Finite 2-Groups with Small Centralizer of an Involution

Zvonimir Janko

Mathematical Institute, University of Heidelberg, 69120 Heidelberg, Germany
E-mail: janko@mathi.uni-heidelberg.de

Communicated by Walter Feit

Received October 31, 2000

1. INTRODUCTION

The starting point is the following theorem of Berkovich [2]. For a finite p-group G, one of the following holds:

(a) G has no maximal elementary abelian subgroup of order p^2.

(b) $|\Omega_2(G)| \leq p^3$.

(c) There exists in G an element x of order p such that $C_G(x) = \langle x \rangle \times Q$, where Q is a cyclic or generalized quaternion. Furthermore, G has no normal subgroup of order p^{p+1} and exponent p.

The classification of p-groups containing an element t of order p such that $C_G(t) = \langle t \rangle \times Z$, where Z is cyclic of order p^m, is very difficult. This question is solved for $m = 1$ by Suzuki (see [5, Satz 14.23]). In this case we have a well-known characterization of p-groups of maximal class. For $p = 2$ and $m = 2$, the problem is solved in Gorenstein [4, Proposition 10.27]. For $p > 2$ there are some results of Blackburn [3] which only show that the problem is a difficult one indeed. For $p = 2$, the problem is solved in a special case (with two other assumptions) in Berkovich [2, Theorem 9.2].

In this paper we consider the case $p = 2$ in general. In fact we shall prove the following classification result and in the case where G has elementary abelian subgroups of order 8, we get exactly four infinite classes of 2-groups which we give in terms of generators and relations.

Theorem 1.1. Let G be a finite nonabelian 2-group containing an involution t such that the centralizer $C_G(t) = \langle t \rangle \times C$, where C is a cyclic group...
of order 2^m, $m \geq 1$. Then G has no elementary abelian subgroup of order 16 and G is generated by at most three elements.

(A1) If G has no elementary abelian subgroup of order 8, then one of the following assertions holds:

(a) G is a dihedral group D_{2^m} of order 2^n ($n \geq 3$) or G is a semidihedral group SD_{2^n} of order 2^n ($n \geq 4$). Here we have $m = 1$.

(b) G is isomorphic to the group M_{2^n} of order 2^n ($n \geq 4$) and this is the unique 2-group of class 2 and order 2^n which has a cyclic subgroup of index 2. Here we have $m = n - 2$.

(c) $|G : C_G(t)| = 2$, $t \in \Phi(G)$, $Z(G)$ is a cyclic subgroup of order ≥ 4 not contained in $\Phi(C_G(t))$, $G/Z(G)$ is dihedral with the cyclic subgroup $T/Z(G)$ of index 2, T is abelian of type $(2,2^n)$, $m \geq 3$ and $t \in T$. If x is an element of maximal order in $G \setminus T$, then $(x^2) = Z(G)$. Here we have $C_G(t) = T$ and $|G| = 2^{m+2}$.

(d) G has a subgroup S of index ≤ 2, where $S = AL$, the subgroup L is normal in G, $L = \langle b, t \mid b^{2^n-1} = 1, t^2 = 1, b^i = b^{-1}, n \geq 3 \rangle \cong D_{2^n}$, $A = \langle a \rangle$ is cyclic order 2^m, $m \geq 2$, $A \cap L = Z(L)$, $[a,t] = 1$, $\Omega_1(G) = \Omega_2(S) = \Omega_2(A) \ast L$ which is the central product of $\Omega_2(A)$ and L, where $\Omega_2(A) \cap L = Z(L)$. If $|G : S| = 2$, then there is an element $x \in G \setminus S$ so that $t^x = tb$ and $C_G(t) = (t) \times \langle a \rangle$.

(A2) If G has an elementary abelian subgroup of order 8, then $Z(G)$ is of order 2, $C_G(t) = (t) \times \langle a \rangle$, where $A = \langle a \rangle$ has order 2^m ($m \geq 2$), G has a normal subgroup $L = \langle b, t \mid b^{2^n-1} = 1, t^2 = 1, b^i = b^{-1}, n \geq 3 \rangle \cong D_{2^n}$, $A \cap L = Z(L) = \langle z \rangle$, $S = AL$ is a normal subgroup of index ≤ 2 in G, and G is isomorphic to one of the following groups:

(e) $G = \langle a,b,t \mid a^{2^n} = 1, m \geq 3, b^{2^n-1} = 1, n \geq 4, t^2 = 1, b^i = b^{-1}, [a,t] = 1, a^{2^n-1} = b^{2^n-2} = z, b^a = b^{i+2}, i = n-m \geq 2 \rangle$. We have $G = AL = S$ and the cyclic group $\langle a \rangle / \langle z \rangle$ of order 2^{m-1} acts faithfully on L.

