , s , t .

Moreo¨er, two factor sets gï e rise to graded A-isomorphic rings if and only if
they are equï alent.
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Proof. By Lemma 7.2, if R is a strongly graded ring so that R s A,e
Ž . Ž .then R is isomorphic as an A-bimodule to A b , s for some b , s gg g g g g

Ž . Ž . Ž .H. We will assume that R s A b , s . If r : A b , s m A b , sg g g g , h g g A h h

Ž . Ž . Žª A b , s is the multiplication map and F : A b , s m A b ,g h g h g , h g g A h

. Ž Ž . .s ª A b s b , s s is the isomorphism defined in the proof ofh g g h g h
y1 Ž Ž . . Ž .Lemma 7.2, then T s r F : A b s b , s s ª A b , s is ang , h g , h g , h g g h g h g h g h

isomorphism of A-bimodules. By Lemma 7.2, s is a group homomorphism
Ž .and there is a unit t so that b s b s b i . Moreover, one mayg , h g g h g h tg , h

Ž .assume that T x s t x for every x. Therefore, the multiplication in Rg , h g , h
is given by

Ž Ž ..b s ih hr r i s t i r s i r i .Ž . Ž . Ž . Ž . Ž .Ž .g h g , h g h h

Now it is a matter of computation to show that this multiplication is
Ž .associative if and only if b , s , t is a factor set. This follows from the

computations

Ž Ž ..b s ik kr r r i s t i r r s i r iŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ž .g h k g h , k g h k k

Ž Ž ..b s ih h ks t i t s i r s iŽ . Ž . Ž .Ž . Ž .Ž .g h , k g , h k g hk

Ž Ž ..b s ik k= r s i r iŽ . Ž .Ž .h k k

Ž Ž .. Ž Ž .. Ž Ž ..b s i b s i b s ik k h h k k ks t i t s i r s iŽ . Ž . Ž .Ž . Ž .g h , k g , h k g hk

Ž Ž ..b s ik k= r s i r iŽ . Ž .Ž .h k k

Ž Ž .. Ž .Ž .Ž Ž ..b s i b s b s ik k h k h ks t i t s i r s iŽ . Ž . Ž .Ž . Ž .g h , k g , h k g hk

Ž Ž ..b s ik k= r s i r iŽ . Ž .Ž .h k k

and

Ž Ž ..b s ih k h ir r r i s t i r s i r r iŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ž .g h k g , hk g hk h k

Ž Ž .. Ž Ž ..b s i b s ih k h k k ks t i r s i t i r s i r iŽ . Ž . Ž . Ž . Ž .Ž . Ž .g , hk g hk h , k h k k

Ž .Ž Ž ..Ž Ž ..b s h b k s ih h ks t i t i r s iŽ . Ž . Ž .Ž .g , hk h , k g hk

Ž Ž ..b s ik k= r s i r i .Ž . Ž .Ž .h k k

Ž . Ž X X X.Assume now that b , s , t and b , s , t are two factor sets and F:
Ž . Ž X X X.A b , s , t ª A b , s , t is a graded A-isomorphism. Then, for every

Ž . Ž X X.g g G, the restriction F of F to A b , s ª A b , s is a bimoduleg g g g g
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X Ž . Ž X X.isomorphism. By Lemma 7.2, s s s and hence A b , s and A b , sg g g g

Ž . Ž .coincide as left A-modules. Therefore, there exist unit u g g g G of A,
Ž .Ž . Ž .Ž . Ž . Ž .such that F r i s u g i r i , for every r g A b , s . By straightfor-g g g g g g

Ž .ward computations, one proves that, if u g is a unit for every g, then
Ž . Ž X X X . Ž .Ž . Ž . Ž .the map u: A b , s , t ª A b , s , t , given by u r i ª u i r i isg g g

X Ž .Ž . Ž .an A-isomorphism if and only if b s i b and u gh i t i sg u g g , hg
X Ž . Ž .Ž Ž .. bhŽs hŽ i.. Ž .t i u g s i u i . Since the matrices having only 0 and 1 asg , h h h

X Ž .Ž .entries are fixed by b and b , one concludes that u g i is a scalarg g
UŽ .Ž .matrix, for every i, and hence we may assume that u g i g D .i

The significance of Proposition 7.4 is that we need only study the
Ž .strongly related graded rings of the form A b , s , t for a factor set

