
ELSEVIER Artificial Intelligence 76 (1995) 481-526

Artificial
Intelligence

A multivalued logic approach to integrating
planning and control

Alessandro Saffiotti *, Kurt Konolige, Enrique H. Ruspini
ArtQicial Intelligence Centec SRI International, Menlo Park, CA 94025, USA

Received 15 July 1993; revised 18 March 1994

Abstract

Intelligent agents embedded in a dynamic, uncertain environment should incorporate capabilities
for both planned and reactive behavior. Many current solutions to this dual need focus on one
aspect, and treat the other one as secondary. We propose an approach for integrating planning and
control based on behavior schemas, which link physical movements to abstract action descriptions.
Behavior schemas describe behaviors of an agent, expressed as trajectories of control actions in
an environment, and goals can be defined as predicates on these trajectories. Goals and behaviors
can be combined to produce conjoint goals and complex controls. The ability of multivalued
logics to represent graded preferences allows us to formulate tradeoffs in the combination. Two
composition theorems relate complex controls to complex goals, and provide the key to using
standard knowledge-based deliberation techniques to generate complex controllers. We report
experiments in planning and execution on a mobile robot platform, Flakey.

1. Introduction

Mobile robots are becoming increasingly sophisticated and autonomous, and we de-
mand more intelligent behavior from them in complex environments. To meet these
expectations, we must address a set of problems associated with real-world environ-
ments: knowledge of the environment is partial and approximate; sensing is partial and
noisy; the dynamics of the environment can be only partially predicted; and an agent’s
hardware execution is not completely reliable. Classical AI planning approaches to these
problems are inadequate, especially in providing realtime decision-making and control
for the robot. On the other hand, purely reactive systems of control (e.g., [6,9,13,17]) ,

* Corresponding author. Current address: IRIDIA, Universitk Libre de Braxelles, 50 av. Roosevelt CP 194/6,
B-1050 Brussels, Belgium. E-mail: asaffio@ulb.ac.be.

0004-3702/95/.$09.50 @ 1995 Elsevier Science B.V. All rights reserved

SSDI 0004-3702(94)00088-3

482 A. sajiotti et al./Artijicial Intelligence 76 (1995) 481-526

while providing immediate response to unpredicted environmental situations, cannot to-
tally substitute for planned behavior in solving complex tasks (for example, by d&ding

not to carry an oil lantern downstairs to look for a gas leak [131.)

One solution to the dual need for planning and reactivity is to adopt a two-level

model: at the upper level, a planner decides a sequence of abstract goals to be achieved,
based on the available knowledge; at the lower level, a complex controller achieves these
goals while dealing with the environmental contingencies (e.g., [3,10,14,27,30]). The

controller is “complex” because it must be able to simultaneously satisfy strategic goals

coming from the planner (e.g., going to the end of the corridor), and low-level “innate”

goals (e.g., avoiding obstacles on the way). It is the controller’s job to produce physical
movements that satisfy these goals to the highest degree possible. Thus, the two main

challenges to developing a complex controller are trading off between multiple goals,

and bridging the gap between abstractly specified goals and physical movements.
A reasonable approach to complex control is to decompose the problem into small

units of control, each of which implements one specific motor skill, and results in a

certain type of physical movement [2,6 1. In the psychological literature, the concept of
coordinated activity directed at a particular goal has been given the name schema Arbib
and his colleagues have exploited the schema concept to model brain functioning and
robot control. For example, Arbib and House [l] describe how schemas can account for

the prey-seeking and obstacle-avoidance behavior of frogs. Each of these two task-level
goals is represented as a potential field attracting or repelling the frog; the combination

of the fields describes the movements of the frog towards the prey and away from
obstacles. Further extensions of this idea to robot control were investigated by Lyons

and Arbib [241, Overton [291, and Arkin [31 under the name motor schema.
Arbib’s motor schemas give an answer to trading off among multiple goals, by pro-

viding a modular decomposition of complex control problems. They do not, however,

try to answer the second challenge above, of bridging the gap between symbolically

specified goals and low-level physical movements. In this paper, we develop a com-
positional approach to behavior, based on the mathematics of multivalued logic, that

directly connects to higher-level planning and deliberation processes. The starting point

of our approach are very close to those of Arbib’s. In fact, one can view our ap-
proach as a mathematically-motivated reconstruction of motor schemas, using the tools

of multivalued logic. The advantages to this formalization are the following.
l Behaviors are described in terms of preferences among control actions. Hence, mul-

tiple behaviors can be composed mathematically as a means of trading off between

their goals -a more powerful form of coordination than the linear superposition used

in motor schemas.
l The concept of a goal as a predicate on the trajectory produced by the controller

arises naturally, and bridges the gap between physical movements and more abstract
descriptions of action.

. Complex goals can be achieved by composing their respective behaviors. Thus, stan-
dard deliberation procedures, such as goal-regression planning, can be used to generate

complex controllers.

A. Sajjiotti et al./Ariifcial Intelligence 76 (1995) 481-526 483

I. 1. Outline of the approach

We develop the theory of behavior in a bottom-up fashion, describing movements at

the following levels of abstraction:

bodily movement straighten elbow joint
+ execution in a specific environment put arm out car window
=+ goal satisfaction signal left turn

This way of connecting movements, actions and achievements has been inspired by
the work of Israel et al. [161. Formally, we use the framework of multivalued logics

[23,321, which allows us to express partial preferences and to combine them by using

logical operators [5,351.
The basic units of control, control schemas, are descriptions of types of movements.

Control schemas define the agent’s basic movement capabilities, like making a step or

aiming the camera to the right. Like classical controllers, control schemas relate internal
states to effector commands. However, control schemas are less committal than classical

controllers in that they map each state to a measure of preference, or desirabilityfunction,
over the space of all possible commands. The idea here is that different commands can
generate, to a greater or lesser extent, the same type of movement. Desirability functions

are represented by predicates in a multivalued logic.
We compose control schemas by combining the corresponding desirability functions

via the operators of multivalued logics. For instance, we can compose control schemas to
obtain a movement that will, under some conditions, satisfy the desirability functions of

both behaviors. Care must be taken, however, when the control schemas are conflicting,
that is, they have no common preferences. For example, if a robot is facing an obstacle

blocking a corridor, an obstacle avoidance control schema may want to stop, while a

corridor following schema may want to go forward. In general, we associate each control
schema with its own context of applicability: e.g., when the corridor is blocked, plain

corridor following cannot be used, and its preferences should be disregarded. We express

contextual conditions by using formulae of a multivalued logic; and use the degrees of
truth of these formulae to weight the preferences of different schemas. This weighted
combination, called context-depending blending, is the main coordination mechanism
for control schemas.

Control schemas operate with respect to the agent’s internal state, including its sensor

readings. Planners, on the other hand, manipulate action descriptions that contain rep-

resentations of objects in the world, e.g., picking up block “A”. To reconcile these two
levels of abstraction, we insert some parts of the planner’s model into the controller,
e.g., the expected size and position of the intended block. These object models, or de-
scriptors, are then used as input to control schemas, “lifting” the effects of the controller
to the level of abstraction used by the planner. To maintain a closed-loop response, we

keep track of these objects during execution, by polling perceptual routines to keep

the descriptors anchored to their real-world correspondent. A control schema, together
with a set of object descriptors and a contextual condition, is packaged into a behavior.
Behaviors play the role of situated actions: they indicate which movement should be per-
formed under which circumstances and with respect to which objects. Behaviors bridge

484 A. S@otti et al. /Art@cial Intelligence 76 (1995) 481-526

the gap between abstract action descriptions and physical control. They are inherently
movement-oriented, since their control schema induces a preference on control actions;
but they also incorporate elements of abstract action: the objects that the action operates
on, and the preconditions for the success of the action.

Our final step is to link the local notions of sensing and control embodied in behaviors
to the global notion of satisfaction of goals. To do this, we adapt some ideas from
dynamic logic to our multivalued framework. We define the meaning of a behavior to be
the (fuzzy) set of all possible executions that it can produce, expressed as trajectories
in the space of states. Then, goals can be defined as predicates on the trajectories. We
relate behaviors to goals by defining the central notion of goodness of a behavior for a
goal: any execution of the behavior under its contextual condition will satisfy the goal.
For example, suppose B(a) is a behavior for picking up a block a. We can show that
it accomplishes this goal under circumstances C if the predicate Grasping(a) is true
of every trajectory of B(a) in every environment where C is true. In fact, this is a
uniform way to describe not only goals of achievement, but also goals of maintenance
and prevention.

Behaviors can be combined to form complex controllers. If we could prove that
the composition of behaviors accomplishes a corresponding composition of their goals,
we could use techniques for reasoning about actions and goals to generate complex
controllers. In fact, under certain hypotheses of consistency and stability, we are able
to prove two theorems that relate composed behaviors to composed goals. First, if two
behaviors are individually good for two goals Gr and G2, then their conjunction is
good for the conjunctive goal Gr fl G2. Second, if a behavior B is good for G under
the circumstances C, and B’ is good for bringing C about whenever in C’, then the
chaining of B and B’ is good for G under the more general circumstances C U C’.

We now have all the element we need to reason about behaviors and their composition.
Behaviors bring with them a specification of their preconditions (the context) and their
postconditions (the goals they are good for) ; and they can be combined with classical
composition operators, like conjunction and chaining. Thus, we can reasonably expect to
be able to use standard planning techniques, and existing planning systems, to generate
complex combinations of behaviors that satisfy given goals. This is indeed the case, and
we end the paper by showing how we can use use deliberation processes based on goal
regression and goal reduction to generate complex controllers. We emphasize that we
do not propose here any novel planning technique: our aim is to show that multivalued
controllers can be generated by the existing ones.

1.2. Experiments on a mobile robot

We have tested the proposed methodology extensively on indoor robot navigation
problems, using a mobile robot testbed called Flakey. To make our approach more
concrete, we use this testbed throughout the paper, by showing runs and discussing
implementations choices. Our experience on Flakey indicates the effectiveness of the
discussed methodology, and the ease of incorporating different types of deliberation
processes.

A. Sajiotti et al. /Artijcial Intelligence 76 (1995) 481-526 485

1.3. Plan of the paper

The next section discusses our multivalued logic approach to defining complex con-

trollers, and introduces the notions of control schema, context, trajectory, and context-

depending blending. In Section 3, we consider the perceptual embedding of the agent,

and define behavior schemas and their three combination operators: conjunction, blend-
ing, and chaining. Section 4 completes the formal construction by introducing the notions

of a goal and of goodness of a behavior for a goal, and presenting the composition the-

orems. In Section 5, we exploit the results of the previous sections and show how we
can reason about behaviors and generate complex controllers using standard planning

techniques. Finally, Section 6 compares our method to other related approaches. An

extended version of this paper is available as [381.

2. Moving

We start our construction from the description of the physical movements of an agent.

We describe elementary movements, like stretching an arm or rolling forward, by struc-
tures called control schemas. Then we turn our attention to the execution of movements,

and study the set of all possible executions, or trajectories, of a control schema. Finally,
we show how to compose multiple control schemas to describe complex movements, and

give some theorems that relate the trajectories of a combined control schema to those of

its components. To make things more concrete, we illustrate the formal definitions by
examples taken from our mobile robot, Flakey. First, some background on the formal
tools that we use.

2.1. Multivalued logics

Throughout this paper, we use the framework of multivalued logics [23,321. There are
two main reasons for this choice. The first one is technical: by representing degrees of

truth on a numeric scale, multivalued logics provide an ideal framework to merge notions
taken from the world of planning, typically expressed in symbolic terms, with notions

taken from the world of control, typically expressed in numeric terms. The second
reason is semantic. Multivalued logics can be viewed as logics of graded preference
[3 1] where we interpret the truth value of a proposition P in a world as the utility, or
desirability, of being in that world from the point of view of P [$35,361. Accordingly,

we use propositions to represent control strategies and goals, and logical connectives to
combine them.

Let L be a propositional language, S a set of states, and TV : C x S -+ [0, 1] a
function that assigns a truth value in [0, l] to each atomic proposition in each state. We
extend TV to non-atomic propositions by the equations

486 A. Sajiotti et al./Arti&ial Intelligence 76 (1995) 481-526

TV(+s) = I- TV(P,s)
TV(PAQ,S, = TV(P,s) @TV(Q,s)
TV(PVQ,s) = TV(P,s) @TV(Q,s) (1)

TV(P + Q, s) = TV(Q, s) 0 TV(R s)

where 0 is any continuous triangular norm, or t-norm, with quasi-inverse 0, and @ is

any continuous t-conorm.
T-norms, the quasi-inverse, and t-conorms are used as a generalization of logical

conjunction, implication, and disjunction, respectively [42,45,46] . Mathematically, a

t-norm is any binary operator on [0, 1] that is commutative, associative, non-decreasing
in each argument, and has 1 as unit; a t-conorm has the same properties but has 0 as

unit. Given a continuous t-norm 0, its quasi-inverse 0 is defined by

x 0 y = sup{w E [O, 11 I OJ c3 y < .x}.

