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Cough is a protective reflex and defence mechanism in healthy individuals, which helps clear excessive
secretions and foreign material from the lungs. Cough often presents as the first and most persistent
symptom of many respiratory diseases and some non-respiratory disorders, but can also be idiopathic,
and is a common respiratory complaint for which medical attention is sought. Chronic cough of various
aetiologies is a regular presentation to specialist respiratory clinics, and is reported as a troublesome
symptom by a significant proportion of the population. Despite this, the treatment options for cough are
limited. The lack of effective anti-tussives likely stems from our incomplete understanding of how the
tussive reflex is mediated. However, research over the last decade has begun to shed some light on the
mechanisms which provoke cough, and may ultimately provide us with better anti-tussive therapies.
This review will focus on the in vitro and in vivo models that are currently used to further our under-
standing of the sensory innervation of the respiratory tract, and how these nerves are involved in
controlling the cough response. Central to this are the Transient Receptor Potential (TRP) ion channels, a
family of polymodal receptors that can be activated by such diverse stimuli as chemicals, temperature,
osmotic stress, and mechanical perturbation. These ion channels are thought to be molecular pain in-
tegrators and targets for novel analgesic agents for the treatment of various pain disorders but some are
also being developed as anti-tussives.

� 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction

The cough reflex forms part of the body’s immune defence
against inhaled substances and invading pathogens. Under normal
conditions, coughing serves to stop potentially harmful substances
from being inhaled as well as clearing excessive secretions and
foreign material from the airways [1]. A persistent cough is there-
fore often the first sign of respiratory diseases such as the common
cold, lung infections, asthma, chronic obstructive pulmonary dis-
ease (COPD), pulmonary fibrosis and lung cancer. Moreover, cough
can be associated with non-respiratory disorders such as gastro-
oesophageal reflux and postnasal drip; and can also be idiopathic,
where the cough is not associated with any discernible underlying
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disorder [2e4]. Under pathological conditions, the cough reflex can
be sensitised to both noxious and innocuous stimuli, and is often
non-productive. This leads to excessive or chronic coughing, which
can become painful due to mechanical damage to the upper air-
ways [5]. Other detrimental effects commonly associated with
chronic cough also severely affect quality of life, such as anxiety,
incontinence, sleep disturbance and depression [6e8].

Unfortunately, current over-the-counter anti-tussive medicines
are not thought to be efficacious [9,10]; and the current gold
standard in cough therapy (opiates or their derivatives) are asso-
ciated with numerous side effects [11e15]. Furthermore, cough
treatments are potentially dangerous for young children and are
not recommended for use by children under 2 years of age [15,16].
The ideal anti-tussive therapy would inhibit an enhanced and
problematic cough without affecting the normal protective reflex
that is associated with health benefits. Novel cough therapies that
are both safe and efficacious are therefore urgently required. Sci-
entists have recently begun to elucidate the mechanisms that drive
the cough reflex, which will hopefully lead to better anti-tussive
treatments in the near future.
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2. Airway sensory nerves