Ž .b , s , t .
Ž .Let R s A b , s , t be such a strongly graded ring. Let

k k k

C s A , B s D , P s M D , Q s M D , m , tŽ . Ž .Ł Ý Łi n m1 i 1mn ii iž /is1 is1is1

be the obvious Morita context. Then RC is a crossed product over B. We
use Lemma 6.2 to compute the parameter set for this crossed product. For

Ž .Ž .every g g G, let C : Q m R ª Q be the map given by C q m r i sg A g g
Ž Ž .. bgŽs gŽ i.. Ž .q s i r i . C is an isomorphism of right A-modules. Let a :g g g

a gŽ . Ž Ž .. bgŽs gŽ i..A ª A be the map given by a i s a s i . Then a is ang g
automorphism of A and F is an isomorphism of A-bimodules fromg
Q m R to a g Q. So a is the required action.A g

We show that t is the required cocyle. Indeed, if q g Q, r g R , andg , h g g
r g R , thenh h

C 1 m r q m r m r iŽ .Ž . Ž .Ž .g h g , h g h

s C q m r r iŽ .Ž .g h g h

Ž Ž ..b s ig h g hs q s i r r iŽ . Ž . Ž .Ž .g h g h

Ž Ž ..b s i Ž Ž ..b s ig h g h h hs q s i t i r s i r iŽ . Ž . Ž . Ž .Ž .Ž .g h g , h g h h

Ž Ž ..Ž Ž ..b s b s i Ž Ž ..b s ig g h g h h hs t i q s i r s i r iŽ . Ž . Ž . Ž .Ž .Ž .g , h g h g h h

Ž Ž ..b s ih hŽ Ž ..b s ig g hs t i q s i r s i r iŽ . Ž . Ž . Ž .Ž .Ž .g , h g h g h hž /
Ž Ž ..b s ih hs t i C q m r s i r iŽ . Ž . Ž .Ž .Ž .Ž .g , h g g h h

s t i C C q m r m r iŽ . Ž .Ž .Ž .g , h h g g h

s t i C C m 1 q m r m r i .Ž . Ž .Ž . Ž .g , h h g g h



HAEFNER AND DEL RıÓ604

Ž . Ž .Ž y1Therefore, if d is the map from Section 5, d q s C 1 m r Cg , h g , h g h g , h g
. y1Ž .m 1 C q s t q.h g , h

Ž .Let a , t be a parameter set in a product of rings Ł R . If J is aig I i
Ž .ahsubset of I and H a subgroup of G, such that Ł R s Ł R forjg J j jg J j

Ž Ž J . Ž J ..every h g H, a , t denotes the parameter set of H over Ł Rjg J i
a Ž J .

h Ž . ahŽ . Ž J . Ž . Ž .given by x j s x j and t j s t j , for every x g Ł R ,g , h g , h ig J i
Ž j. Ž Ž j.. Ž� j4. Ž Ž� j4..j g J, and h g H. If j g I, a resp. t stands for a resp. t .

Now we are ready to state the main theorem of this section.

k Ž .THEOREM 7.5. Let A s Ł M D be a semisimple artinian ring,is1 n ii

where e¨ery D is a dï ision ring and D s D , if they are isomorphic. Leti i j
k Ž .B s Ł D and let b , s , t be a factor set of a group G o¨er A. For e¨eryis1 i

a gŽ . Ž Ž .. bgŽs gŽ i..g g G, let a be the automorphism of B gï en by a i s a s i .g g
Let j , j , . . . , j be representatï es of the orbits of the action s of G on1 2 n
� 41, 2, . . . , k . For e¨ery i s 1, . . . , k, let J be the orbit of j and G thei i i

Ž .stabilizer of j . Then a , t defines a parameter set of G o¨er B and thei
following assertions are equï alent:

Ž .1. A b , s , t is semisimple.

2. B)a G is semisimple.t

Ž . a Ž ji.
Ž J .3. Ł D ) G is semisimple for e¨ery i s 1, 2, . . . , n.iig J j ti i

4. D )b Ž ji.
Ž j . G is semisimple for e¨ery i s 1, 2, . . . , n.ij t ii

Ž .Proof. The fact that a , t is a parameter set is a consequence of
Ž . Ž . Ž .Lemma 6.2. 1 m 2 is a consequence of the fact that A b , s , t and

B)a G are graded equivalent.t
Ž . Ž .To prove 2 m 3 it is enough to realize that

n
a Ž J .a i
Ž J .B) G s D ) G.iŁ Łt j tž /i

is1 igJi

Ž . Ž .To simplify the proof of 3 m 4 , we may assume that n s 1; i.e., the
� 4action of G on 1, 2, . . . , k induced by s is transitive. Let D s D and let1

w xH be the stabilizer of 1 by s . Then, using ideas from 7 , we prove that
a Ž b Ž1. .Ž1.R s B) G is isomorphic to M D) H .t k t