Note that, for any 0, y = 0 implies x 0 y = 1 and y = 1 implies x 0 y = x.

Example 1. The following are examples of t-norms and t-conorms.

(4 min(x, Y) max(x, y>
1 ifxay,
x otherwise

tb) XY x+y-ny mintx/y, 1)
(c) max(x+y- 1,O) min(x+y,l) min(x-y+l,l)

The operators in (a) are the ones we use in our robot, Flakey. Notice that if we restrict

truth values to be either 0 or 1, the conditions (1) reduce to classical logic for any

choice of 0, $ and 0.

Given a proposition P, we are often interested in the set of states of S where P holds,

denoted by [PI. As truth values are numbers in [0, 1] , the membership of any state s
to [[PI is a matter of degree. We measure this degree by the membership function flp]

defined by

.f~pl ts) = TV(P, ~1.

Graded sets of this type are commonly known as fuz,zy sets [491. For notational sim-

plicity, and when there is no risk of ambiguity, we denote the fuzzy set [Pl] simply by
P, and write P(S) for f[p] (s). We define complement, intersection and union of fuzzy

sets based on the equations (1) above as follows:

P(s) = 1 -P(S)

tP nQ><s> = f’(s) @Q(s)
(P u Q>(s) = f’(s) CD Q(s)

We also define set inclusion by

P i Q iff P(s) 6 Q(s) for all s in S.

(2)

A. Safiotti et al./Artijicial Intelligence 76 (1995) 481-526

(a) (b)

Fig. 1. Values of D(s, a) for two control schemas: (a) Follow; (b) KeepOff.

487

If we use the operators (a) in Example 1, these operations correspond to those originally

defined by Zadeh [491.
In what follows, we sometimes refer to a proposition P as a desirability function on

S to emphasize the interpretation of P(s) as the desirability of being in state s from

the viewpoint P. We routinely use the 8, $ and 0 operators to combine desirability
functions. The reader should keep in mind that @I is meant to capture the notion of

conjunction, @ the notion of disjunction, and 0 the notion of implication (right to left).

We also use the sup (least upper bound) and inf (greatest lower bound) operators to
capture the notions of existential and universal quantification, respectively.

2.2. Control schemas

Consider an agent with a set S of possible internal states, and a set A of (atomic)

control actions. A control strategy for this agent is generally defined by a function
that produces, in each state, a control action. To define generic types of movements-
movements that can be instantiated in several ways depending on the circumstances of

execution -we need to be less rigid. For concreteness, consider the type of movement
“take a step”. We may well have an archetype of the ideal step, but when we take a step

on a muddy road we may perform a movement that only vaguely meets this archetype;
still, this inelegant maneuver is probably the best choice available in that situation, and
we want our definition of “take a step” to account for it. We extend the notion of a
control strategy to produce, in each state, a value of desirability of each possible control.

Definition 2. Let S be a set of states, and A a set of control actions. A control schema
on S and A is any function

D:SxA-+ [O,l].

Intuitively, the value of D(s, a) measures how much executing a in state s is desirable

from the viewpoint of performing that type of movement.

Example 3. Fig. 1 illustrates two control schemas. In (a), we consider a control
schema, called Follow, for proceeding within a given “lane” (represented by the double
lines); (b) refers to the Keep-Off control schema, intended to stay away from a given

488 A. Sufiotti et al./Art@cial Intelligence 76 (1995) 481-526

spot. The picture is a representation of the current state s, with the agent being located
at the small dot. Each vector indicates a possible turning direction a: the length of the

vector is proportional to the desirability D(s, a).

Note that the control actions in A are meant to be directly executable low-level
commands. In the case of our robot Flakey, the elements of A are the turning and

velocity control values to be sent to the wheel effecters at each control cycle (100
msec) .

2.3. Trajectories

A control schema is a local notion: it tells us the desirability of control actions at
each state. In order to get a more global view of movements, we introduce the concept

of a trajectory. This notion is essential in relating movements to goals in Section 5.

Definition 4. Let S be a set of states. A trajectory on S is a finite, nonempty sequence

of elements of S. The set of all trajectories on S is denoted by I(S). We also denote
by 7, (S) the set of trajectories of length at least K

We take trajectories on S to represent complete executions of movements, and (fuzzy)
sets of trajectories to represent types of movements. For example, an agent’s hand can

follow an infinite number of paths when the agent stretches its arm, and all these

trajectories are instances of the type of movement “stretch an arm”. Accordingly, we

characterize the type of movement defined by a control schema D by the set of its
possible executions, that is, the set of trajectories produced by always executing control
actions that are desirable according to D.

Formally, we proceed as follows. First, we assume that we are given a function

M:SxAxS+[O,l]

such that M(s, a, s’) measures how possible it is that s’ is the state resulting from the

execution of action a in state s. In general, we expect M to account for the agent’s
physical capabilities and constraints, for the known environmental features, for the

uncertainty associated with effector failures or interference of other agents, and so on.

For example, robots have bounded acceleration, so any two successive states in which
the velocity increases too much cannot be in an admissible trajectory. Obviously M can
be a very complicated relation, especially for nonholonomic robots; its main job here is

to allow us to abstract from the details of robot motion.
Given a control schema D, we measure the possibility that an execution of D produces

a transition from a state s to a state s’ by

NextD(s,s’) =sup[D(s,a) @M(s,a,s’)].
&A

(3)

Recalling our intended reading of the sup and @ operators, we can interpret (3) as
saying that (s, s’) is a possible state transition for D to the extent that there exists some
action a that is both desirable for D in s. and it leads from s to s’.

A. Sajiotti et al./ArtiJcial Intelligence 76 (1995) 481-526 489

Finally, we look at the set of trajectories whose transitions are all possible for D. We
call these trajectories desirable for D.

Definition 5. Let D be a control schema. The set of desirable trajectories of D is the

fuzzy set on ‘T(S) defined by

Trajo (t) = inf N.%tD (S;, si+l) .
Q<i<k

where t = (s&St,. . .,sk), k > 0.

The set TrajD fully characterizes a control schema D, and we take this set to be the
meaning of D. This is similar to the approach taken in dynamic logic, where a program

is associated with the set of its possible executions. Segerberg [43] and Israel, Perry
and Tutiya [161 analyze movements and actions in similar terms.

2.4. Implementation of control schemas

A control schema is a descriptive device. Any implementation of a control schema D
must select, at each state, one control action to send to the effecters. We represent such

an implementation by a control function

Selecting actions by the Fo function corresponds to choosing and following one of the
desired trajectories, i.e., to execute one particular movement of type D. Of course, we
would like to choose the “best” trajectory. This is an intractable search problem, as
the size of the state space grows exponential with its dimensionality. Similar problems

occur with potential field methods (see Section 6). There are many different approximate

search methods that could be employed to find candidate trajectories. We have built an
implementation of control schemas for our mobile robot Flakey by using techniques
based on fuzzy control [34,39,40]. A control schema D is encoded by a set R of fuzzy
rules of the form

IF Pi THEN Ai, i= l,..., n,

where each Pi is a proposition in multivalued logic, and each Ai is a fuzzy set of control
actions. From these fuzzy rules, a desirability function DR can be computed by

D,y(S,U) = SUP min(Pi(s),Ai(a)).
I Qi<n

(4)

Intuitively, DR says that a is a desirable control in s if there is some rule in R that

supports a and whose antecedent is true in s. This way of interpreting control rules is
customary in the field of fuzzy control. The process of choosing one action from this
desirability function is called defu@ication. We have used the centroid method, which

computes a desirability-weighted average control

FR(s) = .,-aD(s’a) da
JD(s,a)da ’

490 A. Safiotti et al./ArtQicial Intelligence 76 (1995) 481-526

IF (centerline-on-right A 4ane-angled-left) THEN turn-medium-right

IF (centerline-on-left A Jaw-angled-right) THEN turn-medium-left

IF (lane-angled-right A xenterline-on-left) THEN turn-smooth-right

IF (lane-angled-left A lcenterlineon-right) THEN turn-smooth-left

Fig. 2. Fuzzy rules used in Flakey to implement the Follow schema.

Fig. 3. A vector field showing the controls generated by the Follow ruleset.

For averaging to make sense, the rules should not suggest dramatically opposite actions

in the same state. Our coding heuristic has been to make sure that rules with conflicting
consequents have disjoint antecedents, Other authors have preferred to use more involved

choice functions (e.g., [481) .

Example 6. Fig. 2 shows Flakey’s rules for implementing the Follow control schema

discussed above. These rules keep the robot close to the middle of the lane (first two

rules), and approximately lined up with it (last two). Fig. 3 shows the turning controls

produced by the corresponding FR. Note that, in each state, FR only outputs one turning
control, and does not say anything about the desirability of alternatives-contrast this

with the desirability function pictured in Fig. 1 (a).

Flakey’s fuzzy rules implement a local “greedy” method, gradient descent, that is
highly reactive and simple to compute. The fuzzy rule format makes it easy to write

and debug simple control schemas, and it should also make it easier to learn or improve
schemas automatically. We have written rulesets for a dozen control schemas, including

ones for avoiding an obstacle, for crossing a door, for reaching a near location, and so
on. It is the responsibility of higher-level methods to only instantiate schemas for which
gradient descent is appropriate based on some global analysis, or to monitor schemas to
detect local minima and failure of the schema (see Section 5).

2.5. Combining control schemas

An agent is often engaged in activities requiring the simultaneous activation and
coordination of several control schemas. For instance, a robot may be going down a
hallway while avoiding obstacles and moving its camera to keep track of some landmark.
The resulting overall movement can be characterized by an appropriate combination of

A. Safiotti et al./Art#cial Intelligence 76 (1995) 481-526 491

control schemas.
Two control schemas Dl and D2 can be combined in several ways. The most basic

one is the conjunctive combination: at each state, we consider actions that are desirable

for both D1 and D2. Formally, we simply intersect the fuzzy sets D1 and D2:

(01 n &)(s,a) = Dl(s,a) @&(s,a). (6)

The disjunctive combination of D1 and 02 is defined in a similar way using U and @.

As it may be expected, the desirable trajectories of the conjunction are at most those of
each conjunct; and those of the disjunction are at least those of each disjunct.

Theorem 7. Let D1 and 02 be two control schemas. For any trajectory t in ‘T(S),

(i) TrajD,no,(t) G Trajo,(t);
(ii) Trajo,“o,(t) 3 Trajo, (t).

Conjunctive combination works well for combining control schemas that are not

conflicting; that is, in every state there is some control that is desirable for both schemas.
When they conflict, the combined desirability function would be identically zero in that

state. Unfortunately, this is more the normal case than the exception. For example, we

may want to combine a control schema for going down the middle of a corridor, and one
for staying away from obstacles. In the state where the robot is facing an obstacle, the

first schema would prefer controls that go forward, while the second one would favor
controls that turn the robot, say, right. The key observation here is that each control

schema has in general its own context of applicability, and each desirability function

should be considered only when appropriate. In the previous example, the first control
schema can be sensibly applied only in situations where the space in front of the robot

is free. When the obstacle is detected, this schema is outside its area of competence,
and we should disregard its desires.

Formally, we restrict the area of competence of a control schema to a context as
follows.

Definition 8. Let S be a set of states. A context on S is a fuzzy set of S.

The notion of context C on S may be extended to a corresponding structure in the set of
trajectories 7(S) in a natural way, i.e., a trajectory is as desirable as its least desirable

state.

C(t) = infC(s).
.SEf

Definition 9. Let D be a control schema on S and A, and C a context on S. The context
restriction of D to C, denoted Dlc, is the control schema defined by the expression

Dl’(s,a) = D(s a) 0C(s). ,

By using our interpretation of 0, we read Dlc as saying that if a state s is in the
context C, then the desirability of a control a is given by D(s, a) ; otherwise, any

492 A. SaJiotti et al./ArtQicial Intelligence 76 (1995) 481-526

Fig. 4. The restriction of the Follow control schema to the context C. Trajectories (a) and (b) are both
desirable; (c) is not desirable.

control is admissible. Mathematically, we have Dlc(S, a) = D(s, a) if C(s) = 1, and
Dlc(s,.) = 1 if C(S) = 0. Hence, action must obey D in the states inside C, and is
free outside C. Correspondingly, the desirable trajectories for D*’ are those that obey
D inside C, and are totally free outside, as shown by the following theorem.

Theorem 10. Let D be a control schema and let C be a context on S. If t is a
trajectory, then it is true that

Trujolc(t) < inf[Traj,(t’) 0C(t’)l.
t’ct

That is, for t to be desirable for DLc it is necessary that all its segments inside C be
desirable for D.

Example 11. Fig. 4 shows a lane and three trajectories. Consider the control schema
FoIIow~~. Trajectories (a) and (b) are both desirable for Follower, as they run inside
the lane whenever in C; trajectory (c) is not desirable, as it fails to follow the lane
while in C. Note that trajectory (a) would not be desirable for the unrestricted Follow.

