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ERBB receptors were linked to human cancer pathogenesis approximately three decades ago. Biomedical
investigators have since developed substantial understanding of the biology underlying the dependence
of cancers on aberrant ERBB receptor signaling. An array of cancer-associated genetic alterations in
ERBB receptors has also been identified. These findings have led to the discovery and development ofmech-
anism-based therapies targeting ERBB receptors that have improved outcome for many cancer patients. In
this Perspective, we discuss current paradigms of targeting ERBB receptors with cancer therapeutics and
our understanding of mechanisms of action and resistance to these drugs. As current strategies still have
limitations, we also discuss challenges and opportunities that lie ahead as basic scientists and clinical inves-
tigators work toward more breakthroughs.
ERBB Family: EGFR, HER2, HER3, and HER4
The ERBB family of transmembrane receptor tyrosine kinases

(RTKs) consists of the epidermal growth factor receptor

EGFR (ERBB1), HER2 (ERBB2), HER3 (ERBB3), and HER4

(ERBB4). Binding of ligands to the extracellular domain of

EGFR, HER3, and HER4 induces the formation of kinase active

hetero-oligomers (Yarden and Sliwkowski, 2001). HER2 does

not bind any of the ERBB ligands directly, but it is in a confor-

mation that resembles a ligand-activated state and favors

dimerization (Cho et al., 2003; Garrett et al., 2003). Activation

of HER2 and EGFR induces transphosphorylation of the

ERBB dimer partner and stimulates intracellular pathways

such as RAS/RAF/MEK/ERK, PI3K/AKT/TOR, Src kinases,

and STAT transcription factors (reviewed in Yarden and Pines,

2012). Although HER3 can bind ATP and catalyze autophos-

phorylation, it has a weak kinase activity compared to that of

its ERBB coreceptors (Shi et al., 2010). However, upon trans-

phosphorylation by another ERBB family member, HER3 serves

as an efficient phosphotyrosine scaffold, leading to potent acti-

vation of downstream signaling. The specificity and potency of

intracellular signaling cascades are determined by the expres-

sion of positive and negative regulators, the specific composi-

tion of activating ligand(s), receptor dimer constituents, and the

array of proteins that associate with the tyrosine phosphory-

lated C-terminal domain of the ERBB receptors (Avraham and

Yarden, 2011).

Over the past several years, it has become evident the

ERBB family members have a prominent role in the initia-

tion and maintenance of several solid tumors. This has led

to the development and widespread implementation of spe-

cific ERBB inhibitors as cancer therapies. In this Perspective,

we will focus on the therapeutic approaches for targeting

ERBB family members in cancer, with a particular emphasis

on HER2-amplified breast cancer and EGFR mutant lung

cancer.
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Links to Cancer
HER2

The first evidence for a role of ERBB2 or HER2 (for human

EGFR2) in cancer was inferred from the connection to its rat

ortholog, Neu, amutant cDNA isolated from carcinogen-induced

neuroblastomas (Schechter et al., 1984). (Please note that in this

Perspective, ERBB2 and HER2 will be used when discussing

mouse and human ERBB2, respectively.) Although rodent Neu

is mutated, human HER2 is typically amplified in human cancers

such as breast, gastric, and esophageal cancer (Table 1). Over-

expression of either rat or humanwild-type ERBB2was shown to

transform diploid cells. Consistent with its oncogenic activity,

overexpression of wild-type Neu or HER2 under the control of

a mammary-specific promoter leads to metastatic mammary

tumors in transgenic mice (Andrechek et al., 2000; Finkle et al.,

2004). In a seminal study, Slamon et al. found thatHER2 is ampli-

fied in about 20% of breast cancers (Slamon et al., 1987). This

was the first report of an oncogenic alteration associated with

poor outcome in cancer patients, suggesting a causal relation-

ship to cancer virulence. Further evidence linking HER2 with

cancer progression is the improvement in survival of patients

with HER2-amplified early-stage breast cancer treated with the

HER2 antibody trastuzumab. More-recent studies using next-

generation sequencing have identified less-frequent activating

mutations in HER2 in several cancer types without HER2 gene

amplification (discussed below).

A recent study of >500 breast tumors by The Cancer Genome

Atlas (TCGA) Network has shed light into the biological hetero-

geneity of clinical HER2-overexpressing cancers (HER2+ as

defined by gene amplification) by further parsing into HER2-

enriched (HER2E) and luminal subtypes as defined by gene

expression (Cancer Genome Atlas Network, 2012). HER2E-

HER2+ tumors had higher frequencies of aneuploidy, somatic

mutation, and TP53mutation, as well as amplification of FGFRs,

EGFR, CDK4, and cyclin D1. Luminal-HER2+ breast cancers
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Table 1. Alterations of ERBB Receptors and Ligands in Human Cancer

Molecule Alteration Cancer Types Notes References

EGFR mutation

(L858R, etc.)

NSCLC (adenocarcinoma) substitutions, deletions and insertions Lynch et al., 2004; Paez et al., 2004;

Pao et al., 2004

EGFR vIII glioma deletion of exons 2–7 in the

ectodomain

Sugawa et al., 1990

EGFR amplification NSCLC (squamous), head and

neck, glioma, esophageal,

colorectal, anal (?)

Yarden and Pines, 2012

HER2 amplification breast, gastric, esophageal Cancer Genome Atlas Network,

2012

HER2 mutation breast (lobular), lung, gastric,

bladder, endometrial

unclear whether all those reported

are activating or gain of function

Cancer Genome Atlas Network,

2012

HER3 mutation breast, gastric Jaiswal et al., 2013

HER4 mutation melanoma, NSCLC,

medulloblastoma

Gilbertson et al., 2001; Prickett et al.,

2009

TGF-a overexpression prostate, lung, pancreas, ovary,

colon, head and neck

androgen-independent prostate

cancer; poor prognosis when

associated with high EGFR

Rubin Grandis et al., 1998; Yarden

and Sliwkowski, 2001

Neuregulin-1 overexpression colorectal, head and neck linked to sensitivity to ERBB3 inhibitors

and resistance to EGFR inhibitors

Wilson et al., 2011; Yonesaka et al.,

2011
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showed higher expression of a luminal gene cluster including

GATA3, BCL2, and ESR1 and harbored a higher rate of GATA3

mutations. It is anticipated that because of these molecular dif-

ferences, the clinical management of HER2E and luminal sub-

types of HER2+ breast cancers will also be different. Finally,

not all tumors of the HER2E gene expression subtype are

HER2 amplified. One implication of these data is that some

breast cancers with a single copy of HER2 harbor an expression

signature of HER2 dependence and, as such, may benefit from

anti-HER2 therapy. Consistent with this speculation are the re-

sults of the NSABP B-31 adjuvant trastuzumab trial, in which

9.7% of patients that did not meet criteria for HER2 overexpres-

sion by fluorescence in situ hybridization (FISH) or immunohisto-

chemistry (IHC) also benefitted from adjuvant trastuzumab (Paik

et al., 2008).

Somatic mutations in HER2 have been reported in several

human cancers (Table 1). Most are missense mutations in

the tyrosine kinase and extracellular domains or duplications/

insertions in a small stretch within exon 20. HER2 mutations

are almost exclusively observed in cancers without HER2

gene amplification. Several of these mutants have increased

signaling activity, and are most commonly associated with

lung adenocarcinoma and lobular breast, bladder, gastric,

and endometrial cancers (Cancer Genome Atlas Network,

2012).

EGFR

The EGF receptor was originally identified as an oncogene

because of its homology to v-ERBB, a retroviral protein that

enables the avian erythroblastosis virus to transform chicken

cells (Downward et al., 1984). Subsequently, EGFR overexpres-

sion was shown to be transforming in laboratory models, and

EGFR gene amplification was reported in a wide range of carci-

nomas. Early studies by Mendelsohn and colleagues demon-

strated that antibodies directed against EGFR block growth of

A431 cells, demonstrating that EGFR signaling could drive can-
cer cell growth and setting the stage for clinical use of EGFR in-

hibitors (Kawamoto et al., 1983).

An oncogenic mutation that deletes exons 2–7 in the receptor

ectodomain, denoted EGFRvIII, is found in about 40% of high-

grade gliomas with wild-type EGFR amplification (Sugawa

et al., 1990). EGFRvIII exhibits constitutive dimerization, im-

paired downregulation, and aberrant tyrosine kinase activity, all

resulting in enhanced tumorigenicity (Nishikawa et al., 1994). In

addition to glioblastoma multiforme (GBM), EGFRvIII has been

found in a fraction of breast, lung, head and neck, ovarian, and

prostate cancers (Moscatello et al., 1995). Because its expres-

sion is restricted to tumor tissues, EGFRvIII has been therapeu-

tically targeted with specific antibodies and vaccines. There is

clinical evidence suggesting that the presence of EGFRvIII can

predict clinical responses of GBMs to the EGFR tyrosine kinase

inhibitors (TKIs) gefitinib and erlotinib (Haas-Kogan et al., 2005;

Mellinghoff et al., 2005). The second most common EGFR

variant in GBM is EGFRc958, observed in about 20% of tumors

with wild-type EGFR amplification. EGFRc958 lacks amino acids

521–603 and displays increased, ligand-dependent kinase

activity (Frederick et al., 2000).

The causal role of EGFR in tumorigenesis was further solidified

in 2004 when somatic, activating mutations in EGFR were

discovered in a subset of non-small-cell lung cancers (NSCLCs)

(Lynch et al., 2004; Paez et al., 2004; Pao et al., 2004) (Table 1).

The discovery was spurred by efforts to understand why occa-

sional NSCLCs were highly sensitive to small-molecule EGFR

TKIs. It is nowwell established that lung cancers harboring these

EGFR mutations are highly responsive to single-agent EGFR in-

hibitors with RECIST response rates of �55%–75% (Mok et al.,

2009; Rosell et al., 2012; Sequist et al., 2013b). EGFRmutations

are primarily localized within two hot spots of the kinase

domains, a series of overlapping deletions in exon 19 and a

leucine-to-arginine substitution at amino acid position 858

(L858R) (reviewed in Pao and Chmielecki, 2010). In addition,
Cancer Cell 25, March 17, 2014 ª2014 Elsevier Inc. 283
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mutations are also rarely observed elsewhere in the kinase

domain, including insertions in exon 20 (Yasuda et al., 2013).