The cough reflex is mediated by sensory nerves which terminate
in the upper and lower airways. These nerves differ in their origin
(sensory ganglia), termination site (upper or lower airways),
Fig. 1. Schematic representation of airway innervation. The airways are innervated by a du
contains (1) the sensory neurons forming the C-fibres (green line) originating from the sub-c
the nucleus tractus solitarius and (2) neurons originating from the sub-cerebral nodose ga
‘cough receptor’ mechano-sensitive Ad fibres which innervate the upper airway (dashed b
sympathetic pathways run alongside the sensory fibres nerves in the vagus nerve (X): Pre-
dorsal motor nucleus in the brainstem respectively innervate postganglionic cholinergic
regulate bronchial tone and mucus secretion. Nerves originating from the spinal cord also inn
thoracic vertebrae T1 to T4 which innervate the lower airways and bronchi. These nerves a
largely unknown. (5) Sympathetic pre-ganglionic neurons derived from the cervical and thor
thoracic ganglia. These sympathetic neurons innervate airways controlling smooth muscle t
human airways). (For interpretation of the references to colour in this figure legend, the re
physiological characteristics (myelination, conduction speed, re-
ceptor expression) and sensitivity to stimuli. Fig. 1 summarises our
current understanding of the different nerve fibres involved in
cough. The vast majority of airway sensory nerve fibres originate
from the vagal nodose and jugular ganglia which lie under the ear
al system of afferent sensory neurons and efferent motoneurons. The Vagus nerve (X)
erebral jugular ganglion which innervate the upper and lower airways and project into
nglia forming C-fibres which innervate the lower airway and bronchi (blue line) and
lue line) and all also project to the nucleus tractus solitarius. (3) Two different para-
ganglionic parasympathetic neurons originating from the nucleus ambiguous and the
neurons located in tracheal parasympathetic ganglia. These parasympathetic ganglia
ervate the airways with (4) sensory neurons originating from the dorsal root ganglia in
re supposedly more pain orientated whereas their regulatory role in the airways is yet
acic spinal cord respectively project to sympathetic neurones located in the cervical and
one and have been proposed to mediate bronchodilatation in some species (but not in
ader is referred to the web version of this article.)
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bone within the skull; with few coming from the thoracic dorsal
root ganglia [17]. Nerve fibres terminate both in and under the
airway epithelium. When stimulated by an irritant, ion channels on
the nerve terminals open to allow cation influx. This leads to
membrane depolarisation and subsequent opening of the voltage-
gated sodium channels, thus generating an action potential. Ac-
tion potentials are actively propagated along the nerve fibres,
which are carried by the vagus nerve axon to the tract of the nu-
cleus solitarius (NTS) where the fibres synapse. The cough pathway
beyond the NTS is still unclear. It is believed that second order
neurons then relay the message to a putative respiratory pattern
generator which collates and organises the incoming information,
and sends out an efferent ‘cough’ signal to co-ordinate respiratory
muscle activity. Below is a brief discussion of the sensory nerves
that innervate the respiratory tract, and their involvement in the
cough reflex.

2.1. C-fibres

Airway C-fibres are activated by a wide range of chemical irri-
tants. Stimuli that activate C-fibres range from food extracts (e.g.
capsaicin, mustard oil, wasabi and ginger) to environmental irri-
tants (e.g. cigarette smoke, air pollution and vehicle exhaust) and
endogenous mediators (e.g. bradykinin, prostanoids, and products
of oxidation) [18e24]. The chemosensitivity of C-fibresmakes them
attractive pharmacological targets for anti-tussive treatment, and
they have therefore been a major focus in the search for novel
cough therapies.

C-fibre afferents are non-myelinated and conduct with a slow
velocity (<1m/s). They originatemainly in the jugular vagal ganglia
with some coming from the nodose ganglia, and mostly terminate
within airway epithelium. It has been found that jugular C-fibres
innervate both the upper (‘bronchial’) and lower (‘pulmonary’)
airways; whereas C-fibres originating from the nodose and dorsal
root ganglia terminate predominantly in the lower airways
[1,17,25e28]. In addition to their physiological characteristics, C-
fibres can be differentiated by their activation properties. For
example, both jugular and nodose airway C-fibres express Tran-
sient Receptor Potential Vanilloid 1 (TRPV1) and respond to the
irritant capsaicin [17,27e30]. Whereas, only nodose C-fibres ex-
press purinergic and 5-HT receptors and respond to adenosine and
5-HT [27,28,31,32]. The TRP receptors are a large family of cation
channels, of which TRPV1 and TRPA1 (Ankyrin 1) have been iden-
tified as pro-tussive mediators [2,33e38]. The importance of these
ion channels inmodulating the cough reflex and their potential role
in airway pathologies will be discussed in detail in Section 4.

Based on their presence in the upper airways, from which the
cough reflex can readily be triggered, bronchial C-fibres are thought
to initiate the cough reflex. By contrast, pulmonary C-fibres have
been proposed to inhibit cough. For example, stimulation of pul-
monary C-fibres in anaesthetised cats and dogs has been shown to
inhibit cough induced by mechanical stimulation of the larynx or
trachea [39,40]. Stimulation of pulmonary C-fibres triggers a che-
moreflex that causes apnoea, rapid shallow breathing, bradycardia
and hypotension. Apnoea is thought to suppress the respiratory
rhythm generator and reduce expiratory efforts, during which time
it is not possible to trigger cough [1,26,39,40]. An inhibitory sensory
drive that regulates cough is an interesting concept, and liberation
of an inherent inhibition could help to explain why people who
suffer from airway disease exhibit an enhanced tussive reflex. The
interaction between activation of stimulatory and inhibitory fibres
could also help to explain the different patterns of cough elicited by
different irritant stimuli [1]. However, there is still no sound evi-
dence for such an inhibitory drive within the airways; and an
augmented response to hazardous or innocuous stimuli could
similarly explain the enhanced cough reflex associated with res-
piratory pathologies. If indeed pulmonary C-fibres do inhibit the
cough reflex, then selective pharmacological activation of these
receptors could be a useful therapeutic tool [1].