We can combine context restriction and conjunctive combination into a general com-
bination pattern, called context-dependent blending. Each control schema is associated
with a context, meant to identify the states where the schema is competent.

Definition 12. Let D1 and D2 be two control schemas, and Cl and C2 two contexts.
The context-dependent blending of DI and D2 under Cl and C2 is given by:

Dlcl ” DlcZ
1 2 ’

2.6. Implementation of context-dependent blending

Context-dependent blending is implemented in Flakey by meta-level fuzzy rules of
the type

IFCjTHEN Rj, j=1,2 ,..., m,

where each Rj is a ruleset implementing a control schema, and Cj is a context for
R,i. Given a current state s, Flakey’s controller computes the function DRY for each Rj

A. Safiotti et al./Ar@cial Intelligence 76 (1995) 481-526 493

..- _ $
-.

-. . . -. _. -- aI --._ _:

Fig. 5. Context-dependent blending of the KeepOff and Follow control schemas.

according to equation (4) above. All the DR,‘s functions are then combined modulo the
Cj’s contexts, according to Definition 12, and the resulting tradeoff function D,,, is fed
to (5) to produce the control value F,,(s).

Example 13. Fig. 5 shows an example of context-dependent blending of the Follow
and the Keep-Off control schemas. The meta-rules used to encode the contexts are:

IF spot-close-in-front THEN Keep-Off

IF Ispot-close-in-front THEN Follow

The upper part of the picture is a geometrical representation of the internal state of
Flakey at one point during execution. Flakey is drawn in top-view heading right. The
double lines and the crossed circle represent the locations of the lane to follow and of
the spot to avoid. The lower part of the picture plots the evolution over time of the truth
value of the contexts, hence the level of activation of the corresponding control schemas
in the blending. The trajectory executed by F’lakey is desirable for the blending -in
particular, it is desirable for the restriction of Follow to the context -spot-closein-front,

as it leaves the center of the lane only when the context is false.

It is important to emphasize that an implementation of context-dependent blending
should jrst combine the component desirabilty functions, effectively forming a full
preference function, and then chose one preferred control action from the combined
function, The distinction can be seen in the following example (Fig. 6). In (a), the
desirability function DI strongly prefers any direction from -90” to 90”; 02 weakly
prefers a narrow angle from 50” to 60”. Their combination is dominated by D2, since
DI is indifferent over such a large range. Suppose now that we first summarize each
desirability function by choosing one preferred control, and then combine these controls
(b) . Notice the result is very different from (a), and does not represent the best
choice for movement. The context-dependent blending mechanism constitutes the main
technical difference between our control schemas and other methods based on a weighted

494 A. Safiotti et al./Art$cial Intelligence 76 (1995) 481-526

(b) +\ = \
Fig. 6. Combination of full desirability functions (a) and of their representatives (b) .

combination of local preferences (e.g., the potential field methods discussed in Section 6
below).

3. Behaving

In this section, we study how control schemas can be “lifted” from the level of
movements to the level of behaviors in an environment. Behaviors correspond to the
concept of situated actions, and are normally associated with the accomplishment of
goals. For example, the behavior of “following this wall” can be a way of reaching
any one of the doors in that corridor, or a way of following a person. In this section
we concentrate on developing the structure of behaviors, and the ways behaviors can
be combined, or blended, together. We also touch at issues of relating behaviors to
perception. In the next section we relate behaviors to goals.

3. I. Behavior schemas

Our approach to lifting a specification of a type of movement to a specification of a
behavior in an environment is by associating it with a context of execution and with a
set of objects to operate on. For example, consider the movement type “extending the
right arm”. If executed in the direction of a cup, and in a situation in which the cup is
within the arm’s reach, this movement will result in the production of a behavior of type
“hit a cup” (which in its turn may be a way of achieving a goal like “break a cup” or
“win a prize”). In general, we characterize a type of behavior by a behavior schema: a
specification of what movement should be performed with respect to which objects and
under what circumstances.

Definition 14. Let S be a set of (internal) states, and A a set of control actions. A
behavior schema on S and A is a triple

B = (C,D,O)

A. Safiotti et al./Arti$ciai Intelligence 76 (1995) 481-526 495

Iprior knowledge

i sensing
c...

Environment

actions 1
.J

Fig. 7. Our approach to embedding a controller in the environment.

where C is a context on S, D is a control schema on S and A, and 0 is a set of object

descriptors.

The new element in this definition is the set of object descriptors. The control schema
D and the context C operate on formal variables in the internal state, e.g., the direction
for moving the arm. If the agent has to act with respect to an external object, these
variables must reflect properties of that object, e.g., the position of the cup. We group
the variables related to an object into a partial model of the object, called an object
descriptor. ’ Object descriptors are essential to link abstract specifications of actions to
physical execution (see Fig. 7). Suppose we want to execute the action “pick up cup
A”. The identifier “cup A” does not have any meaning to the controller. So, we create a
descriptor for this cup based on properties stored in the agent’s long-term memory (e.g.,
a map), and pass this descriptor to the controller. The controller then operates in an
open-loop fashion with respect to the properties in the descriptor. Later, when the actual
cup is perceived, we use the output from the perceptual system to continuously update
the descriptor, effectively switching to a closed-loop regime. We refer to the process
of keeping object descriptors coordinated with physical objects through perception as
anchoring [371.

Example 15. The Follow control schema introduced in Section 2.4 can be used to build
a behavior schema for moving down a given corridor, provided that Flakey is in the

’ Note that each descriptor is specific to a behavior: it should include all and only the properties of the object
that are relevant to that behavior.

496 A. Sajiotti et al. /Artificial Intelligence 76 (1995) 481-526

-. >._ .

_. .. .*-- d

al

. ..-..a
.:.-. ._ -

(a) (b)

Fig. 8. Anchoring a corridor descriptor to sensor readings for corridor-following.

corridor and it is not blocked by an obstacle:

([at(Corrl) A f 1 acing(OG)], Follow(Corrl), {Corrl, OG}),

where we indicate in parentheses a dependency on (the properties of) an object descrip-
tor. The Corrl descriptor includes a lane that approximates the size and position of the
actual corridor we want to follow. OG denotes the “Obstacle Grid”, a special descriptor
used for obstacle avoidance that matches any object around Flakey. The context C is
expressed in a logical form: in any state s, the value of C(S) is computed through
simple geometrical reasoning, and from equations (1). Fig. 8 shows the internal state
of Flakey while executing this behavior. Note that the state now includes the input from
the sensors and the perceptual interpretations built from this input. In the picture, each
small dot represents a sonar reading, indicating that something has been detected at that
spot, and short segments indicate surfaces reconstructed from these readings. Initially
(a) the position of the lane is set accordingly to an internal map. When enough sonar
readings are gathered, Flakey’s perceptual routines infer the existence of two parallel
walls, marked by “w”, and a corridor, marked by “c”. This information is used to
update the Corrl descriptor (b), and Flakey’s motion now follows the actual corridor.

The last example illustrates the role of anchoring in going from a type of movement,
“go straight between two boundaries”, to a type of behavior, “follow a corridor”, by
relating the two boundaries to the perceived walls. Note that executing the same type
of movement on a road and anchoring the two boundaries to the perceived white lines
would result in a behavior of type “drive in a traffic-lane”. (See [25] for a related
approach to encapsulating behavior.)

For each descriptor d, we assume we have a function

Anchd:S+ [O,l]

such that An&(s) measures the extent to which d is anchored in state s. In most
practical cases, Anchd will be a binary function that returns either 0 or 1. Anch is
extended to sets 0 of descriptors and to trajectories in the obvious way:

Ancho(s) = inf Anchd(s) Ancho(t) = infAnchd(s).
de0 sEt

A. SaJiotti et al./Artijicial Intelligence 76 (199s) 481-526 497

We are now ready to define the meaning of a behavior. As we did for control schemas,
we identify the meaning of a behavior schema B with the set of all trajectories that
can result from executing B under the correct anchoring. We call these trajectories
admissible.

Definition 16. Let t be a trajectory in I(S), and B = (C, D, 0) a behavior schema.
The degree by which t is an admissible execution of B is given by:

.4dme(t) = TrajDlc(t) @An&o(t).

That is, a trajectory t is admissible for behavior B if the descriptors 0 are anchored
in t, and t is desirable for D whenever in the context C. By virtue of the anchoring
of the object descriptors, this trajectory in the formal domain S corresponds to an
actual trajectory in the environment. This means that we can analyze the properties of a
behavior schema by looking at its admissible trajectories AdmB. 2

We may need to know if a behavior has admissible trajectories that lie in its context.
Often, we even require that the behavior has arbitrarily long such trajectories. We
measure the satisfiablility of a behavior by the following function (recall that 7n(S)
denotes the set of trajectories of length at least n).

Sat(B) = inf sup [Adme @C(t)].
n>O EZ#(S)

(7)

3.2. Blending behaviors

Complex behaviors can be created by composing, or blending, basic behaviors, using
the context-dependent blending of desirability functions defined in Section 2. We distin-
guish three different flavors of blending, depending on how the contexts are used in the
combination.

Definition 17. Let B1 = (Cl, Dl ,OI) and B2 = (C2, D2,02) be two behavior schemas.
Then the following are behavior schemas:

CONJ[B,;&]=(Cl nC2, DI nD2, 01 UO2)

BLEND[&;&]=(Cl lJC2, DtC’ nDiC2, O1 U 02)

cHAIN[Bl; B2] = (C1 U C2, D;CL\cz n D;“, 0, u O2) .

The conjunctive operator CONJ provides the simplest form of combination: it builds
a more focused behavior schema that considers two control schemas simultaneously
in their common context. The BLEND operator builds a behavior schema by applying

’ The situation is more complex. Anchoring does not link object descriptors with external objects, but with
their perceptual images inside the agent. These images reflect the properties of tbe actual objects only as far
as the perceptual apparatus is reliable. Accounting for the reliability of perception is a difficult issue that lies
beyond the scope of this paper.

498 A. Safiotti et al./Art&ial Intelligence 76 (1995) 481-526

each component behavior in its own context. And the chaining operator CHAIN is a
special case of blending where the second behavior takes priority over the first one in

the common part of the context.

Composite behaviors are implemented in Flakey using the mechanism for context-

dependent blending of control schemas. In fact, by using min for @, any combination
of desirability functions produced by the CONJ, BLEND and CHAIN operators can be
expressed in the canonical form

Dlc’ n Dlc2 n . . . n @I,
I 2 (8)

and then be implemented by meta-rules as shown in Example 13 above.

Example 18. The simple corridor following behavior defined in Example 15 assumed

that there was no obstacle in front of Flakey. We can blend this behavior with the obstacle
avoidance behavior built around the KeepOfF control schema to obtain a composite

behavior to go down a corridor while avoiding obstacles on the way:

BLEND[(at(Corr1) A Tfacing(OG), Follow(Corrl), {Corrl, OG}) ;
(facing(OG), KeepOff({OG})]

where Corrl and OG are as in Example 15. Notice that the blended behavior applies
in the context of being at(Corrl), irrespective of there being any obstacles, that is, in
a wider context than the Follow behavior alone. This blending is implemented by the
following two meta-rules:

IF facing(OG) THEN Keep-OfF(OG)

IF at(Corr1) A lfacing(OG) THEN Follow(Corr1)

Fig. 9 shows a run of this composite behavior on Flakey. (The Sense behavior will

be discussed in the next subsection.) (1) shows Flakey’s internal state at moment (d).

(2) shows an external view of the environment where Flakey moves. (3) plots the level
of activation of the three control schemas over time. Spikes in the activation levels are

caused by noisy sonar readings. Instants (a) and (b) correspond to the two snapshots
of Fig. 8 above. Notice the new heading taken by Flakey after the corridor has been
anchored (b) . In (c) , the obstacle has been detected by Flakey’s sonar-s, and anchored
to OG. Hence, the preferences of KeepOfF begins to take over those of Follow. Later,

when the path is clear, Follow resumes full importance (d), and guides Flakey toward
the center of the hallway. The overall pattern of control is similar to the one discussed
in Example 13; however, through the anchoring of the internal variables used by the
control schemas, this control now produces an effective behavior in the environment.

Composition of behaviors plays a central role in our construction, and we will show
how we can map plans generated in some standard way into composite behaviors, and
hence into embedded controllers. However, not every composition makes sense. In par-
ticular, one should be careful that the desirability functions of two behaviors being com-
bined be mutually consistent - i.e., they do not conflict in the same context. We measure
the mutual consistency of two behaviors Bt and B2 by the value of U(CONJ[BI; B2]).
That is, Bl and B2 are mutually consistent if we can find trajectories arbitrarily long
that are admissible for both behaviors in their common context.

A. SaJiotti et al./Art$cial Intelligence 76 (1995) 481-526 499

(1)

(2)

. . . El
(a) (b)

. . ‘..