The prevalence of the mutations differs among distinct human

populations. They are found in �8%–10% of Caucasians, but

in a higher proportion of East Asians. Lung cancers with EGFR

mutations are most highly associated with adenocarcinoma his-

tology and in patients with a minimal smoking history. Of note,

cancers with EGFR mutations often have amplification of the

mutant EGFR allele as well (Cappuzzo et al., 2005). Cell culture

and transgenic mouse model studies have shown that mutant

EGFR has transforming activity (Greulich et al., 2005; Ji et al.,

2006; Politi et al., 2006).

EGFR is important for the growth of some colorectal cancers

(CRCs) and head and neck cancers. In these cancers, genetic

alterations in EGFR have not been consistently identified. How-

ever, the efficacy of the EGFR antibody cetuximab demonstrates

the importance of EGFR signaling in these tumors. Although

some reports suggest that EGFR amplification correlates with

response to cetuximab (Moroni et al., 2005), this alteration is

not currently used as a predictive biomarker. Importantly, cetux-

imab provides clinical benefit primarily in colorectal cancers that

do not harbor KRAS mutations (Cunningham et al., 2004) and in

those with high expression of the EGFR ligands amphiregulin

and epiregulin (Khambata-Ford et al., 2007). Presumably, cetux-

imab is effective in sensitive cancers because it blocks ligand-

dependent activation of EGFR and downregulates the receptor

from the cell surface (Fan et al., 1994). Thus, in these colorectal

cancers, we suspect that ligand-dependent activation of EGFR

drives progression of these cancers. Currently, cetuximab is

most often administered with chemotherapy in KRAS wild-type

colorectal cancers. Similarly, in head and neck cancers, cetuxi-

mab is primarily used in conjunction with chemotherapy (Ver-

morken et al., 2008) and radiotherapy (Bonner et al., 2006).

Despite conflicting reports on the utility of EGFR expression by

IHC for patient selection in head and neck cancers (and

CRCs), there currently are no validated predictive biomarkers

of response to EGFR inhibitors in head and neck cancers (Burt-

ness et al., 2005; Cunningham et al., 2004; Licitra et al., 2011,

2013; Vermorken et al., 2008). It is notable that cetuximab

appears to be more effective than EGFR TKIs in cancers with

ligand-dependent activation of EGFR, whereas TKIs are more

effective in cancers with EGFR mutations. We speculate that

this is so because mutant EGFR activation is not ligand depen-

dent and because TKIs have higher affinity for mutant EGFR

than for wild-type EGFR, thus leading to a significant therapeutic

window. In contrast, antibodies such as cetuximab are more

effective in EGFR wild-type cancers because they are highly

effective at blocking ligand-dependent activation of EGFR and

are pharmacologically stable.

ERBB3 and ERBB4

ERBB3hasbeen linked tocancer, primarily due to itsmechanistic

role in promoting signaling from oncogenic HER2 and EGFR

(discussed below). However, somatic mutations scattered

throughout the ERBB3 gene were recently identified in subsets

of breast and gastric cancers (Table 1). Many of the mutations

were located in the extracellular domain, and they appear to

have oncogenic potential, function in a ligand-independent

manner, and require heterodimerizationwithHER2 for transform-

ing activity (Jaiswal et al., 2013). Future studies are needed to
284 Cancer Cell 25, March 17, 2014 ª2014 Elsevier Inc.
determine whether cancers with ERBB3 mutations are particu-

larly sensitive to ERBB3- and/or HER2-targeted drugs. Similarly,

mutations in ERBB4 were identified in cancer, particularly mela-

noma (Prickett et al., 2009), lung adenocarcinoma (Ding et al.,

2008), and medulloblastoma (Gilbertson et al., 2001). Although

laboratory studies demonstrated that melanoma cell lines

harboringERBB4mutationswere sensitive to lapatinib, it remains

unknown whether targeting of ERBB4, or any other ERBB family

member, will have therapeutic value in these cancers.

ERBB Ligands

Overproduction of ligands is one mechanism by which cancers

aberrantly activate ERBB receptors. The source of these can

be tumor cells or the tumor stroma. There are three groups of

ligands. One group specifically binds EGFR and includes EGF,

transforming growth factor a (TGF-a), amphiregulin (AR), and

epigen (EPG). A second group binds both EGFR and HER4

and includes betacellulin (BTC), HB-EGF, and epiregulin (EPR).

The third group includes all of the neuregulins (NRG1–NRG4),

of which NRG1 and NRG2 bind HER3 and HER4, whereas

NRG3 and NRG4 only bind HER4 (Hynes andMacDonald, 2009).

In transgenic mouse studies, mice that coexpress TGF-a and

Neu in mammary epithelium developed multifocal mammary

cancers that arise after a significantly shorter latency than those

expressing either gene alone (Muller et al., 1996). TGF-a is also

co-overexpressed with EGFR in lung, colorectal, ovary, and

head and neck squamous cancers, where it is associated with

poor patient prognosis (Rubin Grandis et al., 1998; Yarden and

Sliwkowski, 2001) (Table 1). Recent reports suggest that in

addition to overexpression, mistrafficking, and/or ‘‘extracrine’’

(exosomal targeting receptor activation) signaling by ERBB

ligands may also contribute to epithelial cell transformation

(Singh and Coffey, 2014). For example, altered trafficking of

EREG to the apical cell surface leads to prolonged EGFR phos-

phorylation and more proliferative and more invasive tumors

(Singh et al., 2013). Further, significantly enhanced levels of inva-

siveness are observed when breast cancer cells are incubated

with exosomes containing high levels of AREG compared to in-

cubation of cells with exosomes containing low levels of AREG

or recombinant EGFR ligands (Higginbotham et al., 2011), sug-

gesting a gain-of-function mode of EGFR signaling that might

act in more distant environments. Other roles of ligand-depen-

dent activation of EGFR were discussed above.

An autocrine loop has been described in ovarian cancer cells

and tumors that overexpress NRG1 and HER3, where suppres-

sion of HER3 with RNAi or with a neutralizing HER3 antibody

suppressed ovarian cancer growth in laboratory models (Sheng

et al., 2010) (Table 1). A NRG1-mediated autocrine loop inducing

HER3 activation was also discovered in head and neck cancer

cells without HER2 amplification. These cells were particularly

sensitive to the EGFR/HER2 TKI lapatinib (Wilson et al., 2011),

suggesting that NRG1-driven tumors depend on HER3 activated

by HER2 and/or EGFR. Finally, Hegde et al. found high levels of

NRG1 and its receptor, HER4, in NSCLC residual tumor cells that

remained after cytotoxic chemotherapy. Inhibition of HER3/

HER4 signaling with a NRG1-blocking antibody increased the

magnitude and duration of response to chemotherapy in these

in vivo models (Hegde et al., 2013). This causal association of

ERBB ligand overexpression and drug resistance is not limited

to NRG1 or to chemotherapy. For example, HGF has been found
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to confer resistance to the BRAF inhibitor vemurafenib in BRAF

mutant melanoma cells (Wilson et al., 2012).

Downstream Signaling
Oncogenic addiction to EGFR and HER2 are intimately linked to

regulation of downstream signaling. In cancers highly sensitive

to inhibition of EGFR or HER2 inhibitors, EGFR or HER2 is the

main driver of downstream signaling, particularly via the PI3K/

AKT and MEK/ERK pathways. Thus, in cancers addicted to

EGFR or HER2, inhibition of the respective RTK leads to

concomitant loss of flux through these pathways. Loss of these

signaling events leads to growth arrest and converges on the

BCL-2 family of proteins to promote apoptosis (reviewed in Nie-

derst and Engelman, 2013).

In EGFR and HER2 driven cancers, HER3 is an important

heterodimer partner because it potently activates the phospha-

tidylinositide-3 kinase (PI3K)/AKT survival pathway via its six

docking sites for the p85 regulatory subunit of PI3K. Although

HER2 potently activates ERK signaling, it does not bind p85 or

directly activate PI3K/AKT. Thus, HER2-mediated activation of

HER3 is essential for stimulation of the PI3K/AKT pathway. In

transgenic mice, genetic ablation of ERBB3 in the mammary

gland via Cre-mediated recombination abrogates ERBB2-driven

mammary hyperplasias, DCIS, invasive cancers, and metasta-

ses (Vaught et al., 2012). Similarly, small hairpin RNA (shRNA)-

mediated knockdown of HER3 but not EGFR inhibits viability of

HER2-overexpressing breast cancer cells. Further, HER3 but

not EGFR, is always phosphorylated in human HER2-amplified

breast cancers (Lee-Hoeflich et al., 2008), suggesting that it is

an obligatory cobiomarker of aberrant HER2 activity and depen-

dence. More recently, an inducible HER3 shRNA (Lee-Hoeflich

et al., 2008) and a HER3-neutralizing antibody (Garrett et al.,

2013b) were shown to inhibit growth of establishedHER2-ampli-

fied xenografts, further suggesting that HER3 is essential for

the survival of HER2-dependent tumors. Analogous to HER2-

induced signal transduction, mutant EGFR often activates PI3K

via HER3 (Engelman et al., 2005), and maintenance of HER3

signaling can promote resistance to EGFR inhibitors (Engelman

et al., 2007; Schoeberl et al., 2010). However, unlike HER2,

EGFR is also able to signal to PI3K via GAB1 in a HER3-indepen-

dentmanner (Mattoon et al., 2004; Turke et al., 2010), suggesting

that EGFR mutant cancers may be better equipped than HER2-

amplified cancers to adapt to the loss of HER3 function.

HER2-amplified tumors have a strong dependence on PI3K/

AKT signaling, as sustained blockade of this pathway appears

to be required for the antitumor effect of HER2 antagonists

(Chakrabarty et al., 2013; Yakes et al., 2002). Comprehensive

cancer cell line panels screened for sensitivity to pan-PI3K,

p110a-specific, and AKT inhibitors have consistently shown

preferential activity of these drugs against HER2-amplified

breast cancer lines (Heiser et al., 2012; O’Brien et al., 2010).