(f) $G = \langle a,b,t,s \mid a^{2^n} = 1, a^{2^n-1} = z, m \geq 4, b^{2^n-1} = 1, n \geq 5, b^{2^n-2} = z, t^2 = 1, b^i = b^{-1}, [t,a] = 1, b^a = b^{i+2}, i = n-m+1, s^2 = 1, b^i = b^{-1}, t^i = tb, s^a = a^{-1} a^{-1} b^{2^n-1} s, i \geq 2 \rangle$. Here $S = AL$ is a subgroup of index 2 in G and $\Omega_1(S) = \Omega_2(S) \ast L$. Also $G = S(s)$, where $M = L(s) \cong D_{2^{m+1}}$, $N_G(M) = M \langle a^2 \rangle$ and s acts invertingly on $\Omega_2(A)$. We have $|G : S| = 2$ and so the order of G is 2^{m+n}.

(g) Berkovich groups $G = F(m, n)$ from [2, Theorem 9.2]. Here we have $G = \langle a,b,t,s \mid a^{2^n} = 1, a^{2^n-1} = z, m \geq 2, b^{2^n-1} = 1, n \geq 3, b^{2^n-2} = z, t^2 = 1, b^i = b^{-1}, [t,a] = 1, [b,a] = 1, s^2 = 1, b^s = b^{-1}, t^s = tb, a^i = a^{-1} z^i, v = 0, 1, and if $v = 1$, then $m \geq 3$]. Here $S = A \ast L$ is the central product of A and L and $G = S(s)$, where $|G : S| = 2$. We have $M = L(s) \cong D_{2^{m+1}}$ and s acts invertingly on $\langle a \rangle$ or in case $m \geq 3$ we can have also $a^i = a^{-1} z$.
(h) \(G = \langle a, b, t, s \mid a^{2m} = 1, m \geq 4, b^{2n-1} = 1, n \geq 4, a^{2m-1} = b^{2n-2} = z, t^2 = 1, b^t = b^{-1}, s^t = s, b^s = b^{-1}, t^b = tb, [a, t] = 1, b^s = bz, a^t = a^{-1+2n-2}b^{2n-2} \rangle \). Here we have again \(G = S\langle s \rangle \) so that \(|G : S| = 2 \). Finally, \(M = L\langle s \rangle \) is isomorphic to \(D_{2n+1} \).

2. NOTATION AND KNOWN RESULTS

Let \(C_m \) be the cyclic group of order \(m \), \(E_{pm} \) the elementary abelian group of order \(p^m \) \((p \text{ prime})\), \(D_{2n} \) the dihedral group of order \(2^m \) \((m \geq 3)\), \(SD_{2n} \) the semidihedral group of order \(2^m \) \((m \geq 4)\), \(Q_{2n} \) the generalized quaternion group of order \(2^m \) \((m \geq 3)\),

\[
M_{2n} = \langle x, y \mid x^2 = y^{2m-1} = 1, m \geq 4, [y, x] = y^{2n-1} \rangle,
\]

\(C_G(M) \) the centralizer of a subset \(M \) in \(G \), \(N_G(H) \) the normalizer of a subgroup \(H \) in \(G \), \(G' \) the derived group of \(G \), \(Z(G) \) the center of \(G \), \(\Phi(G) \) the Frattini subgroup of \(G \), and for a \(p \)-group \(G \) \((p \text{ is a prime})\) we set \(\Omega_n(G) = \langle x \in G \mid x^{p^n} = 1 \rangle \) and \(\Omega_n(G) = \langle x^{p^n} \mid x \in G \rangle \).

A \(p \)-group \(G \) of order \(p^m \) is said to be of maximal class if \(m \geq 3 \) and the class of \(G \) is \(m - 1 \). For \(x \in G \), we denote by \(ccl_G(x) \) the conjugacy class of \(x \) in \(G \). Two elements \(x, y \) in \(G \) are said to be fused in \(G \) if there is \(g \in G \) such that \(x^g = g^{-1}xg = y \). Finally, \([x, y] = x^{-1}y^{-1}xy \) is the commutator of \(x \) and \(y \).

Proposition 2.1 (Berkovich [1, Proposition 19(b)]). Let \(B \) be a subgroup of a nonabelian \(p \)-group \(G \) such that \(C_G(B) \subseteq B \). If \(|B| = p^2 \), then \(G \) is of maximal class.

Proposition 2.2 (Huppert [5, p. 90]). Let \(G \) be a nonabelian 2-group which possesses a cyclic subgroup of index 2. Then \(G \) is isomorphic to one of the following groups: \(D_2(n \geq 3), SD_2(n \geq 4), Q_{2n}(n \geq 3), \) or \(M_{2n}(n \geq 4) \).