(c) ‘.’ ‘. . -
(4 0

Fig. 9. Context-dependent blending of corridor-following and obstacle-avoidance.

3.3. Behavior and perception

The object descriptors constitute a model of the real-world objects that are relevant to
the control task: the anchoring process keeps them coordinated with the input coming
from the perceptual system. In practice, we have found that the introduction of object
descriptors greatly simplifies the design of behaviors, by allowing us to decouple the
problem of control from the problems of interpreting noisy sensor data. Our behavior-
writing methodology in Flakey has been to first write small rulesets for elementary types
of movements based on simple descriptors, like follow a line, or reach a location; and
then focus on the strategies to keep these descriptors anchored to the right features in the
environment. The resulting behaviors often proved to be more robust than purely reactive
controllers. For example, our wall following behavior can produce useful movement
even when the actual wall is temporarily obscured. Intuitively, the controller follows the
generic direction marked by the wall, rather than the actual contour of the wall, and
this direction is registered from time to time through perception. Notice that anchoring
is normally recomputed many times during action execution (possibly at every control
cycle), providing a closed-loop response whenever the relevant sensor data are available.
When data are not available, e.g., when starting the behavior, the descriptors act as
assumptions originating from the last anchoring, or from prior knowledge.

There are several places where the introduction of the object descriptors and of the
anchoring mechanism helps us to better understand the points of contacts between
perception and action. A first such point of contact is focusing the perceptual system.
Gathering a full geometric picture of all the objects in the immediate environment

500 A. Safiotti et al./Artifcial Intelligence 76 (1995) 481-526

is time consuming and impractical given current computational limitations, and leads
to slow reactions in dynamic situations. However, particular behaviors may need only
part of the full perceptuat information available. As the object descriptors list all the
perceptual properties that are relevant to a given behavior, their content can be examined
by the perceptual routines to focus attention on those features of the environment that are
relevant to the behavior. A similar approach has been adopted by Arkin in his perceptual
schemas [2,3].

A second point of contact is the need of some behaviors to keep track of the anchoring
of their objects. For example, a behavior for performing some precise manipulation on
a workpiece should make sure that the workpiece has been perceived and anchored.
This can be done by including the value of An& in the context. More interestingly,
behaviors may actively try to achieve and maintain the anchoring. One way to do this
is by issuing commands to the perceptual apparatus, e.g., turning a camera or activating
an interpretation routine. Another way is by preferring movements that are helpful to
the perceptual process.

Example 19. We discuss the role of the Sense behavior in Example 18 above. It is
easier for perception to find the corridor walls if the robot moves slowly along the
corridor in a linear fashion, without turning. Over several seconds, the sonar sensors
will approximate a long synthetic aperture, and generate a reliable reading of the wall
location. The Follow control schema is designed to move fast along the midline of the
corridor: under some conditions (reflective or discontinuous walls), this may make wall
recognition more difficult. To remain anchored in these situations, the Follow schema is
blended with the following one:

(yanchored(Corrl), Sense(Corrl), (Corrl}).

When the corridor descriptor is still unanchored, as in Fig. 9(a), the Sense control
schema blends in and slows down the robot. Once the corridor is recognized by the
perceptual subsystem, as in Fig. 9(b), the context becomes false, and the Follow behavior
can proceed freely. Notice that if Corrl later becomes unanchored, e.g., because a wall
is occluded by obstacles, the Sense behavior will become active again and help Flakey
to recover anchoring.

In complex situations, simple strategies like the one above may not work, and higher-
level decision-makers must be invoked to figure out how to recover the anchoring, or
else form a new plan to achieve the desired goal (see Section 5). The advantage of
using sensing behaviors that act to maintain anchoring is that they are simple and can
be extremely reactive.

4. Goals

We now introduce goals as the final element of our construction, and study the relation
between the execution of behaviors and the satisfaction of goals. The fundamental
connection between goals and behaviors is formalized by the relation of goodness: a

A. Safiotti et al./Artijicial Intelligence 76 (1995) 481-526 501

behavior is good for a goal if, in all trajectories produced by executing the behavior in
its context, the goal holds. Additionally, we prove the main formal results of the paper,
two composition theorems: the conjunctive composition of two behavior schemas is a
complex control that satisfies the conjunct of their goals; and the chaining composition
of two behavior schemas is a complex control that satisfies the goal of the second one
in a wider context that includes the context of the first behavior. We will see in the next
section how these results can be used for means-end reasoning and planning.

4.1. Representing goals

Definition 20. Let S be a set of states. A goal on S is a fuzzy subset of the set of
trajectories I(S) .

Given a goal G and a trajectory t, we read G(t) as the degree by which t is a desirable
trajectory for the goal. Specifying goals as sets of satisfactory executions is customary in
control theory [41, but is a less common in AI approaches to planning. One advantage
of this choice is that both goals involving the achievement and goals involving the
maintenance (or, for that matter, the avoidance) of some condition can be expressed in
the same form. For example, if P and Q are (multivalued) predicates, we can define
the following goals:

ACHIEVE[P](t) =SUpP(s)
set

MAINTAIN[P](t) =infP(s)
se

(9)

(10)

ACHIEVE![P](t)= SUP inf P(Sj)
0(&k i<j<n

(11)

SEQUENCE[P,Q](t)= SUP SUP [P(Si) @Qe<Sj)] (12)
O<i<n i<j<n

where t = (so,.q,... , s,,) is any trajectory in T(S). Intuitively, ACHEvE[P] is the
goal of making P true: any trajectory that at some point makes P (partially) true is a
(partially) good trajectory for ACH~EVE[P]. MAINTAIN[P] is the goal of having P
true all the time. ACHIEVE! [P] requires that P be eventually true, and stay true until
the end of the trajectory. And SEQUJZNCE[P,Q] is the goal of making Q true after
having made P true.

Example 21. Fig. 10 gives examples of trajectories that satisfy different goals.
Trajectory (a) satisfies ACHIEvE[at(COrrl) 1, but not MAINTALN[at(Corrl)] or

ACHIEVE![at(Corrl)], because it leaves the corridor. (b) satisfies ACHlEvE[at(L)]
and MArNTAIN[at(Corrl)], but not ACHIEVE![at(L)].
goals.

It is useful to have a measure of a goal’s satis$abiZity:

Sat(G) = sup G(r),
ET(S)

(c) satisfies all of the three

(13)

502 A. Sagiotti et al./Art$cial Intelligence 76 (1995) 481-526

Cord

Ib) -

Fig. 10. Trajectories that satisfy different goals

meaning that there is some trajectory that can (partially) satisfy the goal.

We combine goals by means of the usual set-theoretic operators under the multivalued

interpretation given in Section 2.1. For example, we can express the goal of a robot that
wants to reach a certain location El while avoiding another location 22 by:

ACHIEVE[at(lt)] llMAINTAIN[+(/2)].

Conjunction of goals is a way to trade off several goals by preferring the trajectories
that best satisfy all of them. The characteristics of this tradeoff depend on the particular

t-norm employed. For example, if we use the min, we require that each of the conjuncts
be satisfied at least at the level cr in order for the conjunction to be satisfied at the level
a; and if we use the product, we allow for a decrease in one conjunct to be compensated

by an increase in the other one.
Finally, as we did for control schemas and behaviors, we introduce the notion of

context restriction to focus a goal to a certain context-for example, the goal of

avoiding obstacles only matters when there are obstacles nearby.

Definition 22. Let G be a goal on S, and C a context on S. The context restriction of

G to C, denoted GIC, is the goal defined by

GIC(t) = inf[G(t’) 0C(t’)].
f’Q

In words, the goal GiC is satisfied by any trajectory that satisfies G whenever it is inside

c (and moves freely outside).

4.2. Behaviors and goals

Executing a behavior may be a good way for satisfying some goals, and not others.

In general a single behavior may satisfy more than one goal- for example, a wall-
following behavior can achieve the goal of being at any given position in a corridor.
We introduce the central notion of goodness to relate goals and behaviors. A behavior

is good for a goal if any admissible trajectory of the behavior, in context, satisfies the

goal.

Definition 23. Let B = (C, D, 0) be a behavior schema, and G a goal. The goodness
of B with respect to G is defined by:

A. Safiotti et al. /Artificial Intelligence 76 (1995) 481-526 503

Good(B, G) = sup inf [GLC (t) 0 AdmB (t) I.
n>O fEI,(S)

Recalling the reading suggested in Section 2.1, we can re-write Definition 23 in a
non-multivalued form as follows:

Good(B,G) iff 3n > 0 [Vt E %(S) (Adme > Cl”(t))].

Thus, B is a good behavior for G if there is a number n such that any admissible

execution of B that is longer than n satisfies G. The reason we disregard short trajectories

is that they may not give the behavior enough time to accomplish G. For example, a

one-step trajectory will obviously fail to satisfy the goal to reach a point distant from

the agent, although it may be going in the right direction.
The subtle part of this definition lies in the interaction of the contextual conditions of

B with the goal predicate..Recall that a trajectory is admissible for B if it is anchored

and it follows the control schema D whenever in C (Definition 16). When a trajectory
is out of the C context, any control is admissible, and the trajectory can vary arbitrarily.

These trajectories are indifferent to the restricted goal G*‘. However, if some part of a

trajectory enters the context, then this part must obey D; the definition above requires
that this part also satisfy G. Hence, a behavior B is Good for a goal if, for every possible

execution of B, either the context is never entered (or never entered long enough), or
G is satisfied. s The following theorem formalizes this reading of Good.

Theorem 24. Let B = (C, D, 0) be a behavior schema, and G a goal. Then, Good(B, G)
2 (Y iJ; and only iJ there is a positive integer N such that, for any trajectory t of length
greater than N,

Adms(t) @C(t) 6 G(t) 8 a.

One consequence of our definition of Good is that we should not expect a behavior

to work when its contextual conditions are unsatisfied. This is reasonable, as behaviors

are always built to work under a given set of assumptions. Unfortunately, this implies
that there is no way in general to guarantee that a behavior will reliably satisfy a goal

in any environment: we can always imagine a malign environment that keeps an agent
from staying in the context long enough, and hence from achieving the goal. What this

means in practice is that, to be successful in dynamic environments, an agent needs to
have behaviors that work in very general contexts, and/or the ability to change behavior

if it goes out of context. We will come back on these issues in the next section.
Finally, we note two useful monotonicity properties of Good.

Theorem 25. Let B = (C, D, 0) and B’ = (C’, D, 0) be two behavior schemas, and
G,G’ be two goals. Then, if C’ C C and G c G’

(i) Good(B,G’) 2 Good(B,G)
(ii) Good(B’, G) 2 Good(B, G)

3 Interestingly, this notion is similar to that of goal in Cohen and J_evesque’s theory of intention [71: an

agent keeps a goal until it is achieved, or until it is impossible. It has the same consequence: it is impossible

to say whether a good behavior will ever actually achieve the goal.

504 A. Safloni et al. /Ar@cial Intelligence 76 (1995) 481-526

That is, goodness is preserved by relaxing the goal and by restricting the context. In
the rest of this section, we will show how to build behaviors that are good for stronger
goals and in larger context.

4.3. Compositionality

We know from the last section how to build complex behaviors by composing simpler
ones. An important question is whether our composition operators preserve, in some
way, the goodness of the component behaviors.

Theorem 26 (Conjunction of behaviors). Let B1 and B2 be two behavior schemas,
and GI , G2 be two goals. If Good(B1, GI) 2 LT and Good(B2, G2) > fl, then

Good(CONJ[BI; B2], Gl fl G2) b min(cw,P>

where n is taken with respect to the mint-norm.

Theorem 26 tells us that we can build behaviors that address more goals simulta-
neously by conjoining behaviors that are good for the individual goals. As a typical
example, a behavior for following a wall can be joined with a behavior for going fast
(e.g., one that always prefers high speeds) to obtain a behavior to follow a wall quickly,

It is important to note that Theorem 26 only says that the conjoint behavior is good for
the conjoint goal: it does not guarantee that either conjunction make sense. In practice,
when conjoining behaviors, we should make sure that two consistency conditions are
verified. First, that the goals are mutually consistent, that is, the value of Sat(G1 n G2)

is “reasonably” close to 1. For instance, suppose G1 and G2 are the goals to reach
two far apart locations. Then, G1 n G2 is empty, and promoting this goal will fail to
promote each of the two conjuncts individually. The second condition is that the control
strategies of the two behaviors should not interfere. Consider a room with two doors,
and two behaviors, B1 and B2, for entering through the different doors. Each behavior
is individually Good for its own goal, hence, the conjoined behavior CONJ[Bl; Bz] is

Good for the conjunction of the two goals, that is, entering the room. Unfortunately,
there is no trajectory that is admissible for both B1 and B2, and the behavior cannot
work properly. This situation can be detected by measuring the mutual consistency of
the two behaviors, given by Sat(CONJ[BI; B2])) . Mutual consistency can be analyzed
when designing (or planning) a combination; or it can be monitored during execution

(see Section 5). The following theorem gives a necessary condition for consistency that
can be tested at planning time: if BI falsifies the context of Bz, then B1 and B2 are

inconsistent.