Further, genetic ablation of p110a has been shown to abrogate

ERBB2-induced mammary tumor formation in transgenic mice

(Utermark et al., 2012). Preclinical studies have shown that,

compared to HER2-amplified cancers, EGFR mutant cancers

are less sensitive to single-agent PI3K/AKT inhibitors. Rather, in-

hibition of the PI3K and MEK pathways is necessary in order to

induce apoptosis and cause tumor regressions (Faber et al.,

2010). Importantly, mechanisms of de novo and acquired
resistance to HER2- and EGFR-directed therapies involve

persistence or reactivation of PI3K/AKT signaling via alternate

amplified RTKs and/or mutations in the PI3K pathway (Rexer

and Arteaga, 2013).

Other downstream signaling pathways, such as Src kinases,

JAK/STAT, and WNT, are also activated by ERBB receptors

(Yarden and Sliwkowski, 2001). Examples below suggest that

they are involved in and/or mediate resistance to ERBB-recep-

tor-targeted therapies. However, evidence that ERBB receptors

depend on Src, JAK/STAT, or WNT for their effects on transfor-

mation and cancer progression is less clear and will not be dis-

cussed further.

Feedback Activation of ERBB Signaling Promoting

Resistance to Inhibition of Alternative Kinases

More recently, EGFR and HER3 activation have been observed

as important cellular adaptations to inhibitors of downstream

signaling. For example, in BRAF mutant CRC, BRAF inhibitors

fail to inhibit ERK signaling in sustained fashion due to activation

of EGFR which, in turn, reactivates ERK in the presence of the

BRAF inhibitor (Corcoran et al., 2012; Prahallad et al., 2012).

However, combined inhibition of EGFR and BRAF blocks reacti-

vation of ERK and leads to regressions of BRAF mutant CRC

in vivo. This combination is now being actively developed in

clinic for this subset of CRCs. Similarly, inhibition of the MEK

pathway in many cancers, including KRAS mutant cancers,

activates ERBB signaling by releasing a negative feedback on

ERBB dimerization (Turke et al., 2012). This further suggests

the ERBB activation could mitigate the responsiveness of other

cancers to MEK inhibition.

Analogous to the effects of inhibition of the MEK pathway,

inhibition of the PI3K pathway leads to potent activation of

HER3-dependent signaling in HER2-amplified breast cancers

(Chakrabarty et al., 2012; Chandarlapaty et al., 2011). In these

cancers, coinhibition of HER3 and PI3K provided substantially

greater antitumor efficacy. In other examples, EGFR activation

has been observed as a resistance mechanism to small mole-

cules targeting other tyrosine kinases. For example, EGFR acti-

vation is a resistance mechanism to ALK and MET inhibitors in

ALK-positive lung and MET-amplified gastric cancers, respec-

tively. Inhibition of EGFR resensitizes the resistant cancers to

their respective TKI (Katayama et al., 2012; McDermott et al.,

2010; Qi et al., 2011; Sasaki et al., 2011). Thus, activation of

ERBB family members has emerged as a common mechanism

of adaptation upon inhibition of downstream signaling, and inhi-

bition of ERBB family members may be used to augment the

efficacy of other pathway inhibitors.

Mechanisms of Action of EGFR and HER2 Inhibitors
HER2

Trastuzumab is a humanized immunoglobulin G1 (IgG1) antibody

that binds to an epitope in juxtamembrane region IV of the HER2

receptor. It inhibits cleavage of theHER2 ectodomain, uncouples

ligand-independent HER2-containing dimers leading to partial

inhibition of downstream signaling, and triggers antibody-

dependent, cell-mediated cytotoxicity (ADCC) (Clynes et al.,

2000; Ghosh et al., 2011; Junttila et al., 2009; Molina et al.,

2001; Yakes et al., 2002) (Table 2). This last mechanism

cooperates with the recruitment of a T cell population mediating

an adaptive immune (memory) response that enhances tumor
Cancer Cell 25, March 17, 2014 ª2014 Elsevier Inc. 285



Table 2. ERBB Receptor Inhibitors: Mechanisms of Action and Key Clinical Trials

Drug Type of Molecule Mechanism of Action FDA Approval Key Clinical Trial(s)

Trastuzumab humanized IgG1, binds

juxtamembrane

domain IV

inhibits ectodomain cleavage

and ligand-independent HER2-

containing dimers; ADCC and

adaptive immunity to HER2

1998 (metastatic breast);

2006 (adjuvant early breast);

2010 (advanced gastric)

Slamon et al., 2001; Piccart-

Gebhart et al., 2005; Robert

et al., 2006; Romond et al.,

2005; Bang et al., 2010

Pertuzumab humanized IgG1, binds

heterodimerization

domain II

inhibits ligand-induced HER2-

containing dimers

2012 (metastatic breast);

2013 (neoadjuvant breast)

Baselga et al., 2012b; Gianni

et al., 2012; Schneeweiss

et al., 2013

Lapatinib small molecule reversible, ATP-competitive TKI 2006 (advanced breast) Geyer et al., 2006

Trastuzumab

emtansine (T-DM1)

antibody-drug conjugate same as trastuzumab plus

inhibition of microtubules and

cell lysis (DM-1)

2013 (advanced breast) Verma et al., 2012

Erlotinib small molecule reversible, ATP-competitive TKI

of EGFR

2004 (third-line advanced

NSCLC); 2005 (pancreas

cancer); 2013 (first-line

EGFR mutant NSCLC)

Mok et al., 2009; Moore et al.,

2007; Shepherd et al., 2005

Afatinib small molecule irreversible, ATP-competitive

TKI of EGFR and HER2

2013 (metastatic EGFR

mutant NSCLC)

Sequist et al., 2013b

Neratinib small molecule irreversible, ATP-competitive

TKI of HER2

N/A trials in patients with HER2

mutant tumors in progress

Cetuximab human-murine chimeric

IgG2, binds ligand-binding

domain

inhibits ligand-dependent

activation of EGFR

2004 (originally for late line

EGFR+ CRC, but now only

used in earlier-line wild-type

KRAS CRC); 2006 (head and

neck with radiotherapy or

chemotherapy)

Van Cutsem et al., 2009;

Vermorken et al., 2008;

Bonner et al., 2006

Panitumumab human IgG1, binds

ligand-binding domain

inhibits ligand-dependent

activation of EGFR

2006 (originally for late-line

EGFR+ CRC, but now only

used in earlier-line wild-type

KRAS CRC)

Van Cutsem et al., 2007

AZD9291 small molecule irreversible, ATP-competitive

TKI of mutant EGFR

(third generation)

NA trials in EGFR mutant lung

cancer in progress

CLO-1686 small molecule irreversible, ATP-competitive

TKI of mutant EGFR

(third generation)

NA trials in EGFR mutant lung

cancer in progress

NA, not applicable.
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eradication (Park et al., 2010; Stagg et al., 2011). The importance

of the immune response is underscored by the finding that the

therapeutic effect of trastuzumab was markedly diminished in

mice that were engineered to be deficient in natural killer (NK)

cells and macrophages capable of binding the Fc region of tras-

tuzumab (Clynes et al., 2000). Pertuzumab is a monoclonal anti-

body that recognizes an epitope in heterodimerization domain II

of HER2, thus blocking ligand-induced HER2-HER3 dimeriza-

tion, resulting in partial inhibition of PI3K/AKT signaling (Agus

et al., 2002). Because pertuzumab and trastuzumab bind to

different epitopes in the HER2 ectodomain (Franklin et al.,

2004), hence their complementary abilities to disrupt HER2-con-

taining dimers, the combination of pertuzumab and trastuzumab

has shown synergy in preclinical studies (Scheuer et al., 2009)

and clinical trials (Baselga et al., 2012b; Gianni et al., 2012) and

is now approved for treatment of patients with HER2+ breast

cancer. Trastuzumab-derivative ofmaytansine 1 (T-DM1 or tras-

tuzumab emtansine) is an antibody-drug conjugate in which one

molecule of trastuzumab is covalently bonded via a noncleavable
286 Cancer Cell 25, March 17, 2014 ª2014 Elsevier Inc.
linker to 3.5 molecules of a maytansinoid that inhibits microtu-

bule polymerization (DM1). After binding to the receptor, the

T-DM1/HER2 complex is internalized followed by degradation

in lysosomes, release of DM1, and subsequent cell lysis (Lewis

Phillips et al., 2008). T-DM1 binds to HER2 with similar affinity

as trastuzumab, thus retaining the ability of the naked antibody

to inhibit ligand-independent HER2-containing dimers and signal

transduction as well as to mediate ADCC (Junttila et al., 2011).

Lapatinib is an ATP-competitive, reversible small-molecule in-

hibitor of the HER2 and EGFR tyrosine kinases (Konecny et al.,

2006). In HER2+ breast cancers, lapatinib quickly disables HER2

signaling, resulting in inhibition of the PI3K/AKT and MAPK path-

ways, and it has shown clinical activity in HER2+ breast cancers

that have progressed on trastuzumab (Geyer et al., 2006). Lapati-

nib also binds the inactive conformation of EGFR (Wood et al.,

2004), but it has not been active against cancers for which

EGFR antibodies or TKIs are approved. Afatinib (Minkovsky and

Berezov, 2008) andneratinib (Burstein et al., 2010) are irreversible,

covalent HER2/EGFR TKIs with activity against HER2, HER4,
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EGFR, and some HER2 insertion mutants (Bose et al., 2013). Of

note, the clinical efficacy of all therapeutic inhibitors of HER2

has been predominantly limited to breast cancers that overex-

press HER2 as measured by intense membrane staining in the

majority of tumor cellswithHER2antibodies (3+by IHC)or excess

copies of the HER2 gene determined by FISH.

EGFR

Gefitinib and erlotinib are ATP-competitive EGFR TKIs (Table 2).