Proposition 2.3 (Berkovich [2, Theorem 10.3]). Let \(G \) be a nonabelian 2-group. If \(|G : G'| = 4 \), then \(G \) has a cyclic subgroup of index 2. In particular, if \(G \) is a 2-group of maximal class, then \(G \) is isomorphic to \(D_{2^r}, SD_{2^r}, \) or \(Q_{2^r} \).

Proposition 2.4 (Huppert [5, p. 304]). Let \(G \) be a \(p \)-group in which every normal abelian subgroup is cyclic. Then \(G \) is either cyclic or a 2-group of maximal class.

Proposition 2.5 (Huppert [5, p. 84]). Let \(G = \langle b \rangle \) be a cyclic group of order \(2^n \) \((n \geq 3)\). Then the automorphism group \(\text{Aut}(G) \) is abelian of type \((1, n - 2)\) and \(G \equiv \langle \alpha \rangle \times \langle \beta \rangle \), where \(\alpha \) is induced by \(b^n = b^{-1} \) and \(\beta \) is induced by \(b^\beta = b^5 = b^{1+2} \). Here \(\alpha \) is of order 2 and \(\beta \) is of order \(2^{n-2} \). We have \(C_G(\alpha) = \langle b^{2^{n-1}} \rangle \), which is the fixed subgroup of \(\alpha \) in \(G \) \((\text{of order } 2)\). The
The fixed subgroup of \(\beta \) in \(G \) is \(\langle b^{2^{i-2}} \rangle \) which is of order 4. The fixed subgroup of \(\beta^2 \) in \(G \) has order \(2^{2j+1} \) \((0 \leq j \leq n - 2)\). On the other hand, the automorphism \(\gamma \) induced by \(b^\gamma = b^{1+2^i} \) \((2 \leq i \leq n)\) has the fixed subgroup of order \(2^i \). Hence there is an odd number \(r \) so that

\[
b^{\beta^2 r - 2} = b^{1+2^i} \quad (2 \leq i \leq n).
\]

Proposition 2.6. The automorphism group \(\text{Aut}(G) \) of \(G = \langle b, t \mid b^{2n} = 1, t^2 = 1, b^t = b^{-1} = D_{2^{n+1}} \) \((n \geq 3)\) is generated by the inner automorphism group \(\text{Inn}(G) \) (which is isomorphic to \(D_{2^n} \)) and “outer” automorphisms \(\alpha \) and \(\beta \), where \(\alpha \) is of order 2 and is induced with \(t^\alpha = tb \), \(b^\alpha = b^{-1} \), and \(\beta \) is of order \(2^{n-2} \) and is induced with \(t^\beta = t \), \(b^\beta = b^5 \). We have \([\alpha, \beta] = i_{2^n} \), which is the inner automorphism of \(G \) induced (by conjugation) with the element \(b^5 \). Hence the outer automorphism group \(\text{Aut}(G)/\text{Inn}(G) \) is abelian of type \((1, n - 2)\). Furthermore \(\text{CG}(\beta^2) \cong D_{2^{j+3}} \) \((0 \leq j \leq n - 2)\).

Proof. The inner automorphisms of \(G \) induced with elements contained in \(\langle b \rangle \) fuse the \(2^n \) involutions in \(G \setminus Z(G) \) in two orbits \(O_1 = t\langle b^5 \rangle \) and \(O_2 = tb\langle b^5 \rangle \) of lengths \(2^{n-1} \) each. The inner automorphism \(i_t \) (induced by \(t \)) fixes \(t \) and acts invertingly on \(\langle b \rangle \). Consider the outer automorphism \(\alpha \) of order 2 induced by \(t^\alpha = tb \), \(b^\alpha = b^{-1} \) so that \(\alpha \) fuses \(O_1 \) and \(O_2 \). Let \(B \supseteq \text{Inn}(G) \) be the subgroup of \(\text{Aut}(G) \) which fixes \(O_1 \) (and \(O_2 \)) so that \(|\text{Aut}(G) : B| = 2 \). \(B \) is normal in \(\text{Aut}(G) \), and \(\text{Aut}(G) = \langle \alpha \rangle B \) which is a semidirect product of \(\langle \alpha \rangle \) and \(B \). Let \(\beta'' \) be any outer automorphism from \(B \setminus \text{Inn}(G) \). Then multiplying \(\beta'' \) with an inner automorphism \(i \) induced with an element contained in \(\langle b \rangle \), we may assume that \(\beta'' = \beta''i \) fixes the involution \(t \). But \((\beta')' \) must act faithfully on the (characteristic) cyclic subgroup \(\langle b \rangle \) of \(G \). Multiplying \(\beta' \) with \(i_t \) (if necessary), we may assume that \(\beta_0 = \beta'i_{2^e} \) \((e = 0, 1)\) fixes \(t \) and centralizes a subgroup of order \(\geq 4 \) in \(\langle b \rangle \). By Proposition 2.5, we see that \(\beta_0 \) acts on \(\langle b \rangle \) as a power of the automorphism \(\beta \) from Proposition 2.5. Hence if we consider the outer automorphism \(\beta \) of order \(2^{n-2} \) induced by \(t^\beta = t \), \(b^\beta = b^5 \), we see that \(B \) is a semidirect product of \(\langle \beta \rangle \) and \(\text{Inn}(G) \) and so \(\text{Aut}(G) = \text{Inn}(G)(\alpha, \beta) \). Finally, we compute that \([\alpha, \beta] = i_{2^n} \) and so \(\text{Aut}(G)/\text{Inn}(G) \) is abelian of type \((1, n - 2)\). It follows from Proposition 2.5 that the fixed subgroup of \(\beta^2 \) in \(G \) is isomorphic to \(D_{2^{j+3}} \) \((0 \leq j \leq n - 2)\).