Theorem 27. Let B1 = (Cl, Dl, 01) and B:! = (CT, D2.02) be two behavior schemas.
If Good(BI, ACHIEVE[X2]) > (Y then Sat(CONJ[Bl; Bz]) Q l/2 0 a. Moreover; if
a > 0, then Sat(CONJ[BI;&]) < 1.

The conjunction theorem allows us to build behaviors that satisfy stronger goals in a
narrower context. We would like to also have a means of satisfying a goal in a wider

A. Sajiotti et al. /Artijcial Intelligence 76 (1995) 481-526 505

context. Chaining of behaviors can provide this: if the first behavior in the combination
achieves (according to the (9) above) the context of the second one, the two behaviors
cooperate to satisfy the goal of the second behavior in the union of the individual

contexts.

Theorem 28 (Chaining of behaviors). Let BI and B2 be two behavior schemas, and
G a goal. Then, if Good(BI , ACHIEVE[CZ]) 3 LY and Good(B2, G) 2 p, then

Good(CHAIN[B1;B2], G’) b min(a,/?),

where G’ = GICZ U SEQUENCE[C2, Cl 1, C2 is the context of B2, and U is taken with
respect to the max t-conorm.

That is, given the goodness hypotheses, CHAIN[BI ; B2] is a good behavior for G
(actually, G’ - see below) under the more general context C;! U Ct : intuitively, we use
BI whenever in Ct\C2 to reach the context C2 of B2; and then use Bz to satisfy G. What
this means in practice is that behavior chaining can be correctly used as a means for

extending the effectiveness of the agent’s motor skills beyond their (normally limited)

context.
There is a technical caveat here. The chaining theorem says that CHAIN[BI ; B2] is

Good for the disjunctive goal G’. The first component of G’ is the restriction of G to
the context C2: only the parts of the execution that are in C2 are requested to satisfy

G. As B1 makes sure that the C2 context is eventually entered, this corresponds to the
goal of eventually satisfying G. For example, suppose a robot that has a behavior B:! to

maintain a fixed temperature in a room by switching a heater on and off, B2 requires
the robot to be in the room. If B1 is a behavior for moving to the room from anywhere
in the house, then CHAIN [B, ; Bz] will be a good behavior for eventually fixing the
temperature in the room if the robot is anywhere in the house.

Making sure that the behavior enters the context C2 is not enough to guarantee that

it will satisfy G: the behavior should also remain in C2 long enough (the n parameter

in the definition of Good). One way to guarantee this is to require that B1 be good for
the stronger goal ACHIEVE! [C2] , but this may be unrealistic in some domains-it is
unrealistic for many robot navigation behaviors. If we require simple achievement, there
is no way in general to guarantee that trajectories will not go systematically out of C2.

If a trajectory stays in the context Ct U C2 of the chained behavior, however, there are
only two possibilities: it keeps oscillating between Cl and C2; or it satisfies G. This is

the meaning of the second component of G’: admissible trajectories either satisfy G, or
go back to Ct. Oscillatory behavior can be difficult to detect and to avoid. The following
theorem gives a necessary condition for stability that can be tested at planning time: if

each behavior promotes the context of the other one, their chaining will oscillate.

Theorem 29. Let Bl, B2 be two behavior schemas, and Cl, C;! their contexts. If
Good(Bl , ACHLEVE$ CZ] > > a and Good(B2, ACHIEVE [Cl]) > p, then

Goo~(CHAIN[BI;B:!I, SEQLJENCE[C;!,C1]) > min(cY,p).

506 A. Sajjiotri et al./Arl@cial Intelligence 76 (1995) 481-526

‘;” t: 8 Follow(Corr-1) Cross(Door-5)

Fig. 11. A robot in an office environment. The dashed areas indicate the contexts of the Follow and the Cross
behaviors.

Example 30. The following example illustrates chaining in practice. Consider the situ-

ation in Fig. 11, where Hakey, sitting in corridor Corr-1, needs to reach room Room-5.
Flakey has a control schema, called Cross, that results in crossing a door if applied

when the robot is near to that door. That is, the following behavior schema is a good
behavior (at some level, say 0.8) for the goal ACHIEvE[at(Room-5)]:4

BI = (near(Door-5), Cross(Door-5), {Door-5))

where the Door-5 object descriptor is kept anchored to Door-5. Unfortunately, the context
of B1 is not general enough to include the present situation. Fortunately, there is a way
for Flakey to achieve this context. When applied inside a corridor, the Follow behavior

schema seen in Example 15 results in Flakey eventually being near each object in that

corridor. That is,

B2 = (at(Corr-1), Follow(Corr-1), {Corr-1))

is a good behavior (say at the level 0.9) for achieving near(Door-5) in our environment.

The chaining theorem tells us that we can chain B1 and BP to obtain a composite

behavior, CHAIN[&; BI 1, that leads Flakey into Room-5 in the larger context of being
anywhere along Corr-1. More precisely, and assuming that B1 and B2 do not oscillate,

we have

Good(CHAIN[&; B,], AcHIEvE[at(Room-5)]) > min(0.8,0.9) = 0.8.

In the last example, we have reasoned by a form of goal-regression -although based
on the less common notion of extending the context of applicability. We will see in the
next section that the CONJ and CHAIN operators can be easily married to classical plan
generation concepts and techniques.

4 We assume that the information about which basic behaviors are good for which goals, and to which
degree, has been given by the designer of the behaviors (see next section).

A. Safiotti et al./Artijcial Intelligence 76 (1995) 481-526 507

4.4. Blending reactive and goal-oriented behavior

A central problem for autonomous agents operating in uncertain and dynamic envi-

ronments is how to combine purposeful activity with sensitivity and responsiveness to

(possibly unforeseen) events in the environment. For instance, an assembly robot should
be prepared to promptly intervene if an assembly piece falls from the table; and a mobile
robot should reliably avoid unforeseen or moving obstacles during goal-oriented navi-

gation. Context-dependent blending of behaviors has proven in our experience to be a

good method for combining reactivity and purpuseful action. Our practical methodology
to write reactive goal-achieving behaviors has been as follows. We first write a simple

goal-achieving behavior that assumes a somehow ideal context, for instance, that there

are no obstacles. Then, we write a behavior that tryes to make (some of) these assump-
tion hold when they do not, for instance, a behavior to go around convex obstacles. By

chaining the latter behavior with the former one, we obtain a new behavior that achieves

the goal under relaxed assumptions - in our example, under the assumption that there

are only convex obstacles.

Example 31. We reconsider the problem seen in Example 18 from the present perspec-

tive. The Follow behavior (like most behaviors) is written to be a good behavior for
going down a corridor provided that there are no physical impediments. In environments

with obstacles, it will easily go out of context. The KeepOfF behavior, on the other
hand, is a good behavior for avoiding obstacles, that is, roughly said, for bringing about
a situation where there are no more physical impediments. By chaining these behaviors,
we can obtain a composite behavior that is Good for going down a corridor whether

there are obstacles or not:

CHAIN[(facing(OG), Keep-Off(OG), {OG});

(at(Corrl) , Follow(Corrl) , { Corrl}) 1.

This behavior is equivalent to the one in Example 18 (by ignoring the Sense). Note that,
due to the blending mechanism, the desirability expressed by Follow is still considered,

with decreased weight, during the obstacle avoidance maneuvers (see the plot in Fig. 9).

Thus, if the robot has a choice between different ways to avoid an obstacle, e.g., to
pass it on the left or on the right, it will choose the avoidance strategy that is most
compatible with the pursuit of the goal of Follow.

Local combination of behaviors, of some form or another, is widely used in the

robotic literature for mixing goal directedness and reactivity. One ubiquitous problem
is the emergence of points of local equilibrium in the combination. Our approach gives

us some control over these phenomena by allowing us to put disjoint contexts in the
behaviors that may conflict, but local minima and oscillatory behaviors can still emerge
in some cases. Global path-planning methods are better when two conditions hold: (a)

the obstacles are complex, and (b) sensing gives an accurate picture of this complexity.
Path-plannning techniques are not incompatible with our behavioral approach: an agent
can be equipped with a path planning and following behavior, and combine it with
other behaviors when needed. We have implemented such a behavior for Flakey using

508 A. Safiotti et al./Artificial intelligence 76 (1995) 48I-526

a method similar to Payton’s [30]. A gradient field is generated at intervals by a
grid search from the goal position to the robot. At each point, the gradient gives the
direction the robot should travel in the shortest path to the goal, A path-following control

schema prefers the directions that are close to those indicated by the field. This behavior

is useful for coping with convex configurations of obstacles and escaping from local

minima, provided that enough perceptual information has been gathered to show all the
obstacles between the robot and its goal. It can also be blended with the more reactive
Keep-Off behavior to take care of newly sensed obstacles.

5. Planning

An intelligent situated agent needs the ability to autonomously develop new strategies,

or plans, for solving new tasks. This ability requires that the agent reason about its own
motor skills, and about the relation between these skills and the achievement of goals

under certain conditions. We have already introduced all the necessary ingredients in
the previous sections: we have defined behavior schemas, contexts and goals; we have
shown how to compose simpler behaviors into more complex ones; and we have studied
the main relation between behaviors and goals: the Good predicate. Moreover, we have

claimed that, while grounded in the physical level, these ingredients are at the right level
of abstraction to be used by a reasoning process. In this section, we justify this claim by
showing how we can automatically generate complex behaviors to satisfy given goals by

using customary planning techniques. We refer to the automatically generated behaviors
as behavior-a2 plans to emphasize their double nature of planned activity and executable

controls.

5. I. Reasoning about behavior

In order to reconcile our formalism with the more standard representations used in

the planning tradition, we collect all the information about a basic behavior schema-
i.e., one for which we have an implementation -in a data structure called a behavior
template. For example, the following is the template relative to the Cross behavior used

in Example 30.

Template : CROSS

Parameters: door(connects(?pl,?d,?p2)
Precondition: (and at (?pl) near(?d) (not obstacle))

Achieve: at(?p2)

ControlSchema: Cross(?d)
Goodness: 0.9

What this template says is that if d is bound to a descriptor of a door and pl and p2 to
the descriptors of the two places connected by that door, then the behavior schema

B = ((at(p1) A near(d) A Tobstacle), Cross(d), {d,pl})

is such that

A. Sajiotti et al. /Artijicial Intelligence 76 (1995) 481-526

Template: FOLLOW Template: SENSE
Parameters: corridor(?c), in(?c, ?p) Parameters: corridor(?c)

Precondition: (and at(?c) (not obstacle)) Precondition: at(?c)

RunCondition: anchored Achieve: anchored

Achieve: near(?p) ControlSchema: Sense(?c)

ControlSchema: Follow(?c) Goodness: 0.7

Goodness: 0.9

509

Fig. 12. Templates for following and for anchoring a corridor,

Good(B, ACHLEVE[at(p2)]) > 0.9.

This value 0.9 measures the designer’s confidence that the behavior will achieve its

goal every time it is activated under the appropriate conditions. It is the responsibility
of the basic behavior’s designer to make sure that the knowledge encoded in a template
correctly reflects the properties of the corresponding behavior schema. We can use tem-

plates to build behavioral plans by applying three operations: instantiation of templates,

conjunction of behaviors, and chaining of behaviors. The theorems in Section 4.3 give

us a lower bound of the goodness of the resulting plan given the goodness of the basic
behaviors.

Example 32. Recall the environment in Fig. 11, and consider the templates for the
Follow and Sense behaviors shown in Fig. 12. Given the goal to reach Room-5, we

instantiate the template for Cross shown above. As the context is not true in the present
situation, we CHAIN an instance of the Follow template. The RunCondition in this
template indicates a condition that should be maitained while the behavior is running,
namely, that the corridor be anchored. Hence, we CONJ Follow with a concurrent instance

of Sense. The resulting plan is given by

CHAIN[CONJ[Follow(Corr1); Sense(Corrl)] ; Cross(Door-5) 1,

where we name behaviors after their control schema and object descriptor.