Biochemical and crystallography analyses demonstrate that the

mutants possess a higher affinity for the first-generation EGFR

inhibitors gefitinib and erlotinib compared to thewild-type recep-

tor (Carey et al., 2006; Yun et al., 2007). Thus, the mutant en-

zymes are inhibited at lower concentrations of drug, which leads

to a favorable therapeutic index. As will be discussed in greater

detail below, EGFR mutant lung cancers often develop a second

mutation in the gatekeeper residue, T790M, as they become

resistant to gefitinib or erlotinib. Thus, there have been intense

efforts to develop a drug that can inhibit T790M EGFR to over-

come resistance. One such effort was the development of

second-generation EGFR inhibitors, such as afatinib and daco-

mitinib. These drugs are irreversible ATP competitors that form

covalent links with the Cys773 residue of EGFR. Although these

second-generation drugs have the capacity to inhibit the EGFR

T790M, they do so at concentrations that also inhibit wild-type

EGFR. Thus, there is not a favorable therapeutic index, and

dose-limiting toxicities due to inhibition of wild-type EGFR

(such as rash and diarrhea) prevent increasing doses high

enough to fully suppress T790M. Thus, they have been largely

ineffective at overcoming T790M-mediated resistance in the

clinic. Pao et al. found that mouse lung transgenic tumors ex-

pressing T790M EGFR are sensitive to the combination of afati-

nib and cetuximab (Regales et al., 2009). This combination has

progressed to the clinic, where it has demonstrated significant

clinical activity against T790M EGFR lung cancers, although it

is also associated with significant toxicity (Janjigian et al., 2011).

More recently, third-generation EGFR inhibitors have been

developed.Thefirst of suchcompounds,WZ-4002,wasdesigned

to be much more potent against the resistant T790M mutation

than thewild-type receptor, thus restoring a favorable therapeutic

index in which the drugs can be dosed high enough to inhibit

T790M without inducing toxicity from inhibiting wild-type EGFR

(Walter et al., 2013; Zhou et al., 2009). Of note, this drug is not a

quinazoline derivative like the first- and second-generation

EGFR inhibitors. WZ-4002 has not been developed clinically,

whereas two drugs with similar properties, AZD9291 and CLO-

1686, have been (Walter et al., 2013). Clinical data are emerging

for these compounds, and the high rate of clinical responses,

with minimal toxicity, is increasing enthusiasm for the class of

drugs (Ransonetal., 2013;Sequistet al., 2013a;Soria et al., 2013).

In contrast to the EGFR TKIs, the EGFR-neutralizing antibody

cetuximab blocks ligand binding to the EGFR. Thus, it is most

effective in cancers that harbor ligand-activated, wild-type

EGFR. In colorectal cancers with wild-type KRAS, inhibition of

EGFR leads mainly to loss of downstream ERK signaling. How-

ever, since mutant KRAS directly activates ERK, cetuximab fails

to suppress ERK in these cancers, most likely explaining the lack

of clinical activity (Ebi et al., 2011). As a result, cetuximab is now

used primarily in cancers with wild-type KRAS. Panitumumab is

another EGFR-targeted antibody that has activity in wild-type
KRAS CRC. Unlike cetuximab, it is an IgG2, and is predicted

not to engage immune effector cells to mediate ADCC. Despite

this difference, phase III studies have demonstrated clinical effi-

cacy similar to that of cetuximab (Douillard et al., 2014; Jonker

et al., 2007; Van Cutsem et al., 2007, 2009). Thus, it seems plau-

sible that the primary mechanism of action of cetuximab and

panitumumab is due to its inhibition of EGFR signaling and not

engagement of ADCC.

HER3 Inhibitors

Several HER3-neutralizing antibodies are in clinical develop-

ment. MM-121 and U3-1287 (formerly AMG-888) bind the

extracellular domain of HER3, block heregulin-induced phos-

phorylation, and reduce expression of HER3 at the cell surface

(Garrett et al., 2011; Schoeberl et al., 2010). MM-121 (IgG2) is

most effective against tumors with ligand-dependent activation

of HER3 (Sheng et al., 2010). U3-1287 synergizes with trastuzu-

mab and lapatinib to suppress the growth of HER2-amplified

xenografts (Garrett et al., 2013a) and has single-agent activity

against transgenic mouse mammary cancers induced by

Polyomavirus middle T antigen (Cook et al., 2011). RG7116 is

an IgG1 that selectively binds domain 1 of human HER3. It blocks

ligand binding and downregulates HER3 from the cell surface.

Through glycoengineering of its Fc moiety, RG7116 mediates

enhanced ADCC that correlates with HER3 receptor density

(Mirschberger et al., 2013). At this time, these antibodies have

completed phase I safety and dose-finding trials, but their clin-

ical efficacy remains to be shown.

LJM716 is a novel anti-HER3 antibody that binds an epitope

within domains 2 and 4 in the receptor’s extracellular domain,

thus trapping HER3 in an inactive conformation. In contrast to

the other anti-HER3 antibodies, it blocks both ligand-induced

and ligand-independent HER3 dimerization and activation

(Garner et al., 2013). This property may be particularly advanta-

geous in HER2-amplified breast cancers, in which HER2

appears to activate HER3 in a ligand-independent manner.

Accordingly, in laboratory studies, LJM716 reduced growth of

established HER2-amplified xenografts when given as a single

agent and synergized with PI3K inhibitors to suppress growth

ofHER2-amplified/PIK3CAmutant tumors (Garrett et al., 2013b).

More recently, bispecific antibodies targeting HER3 have been

introduced. MM-111 is an antibody that docks onto HER2 and

subsequently binds HER3, thus blocking ligand-dependent acti-

vation of HER2/HER3 dimers (McDonagh et al., 2012). Finally,

MEHD7945A is a two-in-one IgG1 generated by phage display

engineering that specifically binds HER3 and EGFR with high

affinity, thus blocking TGF-a- and HRG-induced activation of

both receptors and downstream PI3K/AKT and ERK signaling.

MEHD7945Amediates ADCC in vivo and demonstrates superior

antitumor activity against multiple tumor models compared to

monospecific antibodies (Schaefer et al., 2011). Currently,

HER3 inhibitors are being developed in combination with trastu-

zumab, EGFR antibodies and TKIs, PI3K inhibitors, and cytotoxic

chemotherapy. In addition to HER2 amplification and EGFRmu-

tation, high heregulin expression and HER3 mutations are being

explored as predictive biomarkers of response in clinical trials.

Mechanisms of Resistance to ERBB Inhibitors
Although ERBB-targeted therapies have provided substantial

benefit to patients with advanced cancer, cancers ultimately
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Figure 1. Schema Depicting Intragenic Alterations Leading to Resistance to HER2 and EGFR Inhibitors
(A) HER2 truncations (p95) and splice variants (D16) are not inhibited by trastuzumab. In addition, expression of specific mucin isoforms can prevent trastuzumab
from binding HER2 (Price-Schiavi et al., 2002). Not shown in the figure, pertuzumab and T-DM1 cannot recognize p95 either.
(B) HER2s harboring exon 20 insertions are not inhibited by lapatinib, but may be sensitive to irreversible HER2 inhibitors afatinib and neratinib. They are also
resistant to trastuzumab.
(C) The EGFR T790M gatekeeper mutation leads to acquired resistance to first generation EGFR inhibitors, but is effectively inhibited by third-generation EGFR
inhibitors.
(D) An EGFR mutation in the extracellular domain is associated with acquired resistance to cetuximab, but may still be sensitive to another anti-EGFR antibody,
panitumumab. Dashed lines indicate inhibition via alternative antibodies and inhibitors.
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have developed resistance to the current approaches. In this

Perspective, we will discuss both de novo and acquired resis-

tance. The distinction is primarily a clinical one: de novo or

intrinsic resistance refers to cancers that do not exhibit an initial

response, whereas acquired resistance develops after an initial,

often marked and durable, clinical response. It is important to

appreciate that the same molecular mechanism may cause

both types of resistance, underscoring the robustness of the bio-

logical principles underlying how cancers evade these therapies.

Mechanisms of resistance have been discovered by several

approaches, including the maintenance of cell lines and xeno-

grafts in the presence of drug until resistance emerges or infec-

tion of sensitive cell lines with open reading frame (ORF) or

shRNA libraries to identify genes whose expression or loss leads

to resistance. These efforts have also been coupled to biopsy

programs, in which cancers are systematically biopsied upon

the development of resistance to interrogate acquired molecular

changes upon treatment pressures (Sequist et al., 2011; Yano

et al., 2011; Yu et al., 2013). However, there are significant limi-

tations with many of the laboratory studies. Although EGFR TKIs

are primarily used as single agents for EGFR mutant lung

cancers, HER2-directed therapies and EGFR antibodies are

generally used in combination with chemotherapy in the clinic.

However, most laboratory studies have modeled resistance to

these agents as single therapies, thus not recapitulating the se-

lective pressure of combination therapies applied in the clinic.

Other data about potential resistance mechanisms have been

derived from correlative clinical trials in which patients have

been treated with anti-HER2 drug(s) in combination with chemo-
288 Cancer Cell 25, March 17, 2014 ª2014 Elsevier Inc.
therapy, a variable not always considered in the interpretation of

the studies of drug resistance. Finally, even though combina-

tions of HER2 antagonists are increasingly used in the clinic,

resistance to these combinations has yet to be modeled widely

in the laboratory.

Intrinsic HER2 Alterations

Some resistance mechanisms affect the capacity for HER2 in-

hibitors to directly engage HER2. Anido et al. described p95-

HER2, a truncated form of HER2 lacking the trastuzumab

binding region, which may arise from alternate transcription initi-

ation sites in HER2 (Anido et al., 2006) (Figure 1A). Patients with

metastatic breast cancer harboring cytosolic expression of p95-

HER2 exhibit a very low response rate to trastuzumab compared

to those patients without p95-HER2 in their tumors (Scaltriti

et al., 2007). This form of HER2 retains kinase activity, and tu-

mors with p95-HER2 may still be susceptible to kinase inhibition

with a TKI, as suggested by the observation that p95-HER2 tu-

mors exhibit a similar response rate to the combination of cape-

citabine and lapatinib compared to breast cancers expressing

full-length HER2 (Scaltriti et al., 2010).