3. PROOF OF THEOREM 1.1

Let \(G \) be a nonabelian 2-group containing an involution \(t \) such that \(C_G(t) = \langle t \rangle \times C \), where \(C \cong C_{2^m} \), \(m \geq 1 \). If \(m = 1 \), then by Propositions 2.1 and 2.3, we have that \(G \) is isomorphic to \(D_{2^n} \), \(n \geq 3 \), or \(SD_{2^n} \), \(n \geq 4 \). In what follows we assume that \(m \geq 2 \). Since \(G \) is not of maximal class, it follows by
Proposition 2.4 that G possesses a normal four-subgroup U. Set $T = C_G(U)$ so that we have $[G : T] \leq 2$. Suppose in addition that $t \in T$. This forces $t \in U$ since $C_G(t)$ does not have an elementary abelian subgroup of order 8. Also we have $[G : T] = 2$ and $T = \langle t \rangle \times C$, where $C \cong C_m$, $m \geq 2$. We may also assume that G does not possess any other normal four-subgroup which possibly does not contain t because we shall consider that case later. Set $\Omega_1(C) = \langle a \rangle = \Omega_{m-1}(T)$ so that $U = \langle t, u \rangle = \Omega_1(T)$ and $\langle u \rangle \subseteq Z(G)$. Since $Z(G) \subseteq T$, so $\langle u \rangle = \Omega_1(Z(G))$. We have $\Phi(G) = \Omega_1(G) \subseteq T$ and $\Phi(G)$ contains $\Omega_1(C)$ which is of order 2^{m-1}. If t is not in $\Phi(G)$, then there exists a maximal subgroup M of G which does not contain t. Set $M_0 = T \cap M$ so that $M_0 \cong C_m$ is a cyclic subgroup of index 2 in M and $C_G(t) = \langle t \rangle \times M_0$. If M is cyclic, then t acts faithfully on M and t centralizes the maximal subgroup M_0 of M which gives that G is isomorphic to M_{2m+2}, $m \geq 2$, and this is case (b) of Theorem 1.1. So assume now that M is not cyclic but M and the cyclic subgroup M_0 of index 2. If M were abelian, then $\Omega_1(M)$ is a normal four-subgroup of G which does not contain t, contrary to our assumption. Thus M is nonabelian. If M is not of maximal class, then again $\Omega_1(M)$ is a normal four-subgroup of G which does not contain t. Hence M is a group of maximal class and we have $Z(M) = \langle u \rangle$, where $\langle t, u \rangle = U$. Let $\langle v \rangle$ be the cyclic subgroup of order 4 contained in M_0 and let $y \in M \setminus M_0$ so that we have $v^y = v^{-1} = vu$ and $v' = tu$. Hence we have $(tv)^y = tv$, where (tv) is a cyclic subgroup of order 4 in $T \setminus M_0$ with $(tv)^2 = u$ and $C_G(tv) \supseteq \langle T, y \rangle = G$. It follows that G is the central product of a cyclic group of order 4 and a 2-group of maximal class. But then in any case G contains a dihedral subgroup of order 2^{m-1}, $m \geq 2$, and the center of G is cyclic of order 4. This group is then a special case of groups in (d) of Theorem 1.1 (with $S = G$ and A is of order 4 centralising L). It remains to consider the case $t \in \Phi(G)$. In this case we have $\Phi(G) = \langle t \rangle \times \Omega_1(C)$ and so the group G generated by two elements. If $m = 2$, then $\Phi(G) = \langle t, u \rangle$. Since $\Omega_1(T) = \langle u \rangle$, there is an element x in $G \setminus T$ such that $x^2 \in U \setminus \langle u \rangle$. But then x centralizes U, which is a contradiction. Hence we must have $m \geq 3$. There is an element $x \in G \setminus T$ such that $x^2 \in \Phi(G) \setminus \Omega_1(C) \setminus U$. Set $C = \langle a \rangle$ which is of order 2^m, $m \geq 3$, so that $a^{2^{m-1}} = u$, $T = C_G(t) = \langle t \rangle \times \langle a \rangle$, and $U = \Omega_1(T) = \langle t, u \rangle$. Also, $\Omega_1(C) = \Omega_1(C) = \langle a^2 \rangle$ and $\Phi(G) = \langle t, a^2 \rangle$, where a^2 is of order ≥ 4. It follows from the choice of x that $\Phi(G) = \langle a^2, x^2 \rangle$. We have $t^2 = tu$ since $T = C_G(t)$. If x would centralize a^2, then x centralizes $\langle a^2, x^2 \rangle = \Phi(G)$ and $\Phi(G)$ contains t so $x \in C_G(t) = T$, which is not the case. Also $C_G(x^2) \supseteq \langle T, x \rangle = G$, so $x^2 \in C_G(t)$. Since $t \notin Z(G)$, so $Z(G) \leq T$ is cyclic. We claim that $\langle x^2 \rangle = Z(G)$. If not, then there is an element $y \in Z(G)$ with $y^2 = x^2$. But $y^2 \in \Omega_1(C) = \Phi(T)$ and so $x^2 \in \Omega_1(C)$ which is not the case. Moreover, if $y \in G \setminus T$, then $y^2 \in Z(G)$ since T is abelian and generates G together with y. As we saw, $a^2 \notin Z(G)$. All ele-
ments in \((G/Z(G))\setminus(T/Z(G))\) are involutions. Since \(Z(G) \not\subset \Phi(T)\), it follows that \(T/Z(G)\) is cyclic. In that case, \(G/Z(G)\) is dihedral. Indeed, since \(\Phi(G) \not\subset Z(G)\), we conclude that \(G/Z(G)\) is not abelian of type \((2,2)\). We have obtained a group in part (c) of the theorem.