The last example illustrates the principles that guide the generation of a behavioral

plan. Suppose an agent in state s who has a goal G. We know from Theorem 24 that,

if a behavior schema B = (C, D, 0) is good for a goal G, then any sufficiently long
execution of B that is in the context C will satisfy G. Hence, the agent will be interested
in building a behavior B such that: (1) B is a good behavior for G; (2) there is an
admissible execution t of B passing through s; and (3) the execution t lies entirely in
the context C. Formally:

Definition 33. Let B = (C, D, 0) be a behavior schema, G a goal, and s E S. The
degree by which B is an effective plan for G in s is given by:

It is difficult in general to evaluate the value of Plan[B; G; s] prior to execution. We
know how to compute goodness, but establishing the truth of the other two conditions

510 A. Safiotti et d/Artificial Intelligence 76 (1995) 481-526

is much harder. Theorem 27 gives us a condition for the consistency of B -hence for
the existence of admissible trajectories- that can be verified on the templates: each

behavior in a conjunction should not falsify the context of the other one. Unfortunately,

this condition is only necessary. Computing the truth of C(t) is problematic in general,
and just impossible in dynamic environments. For example, the plan in Example 32
above assumes no obstacles. It is effective at a degree of (at least) 0.7 given the
environment in the picture, but would go out of context (and then become ineffective)

if an obstacle appears in front of the robot. In practice, the agent will have to monitor
the conditions of Definition 33 during execution in order to detect situations where the

plan becomes ineffective, and then modify it.

5.2. Pre-planned behavior

Our first experiment in the automatic generation of behavioral plans makes use a
simple form of goal regression to generate a behavior that is good for the given goal,

and whose context includes the starting state. We have implemented a small planner

for Flakey based on a simple strategy: we start from an instance of a behavior that is

good for the goal, and then enlarge its context by chaining behaviors that can achieve
that context. We iterate the process until the context of the combined behavior covers
the current state (or, in general, the set of situations for which we want to have a

pre-computed response available.) If a behavior has a conjunctive precondition in its
template, we use a correponding conjunction of behaviors to achieve it. As discussed

above, care should be taken that the behaviors so conjoined be consistent. We currently
delegate the detection of conflicts to a runtime monitoring process. 5

Fig. 14 shows a part of the office environment used in our experiments. Flakey has

a topological map of this environment, annotated with some approximate metric data.
Given this map and the goal to reach Room-5, Flakey’s planner generated the behavioral

plan shown in a graphical form in Fig. 13. Each node in the plan represents a behavior

schema, and lists the context, the names of the descriptors, and the control schema.
For composite behaviors, the control schema is replaced by a pointer to the component
behaviors. The overall tree represents a complex blending of the control schemas in
the leaves. 6 The planner started by the Still behavior, and extended its context until

it covered the starting situation. The Cross behavior implemented in Flakey is more
restrictive than the one used above, and requires that the robot is (approximately)

facing the door to cross. Correspondingly, the planner has chained a Face behavior to
Cross. Note the use of the Keep-Off behavior to extend the applicability of the plan to

situations where there are obstacles around.
Fig. 14 shows an actual execution of this plan, along with a plot of the temporal

evolution of the level of activation of the basic behaviors in the plan. Each behavior is

5 We arc also exploring the use of SIPE [47] for building behavioral plans. SIPE uses “plan critics” to detect

harmful interactions at planning time.
6 Recall that, by using min for @, every combination can be written in the canonical form (8). and then

implemented by the context-dependent blending mechanism presented in Example 13. The truth value of each

context is computed by propagating a unitary value down the tree, and ANDing (through min) it at each node

with truth value of the context in that node. Fig. I3 shows the values SO computed in the situation g below.

A. Safliotti et al./Artijicial Intelligence 76 (1995) 481-526

Fig. 13. A behavioral plan for reaching Room-5.

activated when, and to the extent by which, its contextual conditions are verified. For
behaviors that have been chained together, the activation of the first behavior is expected
to produce the conditions for the activations of the second one, like in (d), and around
(g). Note that sequencing is not determined by of an internal program counter, but it

emerges from the interaction of the behaviors with the environment. Also notice that
behaviors do not “terminate” in the usual sense: they are deactivated when their context

become false (but may be reactivated later on). For example, when entering a new
corridor (a,d), Flakey needs to anchor it by using the Sense behavior (Example 19) ;
after traveling a few feet, the walls are anchored, Sense is deactivated, and Flakey
can move more freely (b). If, however, a wall becomes occluded (e), Flakey may
lose track of the corridor, and the context of Sense(Corr-1) gradually becomes true.

Flakey then slows down until re-anchoring occurs (f). Clearly, no reasonable a priori

ordering could have been established between the executions of the Follow and the
Sense behaviors. Finally, note the interaction between purposeful behaviors and reactive
obstacle avoidance after (c) and around (d), (e) and (g).

5.3. Monitoring

Generating a plan for future action inevitably brings about the problem of whether
or not this plan will still be adequate when it is executed. A behavioral plan can be
coupled with a monitor whose task is to detect when the plan fails to satisfy the three

512 A. Sapotti et al. /Artijcial intelligence 76 (1995) 481-526

Room-4 Room-5

0.

Door-4 Door-i\
L I :

(a-

Keep-OffCllg~

Stil1~Goa.l~

Cross~lklor-5)

FaceCOoar-51

FollouKorr-13

FollowKorr-2)

Ssnse{lkrr-2)

Sense(brr-1)

Fig. 14. Sample execution of the plan in Fig. 13.

conditions in Definition 33, and correct it by introducing other behaviors to remedy the

problem. Interestingly, we can compute an upper bound of the effectiveness of a plan

using simple computations based on the current state.

Theorem 34. Let B = (C, D, 0) be a behavior schema and G a goal. Then, for any
state s E S.

Plan[B;G;s] < Good(B,G) @min[infD(s,a),C(S)].
&A

A. Sajiotti et al./Art$cial Intelligence 76 (1995) 481-526 513

There are three possible sources of a loss of effectiveness, corresponding to the three
conditions in Definition 33. Condition (I), on the value of Good, can only become
false if the goal is changed in some way. Condition (2) may fail if the plan contains
an inconsistent conjunction of behaviors. When this happens, the agent gets into a stake
state where the desirability function assigns a low value to all possible control actions,
causing the value of inf, D (s, a) to drop. Failure of condition (3) is the most common
cause of failure of a plan: we have reached a situation for which the plan does not have
any suggestion, so the value of C(s) drops and all the behaviors have a low activation
level. The solution is to extend the context to cover the current state. Often, this can be
done by simply adding some new behaviors that achieve the context C of the original
plan,

5.4. Run-time deliberation

Monitoring is not the only reason to push at least part of the deliberation process into
execution. A generative planner like the one discussed above makes choices about which
behavior to invoke for a given goal. Often these choices are better made at execution
time, since there is more information available. For example, a robot encountering an
obstacle in a hallway might choose to go around to the left or right, or gather more
information before making a choice, depending on how close the obstacle is to one
side, how much of the obstcle can be seen, and so on. Instead of generating a large,
contingent plan to take care of every possible case, the planner could produce an initial
partial plan, expecting to fill in behaviors only when it becomes necessary to satisfy
an impending goal. One can think of runtime deliberation as tactical planning: limited
deliberation using rehearsed procedures for circumscribed tasks. Systems of this sort
are called reactive planners. For our experiments, we adopted the Procedural Reasoning
System (PRS) of Georgeff and Ingrand [151, whose main element is the intention

schema, illustrated in Fig. 15.
An intention schema is a finite-state machine whose arcs are conditions to test (?P)

or to achieve (!P). The FS machine represents a limited strategy for achieving the goal
of the schema. A sequence of behaviors is invoked by traversing the branches of the
schema. A branch with a condition may be taken if the condition is satisfied. A branch
with an achivement predicate causes the PRS interpreter to search for another schema
whose goal matches the predicate, and invoke that schema. Behavior templates fit into
this process as the lowest-level intention schemas, i.e., those that lead to action. The
Achieve slot of the template can be matched to an achievement arc, and the behavior
invoked by the interpreter to make the predicate true.

Example 35. We implemented two strategies for making decisions during obstacle
avoidance in corridors. In the first, we use a simple method for deciding which way to
go around the obstacle. If the obstacle seems much further on one side, an immediate
decision is made to go around on the other side. This decision may be the wrong one;
as it moves, the robot will see more of the obstacle, and if it is blocked the opposite side
is chosen. The second strategy is to acquire more information before deciding which
way to move. On first contact with an obstacle, the robot “wiggles” to bring more of

514 A. SuJiotti et al./Artijicial Intelligence 76 (1995) 481-526

goal: AVOID-OBSTACLE

?OBSTACLE-MIDDLE

?OBSTACLE-LEFT

/ I !WIGGLE

I \ ?OBSTACLE-RIGHT

!KEEP-RIGHT
!KEEP-LEFT

Fig. 15. A PRS intention schema.

its sonars to bear on the obstacle, and then makes a decision. The decision on which
strategy to use is made by a higher-level intention schema triggered by the presence of
an obstacle (Fig. 15). Fig. 16 shows this schema at work while Flakey is patrolling a

corridor up and down. In (a), the wrong decision is made initially, then corrected as
more of the obstacle comes into view; (b) shows an extended run.

Intention schemas are a way of instantiating (possibly complex) behaviors based on
the current situation. A limited amount of deliberation can be performed to choose an
appropriate schema when more than one will satisfy a given goal. We have used intention

schemas to write strategies for different navigation tasks: moving around obstacles, mov-
ing into/out of rooms, deciding when to locate landmarks needed for self-localization,

and even a complete plan execution and monitoring system. For the latter, we write in-

tention schemas that examine the execution state of the plan and its currently-executing
behaviors.

6. Related work

The field of planning and control has burgeoned in the last few years, and many
new ideas have emerged, especially in the area of reactive planning. The work we have
presented owes much to previous work, and we have been influenced by methodologies
and specific systems. In this section we give an overview of the points of contact, and
draw attention to the distinct features of the multivalued logic approach to complex
controllers.

A. Sajiotti et al./Artijicial Intelligence 76 (1995) 481-526 515

-
,_,;:,:::::.~.:..:..:;:: *.... IX;;.,i,:.:: ;:; ,,,,,,,,, ;,:,

c: ., : .’ “’ “. o ., :: .I. : ;:l; L

‘g r--l T
(b)

Fig. 16. Two runs of the obstacle-avoidance intention schema.

6. I. Methodologies

Both the subsumption architecture of Brooks and his students [6,9] and the situ-
ated automata of Rosenschein and Kaelbling [17,331 are methodologies for producing

embedded agents that perform complex tasks. In part we have borrowed from these
in developing the complex behavior methodology, especially the subsumption idea of

decomposing complex behavior into the composition of simple behaviors. In part we
are in conflict with the spirit of these methodologies, in preferring explicit model-based
perception and analogical representations of the world as part of embedding the con-

troller.

The theory of situated automata is a formal methodology for constructing embedded
agents by representing the environment of the agent, its task, and its capabilities. An
automata is constructed to perform a task by considering these specifications [181.

Situated automata theory is an abstraction away from the traditional planning approach
in that it makes no commitment to an internal state that represents the world in an

analogical fashion, i.e., that attempts to model surfaces, recognize objects, and so forth.
The key observation of situated automata theory is that the state of the agent should
contain just enough information to accomplish the specified tasks of the agent in its

environment; and this information need not be in an analogical form. Situated automata
theory is not incompatible with our approach; it just makes no commitment to any kind
of internal architecture or representation. Ideally, we would like to be able to prove,

using the techniques of situated automata, that any particular complex controller we
design actually accomplishes its task in the intended environments. Further, we would
like to be able to synthesize complex controllers that provably accomplish their goals.

516 A. SaJiorti et al./Artijicial Intelligence 76 (1995) 481-526

But the current state of situated automata theory is not developed enough to satisfy such

an ambitious program. Its main practical success has been a suite of development tools:
one of them, GAPPS, has been used to generate controllers for mobile robot navigation;
we discuss it below.

The subsumption architecture has many points in common with situated automata
theory, but without the formal emphasis of the latter. It is a task-oriented methodol-
ogy for constructing agents. Each task is accomplished by a behavior, which integrates
sensing, computation, and acting. The subsumption architecture is even stronger than
situated automata theory in that it rejects the idea of a central, analogical representation
of the environment. Each behavior is responsible for extracting needed information from
the sensors, processing it in a task-dependent manner, and producing control actions.
Behaviors are organized hierarchically, with the lowest level behaviors responsible for
maintaining the viability of the agent, and the higher levels pursuing more purposeful
goals. This vertical decomposition by behavior or task is contrasted with the horizontal
decomposition of the traditional architecture, with its expensive and nonreactive per-
ceive/plan/execute cycle.

The subsumption architecture has been influential in the mobile robotic community,
and its ideas have permeated most of the proposed architectures to some extent. We
have incorporated the concept of vertical decomposition into the way in which behav-
iors interact with sensing and perception in our multivalued controllers: more reactive
behaviors can access raw sensor readings, while more purposeful behaviors use more
complex perceptual routines. In fact, the very notion of behaviors themselves is in the
spirit of subsumption architecture, since each behavior is oriented towards accomplish-
ing a particular goal, But our multivalued controllers differ in several important respects
from the subsumption architecture. The most obvious one is a commitment to embed-
ding and goal abstraction by means of a perceptual subsystem shared by all behaviors.
Without such a subsystem, it is difficult to coordinate reactive and purposeful behavior
in a general way, or to abstract the goals of behaviors so deliberation processes can make
use of them, or to have behaviors whose purpose is to facilitate perceptual processes
of recognition and anchoring.7 The second main difference is in the way behaviors
are combined together. Subsumptions architectures generally use by some form of a
suppression mechanism. While these mechanisms may be adequate as a programming
technique, it is difficult to prove formal properties about them, or to accomplish the
kinds of sophisticated tradeoffs among goals that is available using multivalued logic.