A splice variant that eliminates exon 16 in the extracellular

domain of the HER2 receptor has also been identified in

HER2+ primary breast cancers and cell lines (Kwong and

Hung, 1998) (Figure 1A). This variant does not eliminate the tras-

tuzumab epitope on HER2, but stabilizes HER2 homodimers and

prevents their disruption upon binding by the antibody, resulting

in trastuzumab resistance in cell lines. The D16 isoform was

found to interact directly with Src, and treatment with the Src

inhibitor dasatinib overcame the resistance to the antibody
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conferred by the alternative splicing variant (Mitra et al., 2009).

However, clinical evidence of an association between HER2-

D16 and resistance to trastuzumab has not been shown.

HER2mutations have been found in a small proportion of lung,

gastric, colorectal, breast, and head and neck cancers (Lee

et al., 2006; Ross et al., 2013; Stephens et al., 2004; Willmore-

Payne et al., 2006). These mutants of HER2 are resistant to

lapatinib and trastuzumab (Figure 1B), but are sensitive to the

covalent HER2 TKI neratinib (Bose et al., 2013; Wang et al.,

2006). To the best of our knowledge, HER2 mutations in HER2

gene-amplified breast tumors are very rare. As such, they have

not been identified as a resistance mechanism to trastuzumab.

One possible reason is that these mutations may comprise

only a portion of the amplified HER2 alleles and, therefore, exist

below the limits of sensitivity of traditional DNA sequencing

methods (Zito et al., 2008). It is possible that cancer cells

harboring these mutations will be selected, or acquired, after

the selective pressure of anti-HER2 treatment. If so, they may

only be detected in tumors that are progressing after primary

HER2-targeted therapy. However, comprehensive studies pro-

filing HER2+ tumors that have progressed on primary anti-

HER2 therapies have not been reported.

Intrinsic EGFR Alterations

In EGFR mutant lung cancer, the most common mechanism of

acquired resistance to EGFR inhibitors is the development of a

mutation in the gatekeeper residue of EGFR, T790M (Kobayashi

et al., 2005; Pao et al., 2005). T790M abrogates the inhibitor

effects of gefitinib and erlotinib by increasing the affinity of the

receptor for ATP (Yun et al., 2008), thereby lessening the potency

of first-generation EGRF inhibitors (Figure 1C). At least 50% of

biopsies from patients with acquired resistance harbor the

T790M mutation. Recent studies suggest that highly sensitive

methods can detect the T790M mutation in �35% of pretreat-

mentbiopsies. This suggests, but doesnot prove, that it preexists

in a small fraction of cells and that those cells are selected for dur-

ing thecourseof treatment (Maheswaran et al., 2008;Rosell et al.,

2011). Currently, the third-generation EGFR inhibitors (discussed

above) are in early clinical trials to overcome this resistance.

An analogous finding has been observed in wild-type KRAS

CRCs that develop resistance to cetuximab. A small study re-

ported the development of a S492R mutation in the extracellular

domain of EGFR that interferes with cetuximab binding, but does

not interfere with ligand-dependent activation or abrogate re-

ceptor engagement by panitumumab (Montagut et al., 2012)

(Figure 1D).

Bypass Track Resistance

Other than the immune effects of ERBB antibodies, it is believed

that most of activity of these drugs is due to suppression of

downstream signaling, particularly PI3K/AKT and MEK/ERK.

Thus, many cancers are resistant to single-agent ERBB inhibi-

tors because at least one of these critical downstream pathways

is maintained despite inhibition of the targeted receptor. This

type of resistance, also termed ‘‘bypass track’’ resistance, is

often used to describe resistance resulting from maintenance

of these key downstream signaling pathways despite adequate

inhibition of the respective RTK (reviewed in Niederst and

Engelman, 2013; Figure 2).

Ligand- and RTK-Mediated Resistance. One of the earliest

validated observations that RTK bypass signaling induces resis-
tance to ERBB inhibitors was in EGFR-mutant NSCLCs. Amplifi-

cation of theMET gene was found in EGFRmutant cancers with

acquired resistance to EGFR TKIs but not in pretreatment

biopsies (Bean et al., 2007; Engelman et al., 2007). In these resis-

tant cancers, MET reactivates both PI3K/AKT and MEK/ERK

signaling despite the inhibition of EGFR. The combination of

MET and EGFR inhibitors was sufficient to block downstream

signaling and induce marked tumor regressions (Engelman

et al., 2007; Turke et al., 2010). Activation ofMET by its ligand he-

patic growth factor (HGF) was also sufficient to promote resis-

tance through activation of downstream signaling (Yano et al.,

2008). MET has also been implicated in trastuzumab resistance.

HGF-induced signaling through MET was shown to abrogate the

action of trastuzumab (Shattuck et al., 2008; Turke et al., 2010).

Further, gene amplification of MET and HGF was reported in a

cohort of HER2+ patients who did not respond to trastuzumab

and chemotherapy (Minuti et al., 2012). Thus, MET activation

by either gene amplification or ligand stimulation can cause

bypass resistance to EGFR and HER2 inhibitors.

Reactivation of EGFR and HER3 can also serve as a mecha-

nism of resistance to ERBB inhibitors. In laboratory models

of HER2-amplified breast cancer treated with trastuzumab,

increased levels of EGFR and ERBB ligands led to an increase

in active EGFR/HER3 and EGFR/HER2 dimers to promote resis-

tance (Ritter et al., 2007). This is consistent with data showing

that trastuzumab is unable to block ligand-induced HER2-con-

taining heterodimers (Agus et al., 2002). Similarly, activation of

TGFb receptors can increase ERBB ligand production and cleav-

age, particularly TGF-a, amphiregulin, and heregulin, via activa-

tion of the TACE/ADAM17 sheddase; this results in activation of

HER3 and PI3K and promotes drug resistance (Wang et al.,

2008). Further, a gene signature of TGFb activity was developed

and shown to correlate with resistance to trastuzumab and poor

clinical outcome in patients (Wang et al., 2008).

Similarly, in EGFRmutant cancers,MET amplification leads to

resistance to EGFR TKIs through reactivation of HER3 (Engel-

man et al., 2007). In a subset of EGFR mutant lung cancers,

amplification of HER2, presumably involving HER3 reactivation,

was also identified as a resistance mechanism to EGFR TKIs

(Takezawa et al., 2012). Consistent with these data, blockade

of HER3 with the neutralizing antibody MM-121 increases the

efficacy of cetuximab in a mouse model of EGFR mutant lung

cancer (Schoeberl et al., 2010). Along those lines, a selective

ADAM inhibitor, INCB3619, which prevents the processing and

activation of multiple ERBB ligands including heregulin, inhibits

HER3 signaling and enhances gefitinib-mediated inhibition of

EGFR in NSCLC (Zhou et al., 2006). Further supporting a role

of amplified HER2-HER3 signaling in resistance to EGFR-

targeted therapies, colorectal cancer patients with de novo or

acquired resistance to cetuximab-based therapy exhibit HER2

amplification in their tumor or high levels of circulating heregulin

(Yonesaka et al., 2011). Finally, using patient-derived colon can-

cer xenografts, Bertotti et al. identified HER2 gene amplification

as a predictor of resistance to cetuximab among KRASwild-type

tumors (Bertotti et al., 2011).

IGF-I receptors have also been implicated in driving resistance

to both EGFR and HER2 inhibitors. Overexpression of IGF-1R

or an increase in levels of IGF-1R/HER2 heterodimers can

potently activate PI3K/AKT signaling and confer resistance to
Cancer Cell 25, March 17, 2014 ª2014 Elsevier Inc. 289



Figure 2. Schematic Depicting Resistance to EGFR and HER2 Inhibitors due to Activation of Bypass Track Signaling
(A) Model of a sensitive EGFR or HER2-addicted cancer treated with an ERBB small-molecule inhibitor or antibody resulting in suppression of downstream
signaling. EGFR or HER2 homodimers and heterodimers are shown.
(B) Model of a EGFR mutant or HER2-amplified cancer with resistance due to maintenance of downstream signaling in the presence of the EGFR or HER2 in-
hibitors. Activation of signaling can be caused by activation of other RTKs or mutational activation of downstream signaling.
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trastuzumab in laboratory studies (Huang et al., 2010). Inhibition

of IGF-1Rwith a neutralizing antibody or a small-molecule TKI, or

targeting of the HER2 kinase with lapatinib was found to

overcome IGF-1R-mediated resistance to trastuzumab (Nahta

et al., 2007). In a neoadjuvant trial of chemotherapy plus trastu-

zumab, a high level of IGF-1R expression measured by IHC

correlated with a poor clinical response (Harris et al., 2007). Simi-

larly, activation of IGFIR, via loss of expression of IGFBP3 and

IGFBP4, which encode insulin-like growth factor binding pro-

teins 3 and 4, respectively, maintains PI3K/AKT signaling despite

blockade of EGFR and promotes resistance to EGFR inhibitors in

multiple cell lines (Guix et al., 2008). In these cases, inhibition of

IGF1R resensitized to EGFR inhibition. In addition, inhibition of

IGF-IR also suppressed the development of ‘‘persistor cells,’’

the small population of PC9 EGFR mutant cells that survives

the initial inhibition of EGFR, described by Settleman and col-

leagues (Sharma et al., 2010).

In addition to the bypass pathways mentioned above,

numerous other RTK-mediated resistance mechanisms have

been observed. The EphA2 receptor has been shown to confer

resistance to trastuzumab in cell lines, and EphA2 expression

was shown to predict poor outcome patients with HER2+ breast

cancer (Zhuang et al., 2010). Most recently, the erythropoietin

(Epo) receptor was found to be coexpressed in cell lines and
290 Cancer Cell 25, March 17, 2014 ª2014 Elsevier Inc.
primary tumors that overexpress HER2. In these cell lines, con-

current treatment with recombinant erythropoietin conferred

trastuzumab resistance. In patients with HER2+ breast cancer,

the concurrent administration of erythropoietin and trastuzumab

correlated with a shorter progression-free and overall survival

compared to patients not receiving erythropoietin (Liang et al.,

2010). Finally, in erlotinib-resistant EGFR mutant lung cancer

cells and lapatinib-resistant HER2-amplified breast cancer cells,

levels of the AXL RTK were markedly increased (Liu et al., 2009;

Zhang et al., 2012). Targeting of AXL was able to resensitize

some of these resistant cancers to the original TKI.

