JOURNAL OF ALGEBRA 140, 360-361 (1991)

A Note on a Result of J. Ax

SUDESH K. KHANDUJA

Department of Mathematics, Panjab University, Chandigarh-160014, India

Communicated by Walter Feit

Received September 26, 1989

James Ax has proved [1, Sect. 2, Proposition 2'] that if (K, V) is a henselian rank one valued field which is perfect of characteristic p > 0 and if α is an element of an algebraic closure \overline{K} of K, then there exists $a \in K$ such that $V(\alpha - a) \ge \Delta(\alpha)$, where

 $\Delta(\alpha) = \min\{\overline{V}(\alpha' - \alpha): \alpha' \text{ runs over } K\text{-conjugates of } \alpha, \ \overline{V} \text{ is an extension of } V \text{ to } \overline{K}\}.$

We wish to point out in this note that this result is false by giving a simple counterexample.

Let k_0 be the algebraic closure of the finite field F_p of p elements and $K_0 = k_0((T))$ be the field of Laurent series in T with valuation v_0 given by $v_0(T) = 1$. Fix an algebraic closure L of K_0 with a valuation v such that v extends v_0 and the value group of v is contained in the set of rational numbers. Let K be the inseparable closure of K_0 in L. It is readily verified (cf. [2, Chap. II, Sect. 4]) that K is the union of the fields $k_0((T^{p^{-n}}))$, n running over all natural numbers. K satisfies the hypothesis of Ax's proposition: it is perfect and being an algebraic extension of a complete rank 1 valued field, is henselian. Let α be an element of L, satisfying the relation $\alpha^p - \alpha - T^{-1} = 0$. Then $v(\alpha) = -1/p$ and α is not in K in view of a lemma proved below. So the conjugates of α are α , $\alpha + 1$, ..., $\alpha + p - 1$ and $\Delta(\alpha) = 0$. We claim that there does not exist an element a in K for which $v(\alpha - a) \ge 0$; for if there exists such an element a in K, then $v(\alpha) = -1/p$. Also,

$$v(a^{p} - a - T^{-1}) = v(a^{p} - a - T^{-1} - (\alpha^{p} - \alpha - T^{-1}))$$

$$\geq v(\alpha - a) \geq 0,$$

which contradicts the following lemma.

LEMMA. If z is any element of K (K as constructed above) with v(z) = -1/p, then $v(z^{p} - z - T^{-1}) < 0$.

361

Proof. Suppose $z \in k_0((T^{p^{-n}}))$; then we can write

$$z = \sum_{i \in \mathbb{Z}, i \ge -p^{n-1}} a_i T^{ip^n}, \quad a_i \ne 0 \text{ if } i = -p^{n-1}.$$

Let $i_0 p^{-n}$ be the largest among the negative exponents of T occurring in z. Now looking at the finitely many negative exponents of T in $z^p - z - T^{-1}$, one has

$$v(z^{p}-z-T^{-1}) \leq i_{0} p^{-n} < 0.$$

References

- 1. J. Ax, Zeroes of polynomials over local fields—The Galois action, J. Algebra 15 (1970), 417-428.
- 2. J. P. SERRE, "Local Fields," Springer-Verlag, New York, 1979.