4.2. Reactive planning architectures

There have been several proposals and implementations of hybrid architectures, ones
that combine a low-level reactive control mechanism with one or more deliberative
layers. The outline of a typical architecture is shown in Fig. 17. The bottom layer is
a controller, a bounded computation function from inputs and perhaps internal state
to outputs. This layer usually implements some form of behavior-based control, in

‘We note that there are some impressive results without such representation, e.g., Connell’s can-retrieving

robot [91 and Mataric’s navigation experiments [261.

A. Safiotti et al. /Artificial Intelligence 76 (199.5) 481-526 517

Sensing Action

Fig. 17. A typical architecture for reactive planners (after Connell’s SSS system).

which the control function is composed from sub-functions that implement particular

behaviors. The second layer initiates and monitors behaviors, taking care of temporal
aspects of coordinating behaviors, such as deciding when they have completed their job,
or are no longer contributing to an overall goal, or when environmental conditions have

changed enough to warrant different behaviors. The tactical planner must complete its
computations in a timely manner, although not as quickly as the control layer. In the top

layer, long-term deliberative planning takes place, with the results being passed down
to the sequencing layer for execution. Generally, the planner is invoked and guided by
conditions in the sequencing layer, e.g., a task failing or completing.

There are many different instantiations of this architecture, including SSS [lo], AT-

LANTIS [141, RAPS [13,271, AURA [31, and Pyton’s reactive planners [301. Most of
these concentrate on the interaction between the top two layers, developing sequencers

and integrating them with planning technology. Our approach fits in the hybrid planning

architecture, and we have concentrated on two important and not fully-developed as-
pects of this framework: the relation between the control and sequencing layers, and the
principled composition of complex controllers. And we have developed the properties
necessary to tie the control/sequencing level to the more abstract planning level.

6.3. Artijkial potential-jields

Multivalued logics are one way to provide a trade off between concurrent goals.
Another way is using techniques based on the so-called “artificial potential fields”, first
introduced by Khatib [201 and now extensively used in the robotic domain [221. In the
potential field approach, a goal is represented by a potential representing the desirability

518 A. Sqfiotti et al. /Artificial Intelligence 76 (1995) 481-526

of each state from that goal’s viewpoint. For example, the goal of avoiding obstacles is
represented by a potential field having maximum value around the obstacles; and the
goal of reaching a given location is represented by a field having minimum value at that

location. At each point, the robot responds to a pseudo-force proportional to the vector
gradient of the field.

The major technical difference between our control schemas and potential-field meth-
ods is how they combine information. Potential fields are combined by linear superpo-
sition: one takes a weighted vector sum of the associated pseudo-forces. Each force is

a summary of the preferences that produced that force (e.g., which direction is best to

avoid an obstacle), and the combined force is a combination of the summaries. In con-

trast, when combining two control schemas one takes the t-norm of the two desirability
functions, obtaining an assignment of utility values to each possible control. We have
seen in Section 2.6 that these two forms of combination can produce different results. A
second difference is that we express both goals and applicability conditions as formulae

in a logical language. Complex goals and constraints can often be described more easily
in a logical form than in the analytical form of a potential field function. Moreover,

the ability to specify the context as a logical sentence makes integration with classical
symbolic planning techniques easier. Potential-field approaches typically do not try to

make contact with the symbolic planning methodologies.
A system based on potential fields and that has many points of contact with our

approach is AURA, developed by Arkin [2,3]. Arkin adopts Arbib’s notion of motor
schema, discussed in the Introduction. Motor schemas are similar to our concept of
behavior, having the same basic components of control function, activation level, and

perceptual parameters. However, AURA implements control functions by using pseudo-
forces instead of desirability functions. A related difference is that planning is integrated
in a weaker form in AURA. AURA’S planner is basically a path planner that generates a

piece-wise linear path to the goal. This plan is then passed to the execution layer, where

motor schemas to follow this path are dynamically chosen and instantiated at execution
time. In our approach, by contrast, the planner generates a complex composition of

behaviors expected to orient the agent toward the achievement of a given goal. This

approach is not limited in principle to navigation tasks.

6.4. Situation-action plans

A number of authors have claimed that plans to be executed by agents situated in the

real world are better expressed in the form of “situation + action” rules. The triangle

tables developed in early robot planning work [121 already incorporated the idea to
represent, together with each action in the plan, the condition under which that action
should be activated. More recently the idea of plans as sets of rules that specify reactions
to situations has been clearly spelled out and extensively developed [11,30,41,44]. Our
behavioral plans belong to this category.

Schoppers [41] views planning as the task of partitioning the set of possible envi-

ronmental situations according to the reaction that the agent should produce from the
viewpoint of achieving the given goal. His universal plans specify a reaction to each
possible situation that the agent can encounter, and can be thought of as controllers that

A. Sajiotfi et al. /Artificial Intelligence 76 (1995) 481-526 519

provide an input-output mapping specific to the achievement of a given goal. Behavioral
plans can be seen as a more control-oriented form of universal plans. The way we
generate behavioral plans, by extending the context of an initial behavior to cover more

and more situations, is similar to &hopper’s notion of space partitioning. It is natural
to ask how much we should enlarge this context. Two extreme solutions are to stop
as soon as the context includes the current situation, as we did in Section 5.2; and to
continue until we cover the entire state space, as proposed by &hoppers.

Most of the current agent architectures based on situation-action rules put these rules
inside the control loop. This implies that the evaluation of the situation should be

performed in bounded time, and that the actions should be elementary action steps. By

considering this, Nilsson [281 has recently extended the idea of triangle tables to develop

a new formalism for plans, called teleo-reactive trees. A teleo-reactive tree encodes a
set of situation-action rules, ordered by a subgoal relation: the activation of each rule in

the tree is expected to eventually produce the conditions for the activation of its parent

rule. Teleo-reactive trees resemble the behavioral plans that we have built in Section 5.
In fact, a behavioral plan can be seen as a mathematically motivated generalization of a
TR-tree where contexts can take intermediate degree of truth, desirability functions are
multivalued, and we can have concurrent activation of behaviors.

A common feature of the approaches based on situation-action rules is that situation-

action plans can be compiled into executable structures. Synthesis is a convenient prop-

erty, because it automates the process of producing complex controllers. Another method
for synthesizing complex controllers by compiling plans is GAPPS [181. Given a top-
level goal, the GAPPS compiler reduces it using the goal-reduction rules into a set

of condition-action rules for primitive control actions. Later development of GAPPS
incorporated goal-regression compilation using operator descriptions [191, which gives

GAPPS a more abstract way of representing action, and enables it to do predictive

planning. The two synthesis methods we explored for our multivalued controllers, goal-
regression planning and run-time deliberation, are similar to GAPPS goal-regression and
goal-reduction methods, respectively. Where the two systems differ is in the level of

detail of complex action specification. We have concentrated on how control schemas
combine to produce complex behavior. GAPPS control actions are simple effector com-

mands, and conjoining controls is only possible if they produce the same control action,
or one of the control actions is unspecified. Although it is conceivable that GAPPS
could be used to program multivalued logic control schemas, it would require the same
development as we have presented here.

7. Conclusions

Intelligent action involves a continued interplay of local and global factors. Actions

and sensing happen locally, in the here and now of the agent, but the goals they are

aimed at, or the undesired consequences they can bring about, may lie far away in time

and space. By planning, an agent tries to connect the actions it performs to its global
goals and desires. But the result of planning, the pkzn, has to become physical activity.
The work described in this paper focused on the relation between abstract goals of the

520 A. Safiotti et al./Artificial Intelligence 76 (1995) 481-526

plan and the physical actions that they induce in the agent.

Our approach to integrating planning and control has focus& on grounding the
ingredients of planning in physical action, using the tools of multivalued logics. We

started from the definition of basic types of movements, or control schemas, and of

the way they can be combined or blended to form complex movements. Then, we have
“lifted” control schemas to the level of abstract actions in an environment. Here, we have

used two key notions: the notion of embedding in the environment, by anchoring the

agent’s internal state to external objects through perception, and the notion of context,
or circumstances of execution. Finally, we have linked behaviors to goals, expressed

as sets of satisfactory executions. The good behaviors for a goal are those that, when

executed in an appropriate context, produce executions that satisfy the goal. And we
have proven, under certain hypotheses, that composing behaviors creates a new behavior
that is good for the composition of the corresponding goals. This result is the basis
for automatic planning of complex behavior, and we have shown how traditional AI

techniques for deliberation and means-ends analysis can be readily adapted to generate

complex controllers for given goals.

One of the nice properties of the multivalued analysis of complex control is that it
can be implemented using techniques from fuzzy control. We have illustrated this with

examples from our mobile robot, Flakey. The ability of Flakey to navigate in unstructured

real-world environments has been tested in innumerable runs in the corridors and offices
of SRI during normal office activity. We have reported some of these experiments in

Section 5. Flakey’s performance has also been demonstrated in a few public events,

including Flakey’s second place at the first robotic competition of the AAAI, reported
in [81, and a successor, Erratic, at the third competition [211.

Our experience in the domain of mobile robot navigation has led us to formulate some

methodological principles for achieving robust performance in dynamic environments:
l Behaviors should be computationally inexpensive, being simple functions on local

conditions.
l To make them easy to write, debug, and compose (and possibly learn), behaviors

should satisfy a single goal over a small range of environments.
l Complex behaviors to achieve multiple goals or operate over wider environmental

conditions should be composed out of simpler ones.
l Since the environment will contain uncertainty, complex behaviors should be reactive,

rather than relying on precomputed trajectories.
The work presented in this paper provides a formal framework for this compositional
methodology, and enables the use of classical planning techniques to build complex be-
haviors. Our methodology is not a radical departure from the reactive planning methods
now prevalent in the literature. Rather, it is a theoretical approach to two significant
problems with these architectures: how to form complex movements, and how to link

these up with more abstract deliberation processes.
Although the results obtained up to now are extremely promising, our study has

uncovered a number of issues that need either a deeper formal analysis, or more experi-
mentation, or both. Among the most urgent ones is the question of how the desirability

functions used in the control schemas can be constructed in practice. We are currently
studying techniques for synthesizing rules from abstract specifications of goals, and for

A. S@otti et al./Art$cial Intelligence 76 (1995) 481-526 521

improving these rules by learning methodologies. A second important issue that we only
touched in this paper is the dynamic modification of planned behaviors. We are currently
working on the further development of adequate indexes of performance, and on the use
of these indexes to patch an existing plan. As for our formal development, two aspects
that clearly need a deeper inspection are the notions of consistency and stability. We
anticipate that studying these aspects will call for a richer representation of the state,
including the dynamics of the environment. Finally, we feel that much more work is
needed on the use of anchoring and object descriptors to relate perception and action.

Acknowledgments

Nicolas Helft, David Israel and Daniela Musto contributed to the development of the
ideas presented in this paper. Alessandro Saffiotti has been supported in part by a grant
from the National Council of Research of Italy and in part by the Action de Recherches
Concertees BELON funded by a grant from the Communaute Francaise de Belgique.
Enrique Ruspini was supported by the U.S. Air Force Office of Scientific Research under
Contract No. F49620-91-C-0060. Support for Kurt Konolige came partially from ONR
Contract No. NOO014-89-C-0095. Additional support was provided by SRI International.

Appendix A. Proofs

We prove here the main theorems in this paper. The proof of the other results can be
found in the technical report version [38]. The following properties of t-norms will be
used in the subsequent proofs.

Lemma 36. Let @ be any a continuous T-norm with quasi-inverse 0. Then

(i> supstf(w> @g(w)1 < supsf(w) @sup,g(w).

(ii) infJf(w) @g(w)] Z infsf(w> @infsg(w).

(iii) x0y>z ifandonlyifn>z@y.

(iv) (x0z) By < (x@yY) 0z.

(v) (X0Y) Oz =x0(y@zz).

(vi) (~~YY)~(z~w)~(x~z)~(Y~w).

Proof of Theorem 10. Looking first at the relation between Nextnlc and NextD, we
may notice that, for any two states s, s’ in S, it is

Nextolc (s, s’) =;EJ [(D(s,a) 0C(s))@M(s,a,s’)]

<,“F; [(D(s,a) 63 M(s,a,s’)) 0C(s)]

= Nexto(s,s’) 0 C(s).