We should note that most of these RTK-mediated mecha-

nisms do not necessarily involve genetic activation of the RTK,

as mainly protein assays (i.e., IHC for IGF-IR, AXL, EphA2, etc.)

have been employed to measure their levels in tumor tissues.

Such correlations do not prove that the putative bypass RTK is

causal to drug resistance in the clinic or in a particular patient.

Ultimately, clinical efficacy using specific drugs that target the

bypass RTK will be needed for true validation.

Intracellular Kinases. Molecules in the pathways downstream

of RTKs can be aberrantly activated as a result of genetic alter-

ations, also resulting in drug resistance (Figure 2). Somatic alter-

ations in the PI3K/AKT pathway are the most frequent in breast

cancer, occurring in approximately 30%of HER2+ tumors. These
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include mutation and/or amplification of the genes encoding the

PI3K catalytic subunits p110a (PIK3CA) and p110b (PIK3CB), the

PI3K regulatory subunit p85a (PIK3R1), the PI3K effectors AKT1,

AKT2, and PDK1, and loss of the lipid phosphatases PTEN and

INPP4B (reviewed in Engelman, 2009). It is generally accepted

that the antitumor activity of HER2 inhibitors depends on inhibi-

tion of PI3K-AKT downstream of HER2. Thus, one would expect

that activatingmutations in the PI3K pathwaywould confer resis-

tance to HER2 inhibitors.

Constitutive activation of PI3K, via overexpression of PIK3CA

mutants, conferred resistance to the antibody in laboratory

studies (Chakrabarty et al., 2010; Eichhorn et al., 2008; Serra

et al., 2008). Patients with ‘‘hot-spot’’ PIK3CAmutations and un-

detectable or low PTEN measured by IHC exhibited a poorer

outcome after treatment with chemotherapy and trastuzumab

compared to patients without those alterations (Berns et al.,

2007; Dave et al., 2011; Esteva et al., 2010). In the EMILIA and

Neo-ALTTO randomized trials in HER2+ breast cancer, patients

with PIK3CA mutant tumors did not benefit from lapatinib and

capecitabine (Baselga et al., 2013b) and from lapatinib and tras-

tuzumab (Baselga et al., 2013a), respectively. It remains to be

determined whether T-DM1, because of its ability to deliver

high levels of cytotoxic chemotherapy to HER2-overexpressing

cells, trumps this mechanism of resistance.

One of the first discoveries linking constitutive activation of

PI3K signaling and resistance to HER2 inhibitors was accom-

plished by Berns et al. Using a large-scale small interfering

RNA genetic screen, they identified PTEN as the only gene

whose knockdown conferred trastuzumab resistance (Berns

et al., 2007). However, the association of PTEN loss with drug

resistance in the clinic is less clear. In one early study in patients

with metastatic breast cancer, loss or low levels of PTEN corre-

lated with a lower response to trastuzumab (Nagata et al.,

2004). This correlation was not found in patients with early

breast cancer treated with adjuvant trastuzumab (Perez et al.,

2013). We speculate that this was because of the concomitant

administration of chemotherapy in an adjuvant setting (Rexer

et al., 2013).

Similar findings have been observed in cancers with acquired

resistance to EGFR inhibitors. Introduction of PIK3CAmutations

into EGFR mutant lung cancer cell lines is sufficient to maintain

PI3K signaling and promote resistance (Engelman et al., 2006).

Accordingly, PIK3CA mutations have been identified in biopsies

of EGFRmutant cancers with acquired resistance to EGFR inhib-

itors (Sequist et al., 2011). Similarly, a report found that PTEN

loss may be associated with resistance to EGFR inhibitors (Sos

et al., 2009). In addition to reactivation of PI3K, reactivation of

ERK signaling can promote resistance to EGFR inhibitors, as evi-

denced by the finding of a BRAF mutation in an EGFR mutant

lung cancer with acquired resistance (Ohashi et al., 2012). In a

second example, an EGFR mutant cell line made resistant to

third-generation EGFR inhibitors developed amplification of

ERK and was resensitized upon inhibition of MEK (Ercan et al.,

2012).

A compelling recent discovery underlying this type of resis-

tance mechanism was the study of KRAS wild-type colorectal

cancers that had developed resistance to cetuximab. By per-

forming repeat biopsies and evaluating circulating tumor DNA,

investigators observed the emergence of KRAS mutations as a
resistance mechanism (Diaz et al., 2012; Misale et al., 2012).

From a signaling perspective, one would expect that the KRAS

mutant clones fail to downregulate the ERK pathway in response

to cetuximab, underlying the resistance. As the presence of

KRAS mutations predicts for lack of initial response to cetuxi-

mab, these findings underscore the convergence of intrinsic

and acquired resistance mechanisms.

Src family kinase (SFK) signaling has been implicated by

several studies in promoting resistance to HER2 inhibitors. In

HER2+ breast cancer cells with acquired resistance to lapatinib,

upregulation of SFK activity, particularly Yes, was observed in

several resistant cell lines. Resistance was associated with

recovery of PI3K/AKT signaling despite inhibition of HER2. Addi-

tion of a Src TKI partially blocked PI3K/AKT and restored

sensitivity to lapatinib (Rexer et al., 2011). In another study, the

authors suggest that PTEN was no longer capable of dephos-

phorylating and suppressing Src in trastuzumab-resistant

HER2+ cells, and the addition of a Src kinase inhibitor overcame

trastuzumab resistance (Zhang et al., 2011). Src activity is also

involved in the resistance conferred by the D16 HER2 isoform

and the EpoR (Mitra et al., 2009). Src is thought to mediate resis-

tance in part via phosphorylation and inhibition of PTEN, leading

to constitutive PI3K signaling (Liang et al., 2010).

Defects in Apoptosis and Cell-Cycle Control

Inhibition of a driver oncogene such as EGFR and HER2 results

in proliferation arrest and apoptosis. Therefore, alterations in

the normal apoptotic machinery can also induce resistance to

EGFR- and HER2-targeted therapies. Indeed, we observed

that levels of the proapoptotic BH3-only Bcl2 family member,

BIM, are predictive of response to targeted therapy in EGFR

mutant lung cancers, HER2-amplified breast cancers, and

PIK3CA mutant cancers (Faber et al., 2011). BIM protein nor-

mally is induced after inhibition of EGFR and HER2 in these can-

cers. In this study, although erlotinib or lapatinib inhibited EGFR

and HER2 and downstream signaling in EGFR mutant and

HER2-amplified cancers, respectively, only those cell lines with

high levels of BIM underwent marked apoptosis. This suggests

that BIM levels are a biomarker predictive of response to a TKI

in an oncogene-addicted cancer. Other groups have reported

similar results in EGFR mutant lung cancers (Ng et al., 2012)

and HER2 gene-amplified breast cell lines with and without acti-

vating mutations (Tanizaki et al., 2011). In cancers with concur-

rent PIK3CA mutant cells, however, both the growth inhibitory

effect and induction of BIM after treatment with lapatinib were

blunted (Tanizaki et al., 2011).

Survivin, a member of the inhibitor of apoptosis (IAP) protein

family that inhibits the activity of caspases, has been shown to

be a point of convergence of several pathways that can lead to

resistance to HER2 inhibitors. In HER2+ breast cancer cells, inhi-

bition of HER2-PI3K reduces survivin expression resulting in

apoptosis. HER2-amplified breast cancer cells with acquired

resistance to lapatinib upregulate ERa, which, in turn, induces

FoxO3a-mediated transcription of survivin (Xia et al., 2006). In

turn, high survivin levels allow for escape from lapatinib. Accord-

ingly, elevated levels of survivin and MCL-1 have been found in

trastuzumab-resistant cells (Chakrabarty et al., 2013).

Altered control of progression through the cell cycle in

response to HER2 inhibition also plays a role in resistance.

Cell lines made resistant to trastuzumab by chronic exposure
Cancer Cell 25, March 17, 2014 ª2014 Elsevier Inc. 291
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exhibited focal amplification of cyclin E. CDK2 inhibitors reduced

growth of these trastuzumab-resistant xenografts (Scaltriti et al.,

2011). Further, in a cohort of patients with HER2+ breast cancers

treated with trastuzumab, amplification of cyclin E was associ-

ated with a diminished clinical response. Downregulation of the

Cdk inhibitor p27KIP1 and a resulting increase in Cdk activity

has also been associated with trastuzumab resistance (Nahta

et al., 2004; Yakes et al., 2002). Indeed, modulation of levels of

p27KIP1 appears to be a common endpoint for several of the

resistance pathways noted above, including signaling from

IGF-1R and MET (Nahta et al., 2005; Shattuck et al., 2008).

Tumor Host Factors

Host factors that affect the immunomodulatory function of tras-

tuzumab can also contribute to trastuzumab resistance. In mice

lacking FcgRIII and, thus, deficient in NK cells and macrophages

capable of binding the Fc region of trastuzumab, the therapeutic

effect of trastuzumab was markedly diminished (Clynes et al.,

2000). Polymorphisms in the gene encoding FcgRIII in humans

were associated with resistance to trastuzumab in patients

with metastatic HER2+ breast cancer (Musolino et al., 2008). In

the same study, PBMCs from patients with FCGR3 polymor-

phisms associated with an improved outcome after trastuzumab

induce a stronger trastuzumab-mediated ADCC in vitro. A

follow-up study found that the quantity and lytic efficiency of

CD16+ lymphocytes are the major factors affecting the level of

ADCC induced by trastuzumab. This, in turn, correlates with tu-

mor response (Gennari et al., 2004). We should note, however,

that a large trial of trastuzumab-based adjuvant chemotherapy

in patients with early HER2+ breast cancer did not show an asso-

ciation between FCGR3A and FCGR2A polymorphisms with

patient outcome (Hurvitz et al., 2012).