In the rest of the proof we assume that \(G\) possesses a normal four-subgroup \(U\) which does not contain our involution \(t\). Set again \(T = C_G(U)\) and so \(t\) is not in \(T\) so that \(G = \langle t \rangle T\). By Dedekind law, \(G_0 = C_G(t) = \langle t \rangle \times A\), where \(A = C_T(t)\) is cyclic of order \(2^m\), \(m \geq 2\), and so \(Z = \Omega_1(A) = C_T(t) = \Omega_1(Z(G))\). Since \(Z(G) \trianglelefteq A\), so \(Z(G)\) is cyclic. Set \(G_1 = N_G(G_0)\). Since \(G\) is nonabelian we have \(G_1 \neq G_0\). Since \(\Omega_1(G_0) = \langle t, z \rangle\) where \(z = Z\), \(t\) has only two conjugates, \(t\) and \(tz\), in \(G_1\). It follows that \(|G_1 : G_0| = 2\) and so \(G_1 \cong G_0 U\) because \(|G_0 U : G_0| = 2\). Set \(D_0 = U\langle t \rangle\) so that \(D_0\) is a dihedral group of order 8 and \(G_1\) is the central product \(G_1 = A \ast D_0\) with \(A \cap D_0 = \langle z \rangle\). We have \(U = \langle u, z \rangle \subset D_0\). Let \(v\) be an element of order 4 in \(D_0\) and let \(y\) be an element of order 4 in \(A\) so that we have \(y^2 = v^2 = z\) and so \(x = yv\) is an involution in \(G_1 \setminus D_0\). Since \(x^t = xz\), we see that \(D_1 = \langle x, t \rangle\) is a dihedral group of order 8. Because \(A = Z(G_1)\), we also have \(G_1 = A \ast D_1\), \(D_1 \cong D_8\), \(t \in D_1\), and \(D_1 \cap U = Z(D_1) = \langle z \rangle\).

In the rest of the proof we consider a subgroup \(S\) of \(G\) which is maximal subject to the following conditions:

1. \(S\) contains \(G_1 = A \ast D_1\).
2. \(S = A L\), where \(L\) is a normal subgroup of \(S\) and \(L \cong D_{2^n}, n \geq 3\).
3. \(A \cap L = \langle z \rangle = Z(L)\) and \(A \cap S = \langle z \rangle\).
4. \(L \cap G_1 = D_1 \cong D_8\).