2.2. Ad cough receptors

Irritant ‘cough receptors’ have been identified and differentiated
from traditional low-threshold mechanically sensitive lung Ad fi-
bres [28,41,42]. Cough receptors originate in the nodose ganglia and
largely terminate in the upper airways. By contrast to the heavily
myelinated Ab fibres (which are fast-conducting fibres at >14 m/s),
the cough receptors possess a thin myelin sheath, and are therefore
moderately fast-conducting (4e6 m/s) neurons. They are only
modestly sensitive to mechanical stimulation and respond to acid
challenge, but are not normally activated by capsaicin or bradykinin
[42,43]. However, several studies suggest that Ad fibres which
terminate in the tracheal mucosa can be induced to transiently
express neurokinins and TRPV1, allowing them to respond to
capsaicin stimulation in models of airway disease [44e47]. These
studies highlight the cough receptors as a potentially important
target for hypersensitivity associated with respiratory pathologies.

2.3. Rapidly adapting receptors (RARs) and slowly adapting
receptors (SARs)

RARs and SARs are mechano-sensitive afferent fibres that
conduct in the ‘A’ range (>14 m/s), and were named for their
distinct adaptive properties to lung inflation i.e. during inspiration
RARs will typically show a short burst of action potentials that
rapidly adapt within 1e2 s; whereas, SARs will continue to fire
action potentials until lung volume returns to normal [26,43].
Both of these afferents terminate in the intrapulmonary airways,
and are not thought to be directly involved in the cough reflex. Early
work suggesting a role for RARs came mainly from studies on
anaesthetised animals [1,39]; however it has subsequently been
shown that substances which stimulate RARs under anaesthesia
(e.g. substance P and histamine) are ineffective at evoking cough
[28,42]. Though unlikely to be directly involved, this does not
preclude the possibility that RARs and SARs could play an indirect
role in modulating the cough reflex.

3. Methods used to investigate the cough reflex

A number of in vitro and in vivo models have been developed to
study the tussive reflex. This section will briefly examine some of
these models, their advantages and inherent limitations.

3.1. Calcium imaging of sensory ganglia

This preparation measures activation of primary neuronal cell
bodies by assessing changes in intracellular calcium levels via
fluorescent imaging [48e50]. Initially, the primary neuronal cells
are isolated and adhered to an imaging plate. The cells are then
loaded with a membrane-permeable dye which fluoresces under a
specific wavelength of light when bound to calcium. As discussed in
Section 2, the airway afferent fibres have their neuronal cell bodies
located in the vagal and dorsal root ganglia. Stimulation of these
neurons by an irritant triggers the opening of ion channels on the
cell membrane, leading to depolarisation. If this depolarisation
reaches a critical threshold, voltage-gated sodium channels also
open, which in turn leads to opening of the voltage-gated calcium
channels. Furthermore, opening of certain ion channels can lead to
release of intracellular calcium stores from the endoplasmic retic-
ulum. Under normal resting conditions the intracellular
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concentration of calcium is very low, and thus very little fluores-
cence is measured. Upon stimulation calcium will either enter the
cell via activated ion channels, or be released from intracellular
stores, and bind to the dye leading to an increase in fluorescence.

One of the major advantages of this model lies in the ability to
measure from primary cells that project nerve fibres specifically to
the airway. This is possible by instilling the fluorescent dye DiI
(DiIC18(3),1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanine
perchlorate) into the lungs, which is then retrogradely transported
along the nerve fibre toward the neuronal cell body [47,51]. Neu-
rons that have taken up this dye can then be identified via fluo-
rescence before beginning experimentation. Further advantages
include the ability to image from multiple species, including
genetically modified mice; and the ease with which pharmaco-
logical studies can be performed. Conversely, this model is limited
by the fact that recordings are made from the neuronal cell bodies,
not the nerve terminals. It is therefore uncertain whether the re-
sponses being recorded represent what would happen at the nerve
ending due to possible differences in protein expression, intracel-
lular signalling or the presence/absence of secondary signalling
molecules. It is also not known whether phenotypical changes
occur during the cell isolation process.