Strategies to Overcome Resistance: Combination
Therapies
Clinical experience has validated EGFR and HER2 as effective

drug targets. However, in the metastatic setting, these inhibitors

do not lead to cures, and cancers ultimately develop resistance.

Thus, there is a great need to identify therapeutic strategies that

will improve upon the current approaches. We believe that one

strategy will include maximal blockade of the oncogene target

itself as well as inhibition of the key bypass tracks that promote

resistance. The growing number of escape routes will likely

necessitate combinations of multiple agents, whose delivery

will require innovative dosing and scheduling.

HER2

All currently available HER2 inhibitors target or exploit mecha-

nisms of HER2 function. As single drugs, however, they do not

potently suppress HER2 signaling. This may explain the generally

short-lived responses of metastatic HER2+ breast cancers to

single-agent HER2 inhibitors. Trastuzumab and pertuzumab, in

particular, are each weak signaling inhibitors, possibly because

they incompletely block HER2-containing dimers (Junttila et al.,

2009). Treatment with lapatinib (and most likely other HER2

TKIs) leads to an increase in HER2 and HER2-containing dimers

at the plasma membrane and fails to completely and persistently

inhibit the HER2 kinase (Garrett et al., 2011; Scaltriti et al., 2009).

This may be explained by both the narrow therapeutic index of

current HER2 TKIs and the challenge of complete and sustained

inhibition of an amplified drug target, i.e., HER2, with small mole-
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cules. Moreover, inhibition of the HER2 kinase leads to an initial

reduction of PI3K/AKT signaling, which releases negative feed-

backs resulting in upregulation of HER3 and other RTKs, as well

as survival factors such as BCL2 and ERa, thereby mitigating

the efficacy ofHER2 inhibitors (Chakrabarty et al., 2012;Chandar-

lapaty et al., 2011; Garrett et al., 2011; Muranen et al., 2012; Xia

et al., 2006). We also recognize that HER2-amplified breast can-

cers vary with respect to their addiction to HER2 signaling,

although they are grouped together using clinical criteria (FISH,

IHC) for HER2 overexpression. Thus, we speculate many HER2-

gene-amplifiedcancersarenot truly ‘‘addicted’’ toHER2signaling

and, as such, are not sensitive to HER2 TKIs. Finally, resistance to

T-DM1 may be due to several reasons, including the sparing of

HER2� tumor cells within heterogeneous cancers containing

HER2+andHER� tumorcells, a scenarionot uncommon inclinical

practice. Finally, T-DM1, trastuzumab, and pertuzumab cannot

bind p95-HER2 and, thus, would be inactive against tumor cells

with an abundance of cytosolic fragments of HER2.

One strategy to address the limitations of anti-HER2 drugs as

single agents has been to combine multiple HER2 antagonists

that have different but complementary mechanisms of action.

Clinical experience had suggested that trastuzumab-refractory

tumors remained dependent on HER2 as continuing trastuzu-

mab in new treatment regimens beyond progression to trastuzu-

mab demonstrated clinical benefit (von Minckwitz et al., 2009).

Currently, dual blockade of HER2 is well entrenched in the clinic.

For example, the combination of trastuzumab and lapatinib is

superior to each agent alone in both the metastatic (Blackwell

et al., 2010) and neoadjuvant (Baselga et al., 2012a) settings.

Similarly, the combination of trastuzumab and pertuzumab was

shown to be superior to each antibody alone in both neoadjuvant

trials in patients with early disease (Gianni et al., 2012) and in

patients with advanced disease (Baselga et al., 2012b), as

assessed by progression-free survival. The combination of

T-DM1 and pertuzumab is also in progress. This novel approach

would incorporate dual receptor blockade with two HER2 anti-

bodies (trastuzumab and pertuzumab) plus the delivery of a

potent cytotoxic (DM1) to HER2-amplified cells while mostly

sparing host tissues (Phillips et al., 2014).

At the time of writing this Perspective, several novel anti-HER2

combinations are being tested in clinical trials. Some of these

include a third drug targeted to the HER2 network (Table 3). It

is anticipated that for a cohort of HER2+ breast cancers that

escape anti-HER2 dual therapy, a third drug targeted against a

signaling hub in the receptor network might be necessary. Sup-

porting this possibility, a recent study showed that transgenic

mammary tumors expressing HER2 and PIK3CAH1047R were

completely resistant to the combinations of trastuzumab plus

pertuzumab and trastuzumab plus lapatinib. Addition of the

pan-PI3K inhibitor BKM120 to each combination resulted in inhi-

bition of tumor growth, but only partially and temporarily (Hanker

et al., 2013). Currently, a main clinical focus is the addition of

PI3K inhibitors and/or HER3-neutralizing antibodies (Garrett

et al., 2013b) to the established combinations of anti-HER2 ther-

apies (Table 3). More-recent data suggest that blockade of

mTOR downstream HER2 with the TORC1 inhibitor everolimus,

while maintaining trastuzumab therapy, can induce clinical re-

sponses in HER2+ cancers that have progressed on trastuzumab

(Hurvitz et al., 2013; Morrow et al., 2011; O’Regan et al., 2013).



Table 3. Anti-ERBB Combinations

Combination Mechanism(s) of Action Relevant Clinical Trials

Trastuzumab + lapatinib (or neratinib, afatinib) ADCC, partial disruption of HER2-HER3 dimers, inhibition of

HER2 and EGFR tyrosine kinases

Baselga et al., 2012a;

Blackwell et al., 2010

Trastuzumab + pertuzumab (only approved

combination)

More-complete inhibition of ligand-induced and ligand-

independent HER2-containing heterodimers, ADCC,

downregulation of HER2 from cell surface

Baselga et al., 2012b;

Gianni et al., 2012;

Schneeweiss et al., 2013

T-DM1 + pertuzumab Same as above plus inhibition of polymerization of microtubules

with DM1

MARIANNE (NCT01120184)

Trastuzumab + everolimus ADCC, disruption of ligand-independent HER2-HER3 dimers,

inhibition of TORC1

BOLERO-3 (NCT01007942)

Trastuzumab + pertuzumab + PI3K inhibitor Inhibition of ligand-induced and ligand-independent HER2-

containing heterodimers, ADCC, ATP-competitive inhibition

of catalytic activity of p110

Trastuzumab + HER3-neutralizing antibody ADCC, partial disruption of HER2-HER3 dimers, inhibition of

heregulin binding, downregulation of HER3 and/or HER3

dimerization

Trastuzumab + HER3 antibody + PI3K inhibitor Same as above plus direct inhibition of p110

T-DM1 + PI3K inhibitor ADCC, partial disruption of HER2-HER3 dimers, inhibition of

polymerization of microtubules, direct inhibition of p110

Afatinib + cetuximab Combined targeting of EGFR T790M to compensate for

complete inhibition of target by either approach alone. Afatinib

may also target resistance due to HER2 activation

NCT01090011

EGFR + PI3K inhibitor Block resistance due to reactivation of PI3K signaling

Erlotinib + MET inhibitor Block MET-dependent resistance to EGFR inhibitors MetLung Trial and others

EGFR inhibitor + IGF-IR antibody Block IGF-IR-dependent resistance to EGFR inhibitors

Erlotinib + hydroxychloroquine Effort to block the survival of ‘‘drug-tolerant’’ cells after

treatment with EGFR TKIs (Sharma et al., 2010)

Goldberg et al., 2012

Irreversible EGFR inhibitor + MET inhibitor Overcome both T790M- and MET-mediated resistance

Cancer Cell
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Along the same lines, neratinib in combination with the TORC1

inhibitor temsirolimus recently demonstrated clinical activity in

HER2mutant lung cancers (Gandhi et al., 2014). Finally, one pro-

posed novel strategy is the combination of trastuzumab with

anti-PD1 and anti-CD37 monoclonal antibodies. In this case,

anti-PD1 would inhibit IFNg-activated T cells, and anti-CD37

would block CD8+ T cells; both of these T cell subtypes are

required for the adaptive immune response triggered by trastu-

zumab (Stagg et al., 2011).

EGFR

One major mechanism of resistance to EGFR inhibitors in EGFR

mutant cancers is the development of the T790M gatekeeper

residue. The newer third-generation EGFR TKIs that suppress

T790M are showing remarkable progress in this subset of can-

cers (Ranson et al., 2013; Sequist et al., 2013a; Soria et al.,

2013). Ultimately, clinical trials will be needed to determine

whether third-generation EGFR inhibitors become first-line ther-

apy forEGFRmutant lung cancers.We anticipate thatmetastatic

EGFR mutant lung cancers will likely become resistant to drugs

that target T790M since there are several additional potential

resistance mechanisms. Thus, it will most likely be necessary

to combine inhibitors of bypass tracks with T790M-specific in-

hibitors to provide greater durations of remission and prolonga-

tion of patient survival.

In general, combinations that overcome resistance to EGFR

inhibitors have generally required continued inhibition of EGFR

combined with a drug that blocks the bypass track (reviewed
in Niederst and Engelman, 2013). For example, in EGFR mutant

lung cancers that are resistant via MET amplification, combined

EGFR and MET inhibition is required to suppress downstream

PI3K/AKT and MEK/ERK and induce tumor regressions in vivo

(Turke et al., 2010). In similar examples of resistance mediated

by IGF-IR and AXL, inhibition of the bypass RTK in combination

with the EGFR is needed to overcome resistance (Cortot et al.,

2013; Guix et al., 2008; Zhang et al., 2012). Thus, one central

strategy involving combinations centers on maintaining potent

inhibition mutant EGFR while adding different inhibitors to these

accessory pathways. This has been employed in early clinical

trials that have combined EGFR inhibitors with MET inhibitors,

PI3K inhibitors, and IGF-IR inhibitors (Table 3). However, none

of these trials utilized third-generation EGFR inhibitors, which

are the only drugs that appear to be capable of overcoming

T790M. The advent of these third-generation inhibitors may

now unleash the potential of targeting bypass tracks once

T790M is effectively inhibited.