We note that \(A = \langle a \rangle\) is cyclic of order \(2^m\), \(m \geq 2\), and \(\Omega_1(A) = \langle z \rangle = Z(D_1) = Z(L) = \Omega_1(Z(G))\). We have \(t \in D_1\), \(C_G(t) = \langle t \rangle \times A\) and \(A = Z(G_1)\). Hence \(Z(G) \subseteq A\) and so \(Z(G)\) is cyclic of order \(\leq 2^m\). Also, \(G_1\) contains \(U = \langle z, u \rangle\) which is a normal four-subgroup of \(G\) and \(u^t = uz\). Now we act with \(A = \langle a \rangle\) on the dihedral group \(L\), where we set \(L = \langle b, t \mid b^{2^{n-1}} = 1, t^2 = 1, b^t = b^{-1}\rangle\). Here \(\langle b \rangle\) is the unique cyclic subgroup of index 2 in \(L\) and so \(\langle b \rangle\) is \(A\)-admissible. We have \(\langle b \rangle \cap D_1 \geq 4\), \(A\) centralizes \(D_1\) and \(C_L(a) = \langle t \rangle (C(a) \cap \langle b \rangle)\) and so \(C_L(a)\) is a dihedral subgroup of \(L\) of order \(\geq 8\) containing \(D_1\). Looking at \(\text{Aut}(L)\) (Proposition 2.6) we see that \(A\) induces on \(L\) a cyclic group of automorphisms of order at most \(2^{n-3}\) and so \(|A : C_A(L)| \leq 2^{n-3}\). Since \(S/L\) is cyclic, we have \(\Omega_1(S) = UL\). Set \(\Omega_1(S) \cap A = \langle y \rangle\), where \(y\) is an element of order 4 with \(y^2 = z\) and we have \(\langle y \rangle = \Omega_2(A)\). Let us consider at first the case that \(y\) acts faithfully on \(L\) so that \(C_A(L) = \langle z \rangle\) and \(\langle a \rangle / \langle z \rangle\) acts faithfully on \(L\). Then \(y\) induces an automorphism of order 2 on \(L\) and since \(C_L(a) \supseteq D_1\) we must have \(n \geq 4\). \([y, t] = 1\), and \(b^y = bz\) so that \(C_L(y) = \langle t, b^y \rangle \cong D_{2^{n-1}}\) and \(C_L(y)\) is a maximal subgroup of \(L\). Let \(v\) be an element of order 4 in \(D_1\). Since
$U = \langle z, u \rangle \subseteq A D_1$, we may set $u = yv$. We have $y^b = yz = y^{-1}$ and so $u^{t^b} = (uz)^b = (yvz)^b = y^{-1}vz = yv = u$ so that $\langle z, u, tb \rangle$ is an elementary abelian subgroup of order 8. Obviously, $C(u) \cap \Omega_1(S) = \langle u \rangle \times \langle tb, b^2 \rangle$ and since $C_G(t) = A \times \langle t \rangle$ does not contain an E_8, t cannot be fused in G to any involution contained in $C(u) \cap \Omega_1(S)$. Naturally, t cannot be fused in G to any involution in U because U is normal in G. On the other hand, it is easy to compute that any involution in $\Omega_1(S)$ lies either in L or in $C(u) \cap \Omega_1(S)$. This forces $N_G(S) = S$ and so $S = G$. If $m = 2$, we have the Berkovich groups for $m = 2$ stated in (g) of Theorem 1.1 since $\langle t, b^2 \rangle \cong D_{2^{m-1}}$ centralizes A and the involution tb acts invertingly on A. So assume that $m \geq 3$.

Then we may set (see Proposition 2.6) $b^a = b^{1+2^i}$, where $i \geq 2$ because $C_L(a) \cong L$. Since $C_L(a) \cong D_{2^{m-1}}$ and $C_L(a^{2^{m-1}}) \cong D_{2^{m-1}}$ and $a^{2^{m-1}} = z$, $C_L(a^{2^{m-1}}) = L$. It follows that $i = n - m$. We have obtained exactly the groups stated in part (e) of Theorem 1.1.

In what follows we shall assume always that $\langle y \rangle = \Omega_2(A)$ centralizes L so that $\Omega_1(S)$ is the central product of $\Omega_2(A)$ and L. In this case each involution in $\Omega_1(S)$ is contained either in L or in U and L is the subgroup L being generated by its own involutions is a characteristic subgroup of $\Omega_1(S)$ and so of S. If $S = G$, then we get some groups stated in part (d) of Theorem 1.1.