3.2. Isolated vagus nerve depolarisation assay

This method involves removing the axon of the vagus nerve
which runs caudal to the nodose ganglion. The nerve axon is then
placed in a recording chamber, where the two ends of the nerve are
electrochemically isolated, and recording electrodes are placed at
either end e one recording the resting potential, and the other
recording nerve activity upon stimulation. Nerve activation is
measured as the compound change inmembrane depolarisation (in
millivolts), and indicates the sum of the activity of all fibres carried
by the vagus nerve.

The isolated vagus preparation is a relatively high-throughput
in vitro method to study native receptors and ion channels that
has been shown to parallel cough responses seen in vivo and in the
clinic in that, in general, agents that cause cough also depolarise the
vagus [37,50,52]. It is also possible to produce translational data by
utilising human vagal tissue, giving an indication of the similarities
and differences that occur between humans and animal models.
Furthermore, it is possible to use tissue from genetically modified
animals, and assess pharmacological modulation of agonist re-
sponses. The main limitation of this model lies in the fact that you
are recording from the trunk of the vagus nerve, which carries all
types of afferent nerve fibres (RAR, SAR, cough receptor and C-fibre)
as well as parasympathetic and potentially inhibitory nerves, and
nerves innervating other visceral organs such as the heart and
gastrointestinal tract. Moreover, as with the calcium imaging
method, the effect observed on the isolated vagus trunk does not
necessarily represent what is happening at the nerve terminals
within the airway. It is also important to note that depolarisation of
the vagus axon does not necessarily relate to action potential firing,
as a certain threshold of depolarisation needs to be reached in order
to generate the all-or-nothing action potential response.

3.3. Single fibre recording from airway afferents

A variety of in vitro and in vivo techniques exist for the single
fibre model. In all of these models, the aim is to detect action po-
tential firing from a single nerve fibre, whereby you can measure
the frequency, duration and pattern of firing [43e45,53,54].
Depending on the model, it is possible to determine the type of
fibre (C-fibre, cough receptor, RAR or SAR), the ganglion in which
the fibre originates (nodose or jugular), and its termination site in
the airways (bronchial or pulmonary). One of the major advantages
of this technique is that you are recording actual firing of the nerve
fibre, which gives a better indication of whether a stimulus is
indeed causing information to be sent to the CNS. However, this
technique is not as robust as other in vitro techniques, it is slow
through-put (especially if looking for a particular type of nerve
fibre), and it is difficult to conduct classical pharmacological
characterisation.

3.4. In vivo cough models

The dog, cat, rabbit and guinea-pig have been used for investi-
gating the cough reflex in vivo. Of these, the guinea-pig is currently
themost commonmodel due to its size (therefore requiring smaller
amounts of compound), and the ability to easily perform experi-
ments on conscious animals. Smaller rodents such as the rat and
mouse do not exhibit a cough reflex that resembles human cough,
and as such have rarely been used to conduct in vivo research [56].

A large number of experiments have been conducted using
anaesthetised animals. Importantly, our current understanding of
the nerves that regulate the cough reflex comes primarily from
work using anaesthetised preparations where afferent nerve ac-
tivity can be measured at the same time as tussive stimuli are
applied. The use of anaesthetised animal models caused some
debate during early investigation into the tussive reflex, with re-
gard to whether C-fibres truly play a role in mediating cough. This
was prompted by the observation that the cough reflex could be
elicited by mechanical or acidic stimuli both in conscious or
anaesthetised animals; whereas chemical stimuli such as capsaicin
and bradykinin that caused coughing in conscious animals failed to
induce cough under anaesthesia [40,42]. Moreover, there was evi-
dence to suggest that pulmonary C-fibre stimulation actually
inhibited the cough response [1,26,39,40]. It is nowwidely accepted
that C-fibres are important in regulating cough, and that anaes-
thesia somehow suppresses neuronal conductance. This is an
important limiting factor in the anaesthetised preparation, as C-
fibres currently provide themost promising pharmacological target
for novel anti-tussive therapies.