Let e , e , . . . , e be the primitive idempotents of B. Since the action s1 2 k
� 4of G on 1, 2, . . . , k is transitive, for every i, there exists g g G, such that

e g s ge . Thus the map x ¬ xg defines an isomorphism Re , Re .1 i R 1 R i
Ž .k Ž . Ž Ž Ž ..Therefore R , Re and so R , End R , M End Re ,R R 1 R n R 1Ž1.bŽ . Ž1.M e Re . But e Re , D) H.n 1 1 1 1 t
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PROPOSITION 7.6. A skew group ring B)a G where B is a direct product of
dï ision rings is semisimple if and only if G is finite and there exists b g B,
such that Ý ba g s 1.g g G

Proof. A very classical argument shows that if R s B)a G is semisim-
ple, then G is finite. Then R is semisimple if and only if it is von Neumann

Ž .regular. Since B is abelian regular i.e., every idempotent is central , the
w xresult is a consequence of 1 .

As a direct consequence of Theorem 7.5 and Proposition 7.6, we have
the following.

k Ž .COROLLARY 7.7. Let A s Ł M D be a semisimple artinian ring,is1 n ii

where e¨ery D is a dï ision ring and D s D , if they are isomorphic. Leti i j
Ž .b , s , t be a factor set of a group G o¨er A. Assume that t s 1 for e¨eryg , h
g, h. Then the following are equï alent:

1. A is semisimple.

2. G is finite and there exists b g B, such that Ý b bgŽs gŽ i.. s 1, forg g G s Ž i.g

e¨ery 1 F i F k.

3. If j , j , . . . , j is a set of representatï es of the action s of G on1 2 i
� 41, 2, . . . , n , then the stabilizer of G of j by this action is finite and for e¨eryi i
1 F i F n, there exists x g D , so that Ý b bgŽ ji. s 1.i j g g Gi i

Finally we consider the case where A is a direct product of matrix rings
over fields and the grading group is finite. Using Theorem 7.5, the
semisimplicity of a strongly graded ring over A reduces to the semisimplic-
ity of crossed products over fields. This case has been studied recently by

w xAljadeff and Robinson 4 .
Let R s K )a G be a crossed product over a field of characteristict

p / 0 and assume that G s Ł r G with G cyclic of order pk i. Then,is1 i i
w x 2Ž U . r U Ž U . p k ifrom the discussion in 4 , H G, K , [ K r K , so every cocy-is1

Ž Ž U . p k1 Ž U . p k 2cle t of G over K is represented by an r-tuple a K , a K , . . . ,1 2
Ž U . p k r .a K .r

k Ž .COROLLARY 7.8. Let A s Ł M K , where e¨ery K is a field ofis1 n i ii
Ž .characteristic p where p could be 0 and K s K , if they are isomorphic.i i i j

Ž .Let b , s , t be a factor set of a group o¨er A and let j , j , . . . , j be1 2 n
� 4representatï es of the orbits of the action s of G on 1, 2, . . . , k . For e¨ery

�i s 1, 2, . . . , n, let G be the stabilizer of j under this action and let H s gi i i
4g G : b s 1 . If p / 0, let P be a Sylow p -subgroup of H . The followingi g i i i i
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assertions are equï alent:

Ž .1. A b , s , t is semisimple.

2. K )b Ž ji.

Ž j . G is semisimple for e¨ery i s 1, 2, . . . , n.ij t ii

3. K ) Ž j . H is semisimple for e¨ery i s 1, 2, . . . , n.ij t ii

4. For e¨ery i s 1, 2, . . . , n, either p does not dï ide the order of H ori i
the following conditions hold:

Ž . < X <a H is prime to p , so that P is abelian, say isomorphic toi i i
Ł r C with C cyclic of order pk i.is1 i i

Ž . jib The restriction of t to P is represented an r-tuplei

p k1 p k 2 p k rU U Ui i ia K , a K , . . . , a KŽ . Ž . Ž .ž /1 i 2 i r i

� 4 pisuch that a , a , . . . , a is p-independent o¨er K .1 2 r i

Ž . Ž . Ž .Proof. The equivalence of 1 and 2 comes from Theorem 7.5. 2 m
Ž . w x Ž . Ž .3 is a consequence of 3, Corollary 4.2 and 3 m 4 is a consequence of
w x4, Theorem 2 .
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