522 A. Saflotti et al./Art$cinl Intelligence 76 (1995) 481-526

Let now t = (so, $1,. . . , sk) be any trajectory, and t’ = (q, s~+l, . . . , s,), with 0 6
I < m ,< k, any subtrajectory of t. Then we can see that

TrUjD~c(t) 6 inf [Nexto(Si, Si+l) 0 C(si>]
O(i<k

6 inf [NeXtD(Si, Sifl) 0 C(Si)]
I<i<m

< inf NeXtD(Si,Si+l) 0 inf C(Sj)
l<i<m l<j<m

= TR2&)(t’> 0 C(t’>.

As the above inequality holds no matter what subtrajectory t’, we have proved the
theorem. Cl

Proof of Theorem 24. By definition, Go&(B, G) > a is true iff there is a positive
number N such that, for any trajectory t E 7-d S), it is

GLC(t) 0AdmB(t) > a.

From this, and by applying Lemma 36 (iii), we have

Adme @C(t) < (GIC(t) 0 a) @ C(t)

<(GLC(t) @C(t)) 0cu

<[(G(t) sC(r)) @C(t)1 0a

<G(t)0a. 0

Proof of Theorem 26. We let B = CONJ[BI; B2], For any trajectory t, we have

Adme @G(t) = TrdcD,nD2j1C,nC2(t) @Anch~,~~ CZJ G(t)

6 WD~c,.c,(t> @G(t) @Ancho,
1

< [Tr4D~c,(t> sCz(t)l @G(t) @An&,
1

< TrajDLc, (t) @ Amho,

=AdmB\(t),

where we have used Theorem 10 for the third passage. From Go& Bl , Gt) > LY by
wirtue of Theorem 24, there exists Nt such that AdmB, (t) @ Cl(t) < GI (t) 0 (Y. for
any trajectory t of length greater than Nt . A similar property holds for B2 and G2 for,
say, N2.Let N=max(Nt,Nz).Then,forany tEIN(S),

Adme @Cl(t) c%&(t) <min(Gl(t) 0~ Gz(t) SP)

<min(Gt(t),G~(t)) 0min(a,P),

and the thesis follows from Theorem 24. Cl

A. Sajiotti et al. /Artificial Intelligence 76 (1995) 481-526 523

Proof of Theorem 28. Let B = CHAlN[BI ; Bz] , and let C = Cl U C2. We first consider
the two goodness hypotheses. By Theorem 24, the hypothesis on BI means that

Adm~,(t) 0 C,(t) < supC2Cs) 0 (Y
set

for any trajectory of length greater than some suitable integer, call it Nt. For each such
trajectory t, we then have

A&Q(~) @C(t) < supC:!(s) 0a. (A.l)
set

On the other hand, the hypothesis on B2 translates to

Adme, 0 C;?(t) < G(t) SP

for any trajectory t of length greater than a second suitable integer, call it N2. Hence
we have, for any such trajectory,

A&J(~) 0 C2(t) 6 TraJoLc, ’ Cl> @A~nchoz(f) @ C2(t)

= A&:(r) 0 C2(t)

< G(t) 0 P.

By monotonicity of goal restriction, the last inequality implies that

Adme @ C2(t) < CL”(t) S/3. (A.2)

We then turn attention to our thesis. By Theorem 24, we need to prove that there is
a positive integer N such that, for any trajectory t longer than N,

Adma @C(t) <G’(t) 0min(a,P),

or, equivalently,

[G~CzUSEQUENCE[C2,Ct]](t) >Adma(t) @C(t) @min(a,P). (A.3)

Let N = Nt +max(Nl,N2), and let t = (so,q , . . . , s,) be any trajectory of length
greater than N. From (A.1)) there must be some state s E t such that

C2(s) b a@AAdmB(t) @C(t).

Let k be the smallest index of such a state, and let t’ = (sk, sk+l,. . . , s,) be the part of

t beyond sk. By the goodness hypothesis on Bl, k 6 Nt, and so t’ must have length at
least max(Nl , N2). We show that t’ satisfies the goal G’. For suppose it does not. Then
(A.3) must be false of t’, that is, we must have both

GLC2(t’) <Adrns(t’) @C(t’) @min(cY,/?) (A.4)

and

SEQUENCE[Cz,C1](t’) <Adm~(t’) @C(t’) @min(cu,P). (A.5)

Consider (AS). From the definition of SEQUENCE and from (A. 1) we have

524 A. gafiotti et al./Arttficial Intelligence 76 (1995) 481-526

SEQ~NCE[CZ,C~I(~‘) = SUP SUP [CZ(S~) @C](Sj)]
k<i<n i<j(n

2 Sup [C2(si) @ inf Cl(Sj)]

k<i<n k<j<n

> sup C2CSi) 8 C*(t’>
k,<i<n

>Adme(t’) @C(i) @C,(t) @a.

From this, and by applying (AS), we have

Ad&(t’) @C(t’) @C,(i) @a <Adrn~(t’) @C(t) @/3

from which we conclude

Cl (t’) < p 0 a.

By putting this in (A.4), we obtain

GlC2(t’) <Adm~(t’) @C(f) @min(a,P)

<Adm(t’) @C2(t’) @C,(t’> @a

<Adma @ C2(t’) @ (Ps a) c$ a

<Adm~(t’) @ C2(t’) 8 P.

But this contradicts the goodness hypothesis on B2 (A.2). Hence one of (A.4) and

(AS) must be rejected, and (A-3) must hold of t’, thus proving the theorem. 0

References

I41

151

[61

[71

[81

[91

IlO1

[I] M. Arbib and D. House, Depth and detours: an essay on visually guided behavior, Tech. Rept. 85-20
COINS, University of Massachusetts, Amherst, MA (1985).

[21 R.C. Arkin, Motor schema based navigation for a mobile robot, in: Proceedings of the IEEE International
Conference on Robotics and Automation (1987).

(31 R.C. Arkin, Integrating behavioral, perceptual and world knowledge in reactive navigation, Robotics
Autonomous Systems 6 (1990) 10.5- 122.
R. Bellman, Adaptive Control Processes: A Guided Tour (Princeton University Press, Princeton, NJ,
1961).
R.E. Bellman and L.A. Zadeh, Decision making in a fuzzy environment, Management Sci. 17 (1970)
141-164.
R.A. Brooks, A robust layered control system for a mobile robot, IEEE J. Robotics Automation RA-2(1)
(1982).
P.R. Cohen and H.J. Levesque, Persistence, Intention, and Commitment (MIT Press Cambridge, MA,
1990).
C. Congdon, M. Huber, D. Kortenkamp, K. Konolige, K. Myers, E.H. Ruspini and A. SaJJiotti, CAFWEL
vs. Flakey: A comparison of two winners, AI Mag. 14(J) (1993) 49-57.
J. Connell, Minimalist Mobile Robotics: A Colony-style Architecturefor an Artificial Creature (Academic
Press, New York, 1990).
J. Connell, SSS: A hybrid architecture applied to robot navigation, in: Proceedings of the IEEE
Conference on Robotics and Automation (1992).

A. Sajiotti et al. /Artificial Intelligence 76 (1995) 481-526 525

[1 I] M. Drummond, Situated control rules, in: Proceedings First International Conference on Principles of
Knowledge Representation and Reasoning (1989).

[121 R.E. Fikes and N.J. Nilsson, STRIPS: a new approach to the application of theorem proving to problem
solving, Artif: Infell. 2 (1971) 189-208.

[131 J.R. Fiiy, An investigation into reactive planning in complex domains, in: Proceedings AAAI (1987).

[141 E. Cat, Integrating planning and reacting in a heterogeneous asynchronous architecture for controlling
real-world mobile robots, in: Proceedings AAAI (1992).

[151 M.P. Georgeff and FE Ingrand, Decision-making in an embedded reasoning system, in: Proceedings
AAAI, Detroit, MI (1989) 972-978.

1161 D. Israel, J. Perry and S. Tutiya, Actions and movements, in: Proceedings IJCAI Sydney, Australia
(1991).

[171 L. Kaelbling and S. Rosenschein, Action and planning in embedded agents, Robotics Autonomous

Systems 6 (1990) 35-48.
] 181 L.P. Kaelbling, Goals as parallel program specifications, in: Proceedings AAAI Minneapolis-St. Paul,

MN (1988).
[191 L.P. Kaelbling, Compiling operator descriptions into reactive strategies using goal regression, Technical

Report TR-90-10 Teleos Research, Palo Alto, CA (1990).
[ZO] 0. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, Interna?. J. Robotics Res.

S(1) (1986)90-98.
[211 K. Konolige, Erratic competes with the big boys, AI Mag. 16 (Summer 1995).
[221 J. Latombe, Robot Motion Planning (Kluwer Academic, Boston, MA, 199 1)
[23] J. tukasiewicz and A. Tarski, Untersuchungen tiber den Aussagenkalktil, Comptes Rendus Sot. Sci.

Letfres Varsovie (Cl. III) 23 (1983) 157-168.
[24] D. Lyons and M. Arbib, A task-level model of distributed computation for sensory-based control of

complex robot systems, Tech. Rept. 85-30 COINS, University of Massachusetts, Amherst, MA (1985).
[25] C. Malcom and T. Smithers, Symbol grounding via a hybrid architecture in an autonomous assembly

system in: P Maes, ed., Designing Autonomous Agents (MIT Press, Cambridge, MA 1990) 123-144.
[261 M. Mataric, A distributed model for mobile robot environment learning and navigation, Tech. Rept. 1228

MIT AI Laboratory (1990).
[271 D. McDermott, Planning reactive behavior: A progress report, in: Proceedings of the DARPA Workshop

on Innovative Approaches to Planning, Scheduling, and Control (1990).
[28] N.J. Nilsson, Toward agent program with circuit semantics, Tech. Rept. STAN-CS-92-1412 Stanford

University, Computer Science Dept. Stanford, CA (1992).
[29] K. Overton, The acquisition, processing, and use of tactile sensor data in robot control, Ph.D. Thesis,

University of Massachusetts, Amherst, MA (1984).
[301 D.W. Payton, J.K. Rosenblatt and D.M. Keirsey, Plan guided reaction, IEEE Trans. Systems Man

Cybernet. 20(6) (1990).
1311 N. Rescher, Semantic foundations for the logic of preference, in: N. Rescher, ed., The Logic of Decision

and Action (Pittsburgh, PA, 1967).
[32] N. Rescher, Many Valued Logic (McGraw-Hill, New York, 1969).
[33 1 S.J. Rosenschein, The synthesis of digital machines with provable epistemic properties, Technical Note,

412 SRI Attificial Intelligence Center, Menlo Park, CA (1987).
[34] E.H. Ruspini, Fuzzy logic in the Flakey robot, in: Proceedings of the International Conference on Fuuy

Logic and Neural Networks (IIZUKA) Japan (1990) 767-770.
[351 E.H. Ruspini, On the semantics of fuzzy logic, Internat. J. Approx. Reason. 5 (1991) 45-88.
136 I E.H. Ruspini, Truth as utility: A conceptual synthesis, in: Proceedings Seventh Conference on Uncertainty

in Artificial Intelligence, Los Angeles, CA (199 1) .
[37 I A. Saffiotti, Pick-up what?, in: C. Backstrom and E. Sandewrdl, eds., Current Trends in AI Planning

([OS Press, Amsterdam, Nederlands, 1994) 166-177.
[381 A. Saffiotti, K. Konolige and E.H. Ruspini, A multivalued-logic approach to integrating planning and

control, Tech. Rept., 533 SRI Artificial Intelligence Center, Menlo Park, CA (1993).
[39] A. Safhotti, E.H. Ruspini and K. Konolige, A fuzzy controller for &key, an autonomous mobile robot,

Tech. Rept., 529 SRI Artificial Intelligence Center, Menlo Park, CA (1993).

526 A. Sajiotti et al./Artijicial Intelligence 76 (1995) 481-526

(401 A. Saftiotti, E.H. Ruspini and K. Konolige, Integrating reactivity and goal-directedness in a fuzzy
controller, in: Proceedings of the Second Fuzzy-IEEE Conference San Francisco, CA (1993).

[41] M.J. Schoppers, Universal plans for reactive robots in unpredictable environments, in: Proceedings IJCAI
(1987).

1421 B. Schweizer and A. Sklar, Probabilistic metric spaces (North-Holland, Amsterdam, 1983).
[43] K. Segerberg, Routines, Synthese 65 (1985) 185-210.
(441 L. Suchman, Plans and Situated Actions: The Problem of Human Machine Communication (Cambridge

University Press, Cambridge, MA, 1987).
[45] L. Valverde, On the structure of F-indistinguishability operators, Fuzzy Sets Systems 17 (1985) 313-328.
[46] S. Weber, A general concept of fuzzy connectives, negations and implications based on t-norms and

t-conorms, Fuzzy Sets Systems 11 (1983) 115-134.
[47] D.E. Wilkins, Practical Planning (Morgan Kaufmann, San Mateo, CA, 1988).
[48] J. Yen and N. Pfluger, A fuzzy logic based robot navigation system, in: Proceedings of the AAAI Fall

Symposium on Mobile Robot Navigation, Boston, MA (1992) 195-199.
[49] L. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338-353.