More recently, in vivo cough experiments have been conducted
using conscious guinea pigs, and a great deal of information has
been gathered with regards to the pharmacological modulation of
cough in this way. Briefly, conscious guinea pigs are placed unre-
strained in to a Perspex chamber prior to exposure to aerosols of
tussive stimuli. A tussive effort is determined by the change in
airflow in the box (measured and recorded via software), and by the
distinctive sound (recorded via microphone) and posture adopted
by the animal [36e38,48,50,52]. In this way, the number of coughs
generated by a tussive stimulus can be counted, and augmentation
or inhibition of the response can be determined with pharmaco-
logical intervention, or during induction of a pathological state (see
disease models section). The guinea pig tussive reflex has also been
shown to display similarities to human cough [4,33,37].

3.5. Disease models

The vast majority of research on cough has been conducted on
naïve animals. This research is inherently important, as we need to
understand how the cough reflex works in the healthy state in
order to then determine what alterations occur that lead to
excessive cough in pathological states. Advances have recently been
made in the area of disease research which are beginning to clarify
the phenotypic, genotypic and physiological changes that may lead
to chronic cough. These studies have been conducted in animal
models of smoke inhalation, viral infection, and allergy. On the
whole these models demonstrate an increase in cough reflex
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sensitivity to tussive agents like capsaicin rather than an increase in
spontaneous coughs as guinea pigs do not appear to cough unless
challenged with a tussive agent.

Sub-chronic (up to two weeks) [55e58] and chronic models (90
days) [59] of cigarette smoke exposure have been successfully used
to induce enhanced cough reflexes upon subsequent stimulation
with tussive agonists (mainly capsaicin). In these studies, animals
were placed unrestrained in to a chamber and exposed to smoke or
room air for a defined number of cigarettes or period of time. These
studies successfully induced hypersensitivity to tussive stimuli in
guinea pigs and as such may be useful as a model of enhanced
cough in the context of smoking related diseases. However, the sub
chronic smoke exposure is unlikely to have induced some of the
more permanent and severe physiological changes in the lungs that
are associated with diseases such as emphysema and COPD, for
example inflammation, destruction of lung parenchyma and
fibrosis. The authors of this paper are aware of only one study
looking at chronic exposure to cigarette smoke, probably due to the
prohibitive costs involved with long-term research. Histological
examination of the tracheal epithelium in these animals revealed
airway inflammation, and an increase in the number of alveolar
macrophages and eosinophils which was associated with a similar
increase in coughs to capsaicin challenge as had been seen in the
sub chronic model [59]. The results of these studies could therefore
be consistent with smoking related pathologies in the clinic.

Upper respiratory tract viral infection is one of the most com-
mon causes of cough hypersensitivity. Even in healthy individuals,
cough due to viral infection may last for several days or weeks after
other symptoms have ceased and the infection has been cleared.
This phenomenon is termed post-viral cough and suggests a tran-
sient sensitisation of the respiratory tract that may or may not
possess immunomodulatory benefits. It is also hypothesised that
chronic idiopathic cough may stem from long-term irreversible
potentiation of the cough reflex following a respiratory tract
infection which has long since been cleared. This could account for
the fact that chronic idiopathic cough patients do not present with
any underlying condition. Moreover, viral models are important to
study the possible pathologies associated with virally-induced
asthma and COPD exacerbations, which are associated with a
high rate of hospital admissions in patients [60]. Animal models
developed to investigate viral infections involve intranasal inocu-
lation with virus-containing solution or vehicle, normally under
anaesthesia. The animals are then left to recover while viral
infection is allowed to develop over several days. Two different
guinea pig models of viral infection (sendai virus and parainfluenza
3 virus) have been observed to cause phenotypical changes in
airway afferent nerve fibres, and enhanced cough responses to
capsaicin [44,61].