From now on we shall assume in addition that $S \neq G$. Let $W = N_G(\Omega_1(S))$. Since W fuses $ccl(t) \cap \Omega_1(S)$ with $ccl(tb) \cap \Omega_1(S)$, where both classes are of size 2^{n-2} and both are contained in L, we get $|W : S| = 2$, S is normal in W, so L is normal in W. If $\Omega_1(S) = \Omega_1(W)$, then we have $W = G$. Suppose that $W \neq G$ and let $g \in N_G(W) \setminus W$ so that $g^2 \in W$. We have $\langle ccl(t) \cap W \rangle = L$, U is normal in G, and all involutions in $\Omega_1(S)$ lie in U or in L. Therefore (replacing g with gw, $w \in W$, if necessary) we may assume that $s = t^s \in W \setminus S$. Since s normalizes L and $C(t) \cap (L(s)) = \langle t, z \rangle$, we have $L(s) \cong D_{2^{m-1}}$. Now L is normal in W, L^g is normal in W, $L^g \cap S = L^g \cap L$, $L^gS = W$, $|L^gS : S| = |L^g : (L^g \cap S)| = |L^g : (L^g \cap L)| = 2$, and $|LL^g| = 2^{n+1}$ so $LL^g = L(s)$. Hence $(LL^g)^{2^i} = LL^g$ and so $L(s)$ is a dihedral group of order 2^{n+1} which is normal in W. We have $W = A(L(s))$ and this contradicts the maximality of $S = AL$. Hence we must have $W = G$ in any case.

In what follows we assume in addition that $\Omega_1(S) \neq \Omega_1(G)$. Then for each involution $s \in G \setminus S$, we have that s normalizes L and so $M = L(s) \cong D_{2^{m-1}}$ (since $C(t) \cap M = \langle t, z \rangle$). Because of the maximality of S, we have that M is not normal in G. But L is normal in G and so $A_0 = C_G(L) = C_A(L)$ (containing $\Omega_1(A)$) is also normal in G and we have $A_0 = Z(S)$, which is of order ≥ 4. We look at the structure of $\tilde{G} = G/L$ which is a group with a cyclic subgroup $\tilde{S} = \tilde{A} = (AL)/L \cong A/(z)$ (bar convention) of order 2^{m-1} and index 2 and with an involution $\tilde{M} = M/L$ outside of
the cyclic group. Since M is not normal in G, \tilde{G} is nonabelian. We have $G = \tilde{A}M$, $\tilde{A} \cap M = 1$, and $|\tilde{A}| \geq 4$, so that $m \geq 3$. Now $|A_0| \geq 4$ and so $|A_0| \geq 2$ and \tilde{A}_0 is normal in \tilde{G} and $A_0 \subseteq \tilde{A}$. Since \tilde{G}/A_0 is a subgroup of the outer automorphism group of the dihedral group L, it follows that \tilde{G}/A_0 is abelian.

Suppose at first that \tilde{G} is not of maximal class so that $\Omega_1(\tilde{G}) = (UM)/L$ and $UM = \Omega_1(G)$. Since M is not normal in G, it follows that s must act faithfully on $Z(\Omega_1(S)) = \Omega_2(A)$ and so $\langle z, u, s \rangle \cong E_8$. Namely, if s centralizes $\Omega_2(A)$, then $\Omega_1(G) = \Omega_2(A) * M$ and each involution in $\Omega_1(G)$ lies in U or in M and so M would be normal in G, which contradicts the maximality of S. If we set $A = \langle a \rangle$, then $N_G(M) = M/\langle a^2 \rangle$, which follows from the structure of \tilde{G} (see Propositions 2.2 and 2.3). Since $\Omega_2(A)$ centralizes L but $\Omega_2(A)/\langle z \rangle$ acts faithfully on M, it follows that $\langle a^2 \rangle/\langle z \rangle$ acts faithfully on M and so $\langle a^2 \rangle/\Omega_2(A)$ acts faithfully on L and $C_G(L) = \Omega_2(A) = A_0$. It follows that $Z(\tilde{G})$ is of order 2 and $A/\Omega_2(A)$ acts faithfully on L. Because s acts faithfully on A, $|A| \geq 8$ and $m \geq 4$. We may assume that the involution s acts on $L = \langle b, t \rangle$ as follows: $b^s = b^{-1}$ and $t^s = tb$ and we set $b^{2z} = z$, where $\langle z \rangle = Z(G)$. Replacing a with a' (r odd) we may assume $b^s = b_i b_i^{2z}$, $i \geq 2$ because $C_i(a) \subseteq D_1 \subseteq D_n$. Hence we have $C_i(a) \cong D_{2i+1}$ and so $C_i(\langle a^{2n-2} \rangle) \cong D_{2i+1} \cong 4 \cong D_{2i+4}$, where we have taken into account that $\langle a \rangle/\langle a^{2n-2} \rangle = A/\Omega_2(A)$ acts faithfully on L and $\Omega_2(A)$ centralizes L. Thus $i + m - 1 = n$ and so $i = n - m + 1$. Since $i \geq 2$ we must have $n \geq m + 1$. Because $m \geq 4$, we have here $n \geq 5$.