In KRAS wild-type colorectal cancers, the recent finding that

resistant cancers develop EGFR mutations that abrogate cetux-

imab binding or KRAS mutations suggests approaches analo-

gous to those discussed above. Again, the development of point

mutations in EGFR suggests that alternative approaches to

suppress EGFR may be warranted. Preclinical studies suggest

panitumumab may overcome this type of resistance (Montagut

et al., 2012). In colorectal cancers that develop KRASmutations

upon development of resistance, current trials are examining the
Cancer Cell 25, March 17, 2014 ª2014 Elsevier Inc. 293



Figure 3. Developing Laboratory Models to Discover Mechanisms of Resistance
(A) Resistancemechanisms can be discovered by culture of sensitive cell lines in the presence of a specific HER2 or EGFR inhibitor until resistance develops or by
introduction of shRNA or ORF libraries to determine genes whose overexpression or suppression will lead to resistance.
(B) Alternatively, when resistance develops in the clinic, a cell line can be generated from a biopsy of the resistant lesion, and the resulting resistant line can be
screened with drugs and/or shRNA libraries to determine strategies to resensitize them.
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efficacy of EGFR inhibitors in combination with inhibitors to over-

come resistance (Misale et al., 2014).

Projections to the Future: Novel Approaches
Monitoring Tumor Evolution

One of the major challenges will be to determine the optimal

combinations for individual patients. Some examples have clear

biomarkers pointing to specific combinations, such as the use of

combined HER2 and PI3K inhibitors for HER2-amplified breast

cancers harboring PIK3CA mutations, as well as EGFR and

MET inhibitors for EGFR mutant lung cancers harboring MET

amplifications. However, several of the other combinations do

not have straightforward biomarkers for patient selection. In

the cases of IGF-IR and AXL, it is quite unlikely that expression

of the RTK alone will accurately identify those cancers in

which those proteins are driving resistance. Thus, more-precise

assessments of RTK and signaling activation via novel proteomic

methods would be potentially valuable to identify the most

appropriate combinations.

As the cancers progress through therapies, there will be a

need to continually interrogate the cancer to understand how it

has adapted to treatment pressures and become drug resistant.

Many centers have utilized repeat biopsy programs to perform

biopsies after the development of resistance to targeted thera-
294 Cancer Cell 25, March 17, 2014 ª2014 Elsevier Inc.
pies to determine how the cancer has evolved. Indeed, with

the increasing use of next-generation sequencing approaches,

it is likely that the genetic landscape for resistance mechanisms

will increase dramatically over the coming years. Even though

this approach has great promise to discover resistance mecha-

nism, it may also have potential limitations when the results are

used to determine the next course of therapy for an individual pa-

tient as the (acquired) alterations identified in a single biopsymay

not reflect all of the resistant clones in multiple metastatic sites in

an individual patient (Bean et al., 2007; Engelman et al., 2007;

Turke et al., 2010). Thus, noninvasive measures such as molec-

ular interrogation of circulating tumor cells or plasma DNA may

help capture the heterogeneity of resistance in patients, as

was done to identify the development ofKRASmutations in colo-

rectal cancers that acquire resistance to cetuximab (Diaz et al.,

2012; Misale et al., 2012). As efforts to identify new therapeutic

strategies to overcome resistance are intensified, the develop-

ment of cell lines and patient-derived xenografts from resistant

biopsies may facilitate the identification of new therapeutic stra-

tegies. Recent advances in technology may help bring these

‘‘live’’ biopsies directly into the laboratory for interrogation (Liu

et al., 2012). Such models could be interrogated by high-

throughput shRNA and drug screens to identify novel therapeu-

tic approaches to overcome resistance (Figure 3).



Figure 4. Targetable Alterations in Residual Breast Cancers after
Neoadjuvant Anti-HER2 Therapy May Identify Actionable
Mechanisms of Drug Resistance
Systemic neoadjuvant anti-HER2 therapy reduces or eliminates the primary
HER2+ tumor as well as micrometastases (top row). We propose that ‘‘drug-
resistant’’ residual cancers in the breast after neoadjuvant therapy harbor
targetable genomic alterations causally associated with resistance to HER2
inhibitors. Molecular profiling of these residual tumors should identify these
genomic alterations. Further, patient-derived xenografts (PDXs) generated
with these residual cancers can be used to test novel combinations with ac-
tivity against these drug-resistant cancers that can be later applied to patients
on an individual basis. Drugs that target novel mechanisms of resistance
identified in the residual tumors can be examined in subsequent neoadjuvant
trials (bottom row).
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In addition to profiling of metastatic recurrences, the in-

creasing use of neoadjuvant anti-HER2 therapy in patients with

newly diagnosed HER2+ breast cancers provides a novel plat-

form for discovery of mechanisms of resistance and tumor het-

erogeneity. At least two studies have shown that some patients

with HER2+ tumors convert to HER2� after neoadjuvant trastu-
zumab and chemotherapy, and these patients exhibit a shorter

relapse-free survival compared to those with residual tumors

that remain HER2 amplified (Hurley et al., 2006; Mittendorf

et al., 2009). These results suggest, first, that with heterogeneity

in HER2 overexpression in the primary tumor, the antioncogene

therapy eliminates the HER2-dependent compartment and en-

riches for HER2-negative clones. Second, patients with HER2+

tumors that change to HER2� upon primary anti-HER2 therapy

are at a high risk of early recurrence. This neoadjuvant approach

facilitates interrogation of the drug-resistant cancer and the

identification of targetable mechanisms potentiallly driving sub-

sequent metastatic recurrences (discussed below).

Innovative Trial Designs

For both HER2- and EGFR-driven cancers, it is becoming

apparent that new treatment paradigms will be necessary to

lead to durable remissions or even cures. Ultimately, we posit

that combination therapies will be needed and that it is more

rational to consider a proactive regimen that employs alternating

regimens of combinations that eliminate cancer cells before they

adapt and become resistant rather than treating cancers after

the development of clinically overt resistance. However, the

large number of potential resistance mechanisms will most likely

necessitate the use ofmore drugs thanwill be tolerable if they are

all delivered simultaneously and each drug is dosed to achieve

continual target suppression. In the development of combina-

tions, the use of mutant specific inhibitors will be highly attractive

components because of their greater therapeutic windows.

However, even with such an approach, given the large number

of potential resistance mechanisms, it may become necessary

to use even more-creative approaches to proactively kill the

various resistant clones as they emerge. In the future, we envi-

sion developing regimens that rotate and intercalate tolerable

combinations to prevent or substantially delay the development

of resistance. In particular, regimens that include immuno-

therapy and other disparate approaches may be needed.

In breast cancer, the increasing use of neoadjuvant therapy

lends itself to some innovative possibilities to develop novel

therapeutic regimens, accelerate drug approvals, and discover

mechanisms of drug resistance. Achievement of a pathological

complete response (path CR) in the breast and axillary lymph

nodes after neoadjuvant trastuzumab or chemotherapy has

been associated with improved long-term outcome (Gianni

et al., 2010; Liedtke et al., 2008). Because of this association,

the FDA recently proposed that randomized neoadjuvant

trials can be considered for accelerated drug approval using

path CR as a surrogate that is ‘‘reasonably likely to predict

longer term benefit,’’ at least for some subtypes of breast

cancer, particularly the HER2+ subtype (Prowell and Pazdur,

2012). Recently, the FDA approved the HER2 antibody pertuzu-

mab as neoadjuvant treatment in patients with HER2+ early

breast cancer (http://www.fda.gov/NewsEvents/Newsroom/

PressAnnouncements/ucm370393.htm). This approval was

based on the results of two neoadjuvant studies, NeoSphere

and TRYPHAENA, where the combination of pertuzumab and

trastuzumab was superior to trastuzumab alone. The potential

impact of this recommendation is quite transformative, as it

can accelerate the approval of novel and effective combinations.

Further, the early delivery of these anti-HER2 combinations to

patients with treatment-naive HER2+ tumors should at least
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partially trump acquired drug resistance. The use of the preoper-

ative therapy setting as a clinical research platform in which

novel combinations and regimens can be compared and triaged

using path CR as a clinical endpoint predictive of long-term

outcome has been discussed recently (Bardia and Baselga,

2013).

Another benefit of a preoperative approach is that, except for

patients who experience a complete response, tumor tissue is

always available at the time of surgery. These ‘‘drug-resistant’’

residual cancers should harbor mechanisms and/or biomarkers

of resistance to the primary therapy and, potentially, a similar

molecular profile to that of drug-resistant micrometastases that

can be interrogated with massive parallel sequencing of DNA ex-

tracted from the mastectomy specimen (Balko et al., 2012,

2014). Thus, we propose that ‘‘drug-resistant’’ HER2+ residual

cancers in the breast harbor targetable genomic alterations

causally associated with resistance to neoadjuvant anti-HER2

therapy (Figure 4). Molecular profiling of these residual tumors

should identify these alterations. In addition, patient-derived xe-

nografts generated with these residual cancers can be used to

test novel combinations with activity against these drug-resis-

tant cancers that can be later applied to patients on an individual

basis. Drugs that target novel mechanisms of resistance identi-

fied in the residual tumors can be examined in subsequent

randomized neoadjuvant trials. In the future, we anticipate that

tumor types other than HER2-overexpressing breast cancer

could also effectively utilize neoadjuvant trials to accelerate

drug development and discover mechanisms of resistance.

Conclusions
Ultimately, to cure ERBB-dependent cancers, we will most likely

have to incorporate therapeutics that are toxic to cancer cells via

mechanisms that are not solely based on suppressing ERBB

signaling, the associated bypass tracks, and antibodies target-

ing ERBB receptors to induce ADCC. The timing of treatment

may also make a difference. For example, deploying ERBB-tar-

geted combinations early in the natural history of these cancers,

i.e., in the adjuvant setting to treat micrometastatic subclinical

disease, may yield better outcomes than treating patients with

metastatic disease, where the effect will not be curative. We

feel that optimizing the timing and intensity of this approach

will provide substantial clinical benefit to patients and will serve

as the foundation for incorporating complementary, indepen-

dent therapeutic strategies that may ultimately lead to highly

durable responses and further cures.
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