The guinea pig model of asthma is one of the oldest used to
investigate allergic airway responses. The standardmodel of allergy
is to sensitise and challenge animals with ovalbumin, which gen-
erates eosinophilia and increased airway responsiveness, similar to
an asthmatic phenotype [62]. It has also been shown that there are
similarities between guinea pig and human airways in the allergic
response to methacholine, histamine and allergen challenge
following sensitisation [62]. However, differences also exist,
including the response to leukotriene challenge, and the fact that
guinea pigs produce mainly immunoglobulin G1 antibodies, in
contrast to immunoglobulin E1 in humans. Furthermore, there are
multiple methodologies used with respect to sensitisation, route
and duration of challenge, which may affect the endpoint mea-
surements. Despite these differences in approach, the guinea pig
model of allergy has been shown to induce phenotypical changes in
the nerve fibres that mediate cough [45e47], which may lead to
cough hypersensitivity.
3.6. Clinical trials

The lack of success in clinical trials investigating promising anti-
tussive targets which were identified using some of the above ani-
mal models has led to the perception that these models are not
predictive of human cough. However, the vast majority of clinical
trials investigating the cough reflex are not conducted under ideal
conditions. Some of the main underlying problems with clinical
trials are that cough is rarely the primary endpoint of the study, that
cough is not quantitatively or objectively measured, subject
numbers are too small to provide appropriate statistical power, and
that many trials do not include the appropriate controls. Further-
more, there aremore restrictions placed on clinical trials in terms of
dose, route of administration, and CNS penetration of potential anti-
tussive therapies. It is alsoworth considering that antagonist studies
in animal models are usually carried out on healthy animals;
whereas some clinical trials attempt to treat cough in patients
suffering a variety of respiratory pathologies. This is difficult not
only in terms of diagnosis of the respiratory pathology and grouping
of patients (especially in the case of co-morbidities), but we need to
consider that any potential beneficial effect in one group of subjects
may be masked by the lack of effect in another group.

Classically, clinical trials investigating potential anti-tussives
have been conducted either qualitatively via a series of question-
naires based on an individual’s perception of their cough using
visual scales; or quantitatively using cough sensitivity to a partic-
ular tussive ligand (usually capsaicin or citric acid) where the
outcome measure is the concentration of pro-tussive stimulus
required to cause either two (C2) or five (C5) coughs. Using sub-
jective measures of cough introduces large amounts of bias, as the
outcome relies on the perception of individuals, which can be
affected by a number of environmental factors and are inherently
unreliable. Moreover, determining the number of coughs induced
by inhaled substances such as citric acid or capsaicin may not be
applicable to real-world situations. This is especially true for
chronic coughers where excessive cough may be caused by the
release of endogenous mediators. However, a non-invasive objec-
tive cough monitor was recently developed which measures cough
sounds that are recorded and subsequently quantified. This objec-
tive 24 h monitoring of cough could provide more constructive and
less biased information on cough severity and the effectiveness of
anti-tussive treatments in a real-world setting, which may be more
useful in identifying new therapies [63].

4. Transient receptor potential ion channels and cough:
history and recent developments

The original Trp channel was isolated from the drosophila fly,
and named for its transient rather than sustained response to
bright light [64]. Since then 28mammalian TRP channels have been
discovered, which are activated by intracellular and extracellular
messengers, chemical compounds, mechanical stimuli, tempera-
ture changes and osmotic stress [65]. Many of the TRP channels
have been linked to sensory perception, and are associated with the
pathogenesis of a range of diseases including respiratory pathol-
ogies such as COPD, asthma, cancer and cystic fibrosis [19,66e68].
As such, a great deal of research has recently focused on the TRPs as
pharmacological targets (Fig. 2).

Several TRPs are expressed in the airways, and modulate
inflammation, airway smoothmuscle tone, and activation of sensory
afferents [69,70]. Specifically, the TRPA1 and TRPV1 ion channels
have an established role in cough. TRPV1 (previously Vanilloid Re-
ceptor 1, or VR1)was cloned and characterised in 1997 [19], andwas
the first TRP to be identified as a mediator of the tussive reflex [34].
Like other TRP channels, TRPV1 is a polymodal sensor that is