It remains to determine the commutator $[a, s]$. We know that $A = \langle a \rangle$ does not normalize M and so $\langle [a, s] \rangle = A_0$ which gives $[a, s] = a_0l$, where $\langle a_0 \rangle = A_0$ has order 4, $a_0 = z$ and $l \in L$. We can also write $[a, s] = (a_0z)(bl) = a_0^{-1}(bl)$ and so replacing l with bl, if necessary, we may assume that $a_0 = a_0^{2n-2}$ and s inverts a_0. Hence we get $a^{-1}sa = a_0l$ and so $a^{-1}sa = a_0l$. Since a_0l is an involution, we must have $l = b^i$ for a suitable integer j. Therefore $i^{a_0^{-1}a} = t^{a_0^{-1}b^i}$ which gives $b^a = b_{1-2i}$. On the other hand $b^a = b_{1+2i}$ and so $j \equiv -2^{-1} \pmod{2n-2}$. This gives (4) $a^{-1}sa = a_0^{2n-2} b_{1-2i}$. This gives (5) $a^{-1}sa = a_0^{2n-2} b_{1-2i}$. However, replacing b with $b' = b_1^{1-2i+1}$ and t with $t' = tb_{2n-2i}$, we see that all the relations obtained so far in this case go into the same relations with b' instead of b and t' instead of t but the relation (4) goes into relation (5). Therefore we may choose the relation (4). We have determined the structure of G uniquely in this case and this is the group given in (f) of Theorem 1.1.

Suppose now that $\tilde{G} = G/L$ is a group of maximal class. Since \tilde{G}/\tilde{G}' is of order 4 and \tilde{G}/A_0 is abelian, we have $|\tilde{A} : A_0| \leq 2$.

We consider at first the case $\tilde{A} = A_0$ which means that $A = C_G(L)$ and so S is the central product of A and L with $A \cap L = \langle z \rangle = Z(L)$. Hence $A = Z(S)$ and so A is normal in G. Since $(A(s))/\langle z \rangle$ is of maximal class and the case $[A, s] \subseteq \langle z \rangle$ is not possible (because $L/\langle s \rangle$ is not normal in G),
we have either $a^t = a^{-1}$ or $a^t = a^{-1}z$, which is possible only when $m \geq 3$. Our group G is isomorphic to a Berkovich group $F(m, n)$ as stated in part (g) of Theorem 1.1. Also we have here $\langle z, u, s \rangle \cong E_8$.

It remains to consider the case where $|A : A_0| = 2$ so that $C_G(L) = A_0$ is of index 2 in A. We have $A_0 = \langle a^2 \rangle = Z(S)$ and so a induces an automorphism of order 2 on L with $C_L(a) \supseteq D_1$. This gives at once that $b^2 = bzb$ and so $n \geq 4$. Hence we also have $a^b = az$. Since $[A, L] = \langle z \rangle$ and $L/\langle z \rangle$ is a (nonabelian) dihedral group of order 2^{n-1}, it follows that $C_L(L/\langle z \rangle) = A \ast \langle b' \rangle$, where $\langle b' \rangle$ is the cyclic subgroup of order 4 in L. Hence $A \ast \langle b' \rangle$ is normal in G. If s normalizes A, then $a^t = a^{-1}z^\alpha$, $\alpha = 0, 1$ since $A(s)/\langle z \rangle$ is of maximal class. But from $sts = tb$ we get acting on $a : a^t = az$ which gives $az = a$ and this is a contradiction. Hence s does not normalize A. Since $A^s \subseteq A \ast \langle b' \rangle$ and $(A \langle b' \rangle)/\langle b' \rangle)(s)$ is of maximal class, we may set (6) $a^t = a^{-1}b'$ or (7) $a^t = a^{-1+2n^{-2}}b'$. We must have $a^t = a$ since $s^2 = 1$. But in case (6) this gives $(a^{-1}b')^t = a$ and so $az = a$ which is a contradiction. Hence we must have the relation (7). Replacing a with a^{-1} in (7), we get $(a^{-1})^t = (a^{-1})^{-1+2n^{-2}}b^{-1}$ and other relations in this case are not changed. Thus we may put $b' = b^{2n^{-2}}$ in (7). This determines the group G as stated in part (h) of Theorem 1.1. Here we have also $\langle z, u, s \rangle \cong E_8$.

An inspection of obtained groups shows that in any case G has no elementary abelian subgroups of order 16 and G is generated by at most 3 elements. Also in the case where G possesses an elementary abelian subgroup of order 8, we see that $Z(G)$ has order 2. Theorem 1.1 is proved.

ACKNOWLEDGMENT

The author thanks Prof. Y. Berkovich for many valuable comments and a correction of part (c) of Theorem 1.1.

REFERENCES