Fig. 2. Schematic of the principal ion channels acting as chemosensors in airway sensory neurons: Transient Receptor Potential Vanilloid 1 (TRPV1); Transient Receptor Potential
Ankyrin 1 (TRPA1); Transient receptor potential vanilloid 4 (TRPV4); Acid sensing ion channels (ASIC); Transient receptor potential melastatin 8 (TRPM8). Substances known as
directly activators of the channels are displayed on the right. Known indirect activators of the channels which bind G protein coupled receptors (GPCR) leading to activation of TRP
channels via production of diacylglycerol (DAG) and activation of Protein Kinase C (PKC) by phospholipase C (PLC) are indicated on the left of the figure. The dashed lines indicate the
fact that the TRPA1 and TRPV4 ion channels are also purported to sense changes in pH.
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activated byadiverse range of agonists. These includedirect agonists
such as capsaicin [19], heat [19], low pH [71], and anandamide [72e
74]; and indirect agonistswhich bind toGprotein-coupled receptors
(GPCRs) on the cell membrane and initiate intracellular signalling
cascades that activate TRP channels. Indirect agonists include the
inflammatory mediators bradykinin [50,75,76], and prostanoids
such as Prostaglandin E2 (PGE2) [50,77]. Two well-known TRPV1
agonists, capsaicin and citric acid, are powerful tussive agentswhich
reliably produce cough in both animals and humans, and these
stimulants are regularly used in clinical assessment of cough sensi-
tivity [2,4,9,33e36,78]. By contrast, TRPA1 (formerly ANKTM1) was
first isolated from human fibroblasts in 1999 [79] and later found to
be expressed in a subset of TRPV1-expressing small diameter noci-
ceptive neurons [80,81]. In 2009 it was discovered that activation of
the TRPA1 ion channel also causes cough in humans and animals
[37,38]. Thisfinding could be of particular significance becausemany
of the chemicals that are known to activate TRPA1 are noxious res-
piratory irritants, for example constituents of pollutants such as
diesel exhaust, wood and cigarette smoke, burning vegetation, and
isocyanates which have been linked to the late asthmatic response
[20,82,83]. Similar to TRPV1, TRPA1 is activated by endogenous
substances released during inflammation (bradykinin and PGE2 via
GPCR activation) and oxidation (4-hydroxy-nonenal, 4-oxynonenal)
[20,22,23,50,80,84e86].

In response to tissue injury and inflammation, the body releases
endogenous compounds that mediate a wide range of effects. This
response is thought to form the basis for development of hyper-
sensitisation in disease states. For example, release of inflammatory
mediators such as PGE2 and bradykinin in the airways may lead to
sensitisation of the cough response to tussive stimuli [87,88]. In
agreement with this hypothesis, PGE2 and bradykinin have been
shown to sensitise human and animal cough responses to TRPV1
irritants and enhance sensory nerve fibre responses in vitro [87e
91]. Notably, PGE2 and bradykinin also cause cough in conscious
animals and humans when inhaled as an aerosol [52,86,92,93]. This
suggests that these irritants are not only sensitising the cough re-
flex, but are capable of activating it. Therefore, it is possible that
enhanced release of endogenous ligands during disease states may
lead to levels high enough within the lungs to activate the tussive
reflex without the need for an outside stimulus [50]. This is sup-
ported by data from patients taking angiotensin-converting
enzyme inhibitors, who experience excessive cough apparently
due to reduced breakdown (and therefore accumulation) of bra-
dykinin [88].

As indicated above, PGE2 and bradykinin bind to GPCRs. GPCRs
are a family of receptors that initiate a diverse range of intracellular
signalling cascades depending on what G-protein the receptor is
coupled to. PGE2 has been shown to cause airway nerve activation
and cough via the EP3 receptor [52]; and bradykinin via the B2 re-
ceptor in guinea pigs and humans [50]. However, some species
differences do occur, for example in a murine model of isolated
sensory nerve depolarisation both the B1 and B2 receptors were
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shown to be important for bradykinin-induced stimulation [50].
Irrespective of the GPCR or signalling cascade stimulated, an ion
channel would subsequently need to be activated in order to
generate nerve firing. Indeed, it was recently shown that the tussive
response to both PGE2 and bradykinin are partially mediated by the
TRPA1 and TRPV1 ion channels [50], leading the authors to propose
that TRPA1 and TRPV1 could be thought of as ‘common effectors’ of
the tussive response to endogenousmediators. Interestingly, TRPA1
or TRPV1 antagonism produced a much greater inhibition of the
PGE2 or bradykinin-induced cough reflex in vivo than would have
been expected from the approximately 50% inhibition observed on
isolated sensory nerves in vitro [50]. This could be due to the nature
of the peripheral nervous system, whereby inhibition of membrane
depolarisation by 50% may lead to a much greater inhibition of
action potential discharge (due to their all-or-nothing character-
istic) and therefore a substantially reduced ‘cough’ signal being sent
to the CNS. Alternately, there could be co-operation between the
TRPA1 and TRPV1 ion channels in vivo that is not being observed in
the in vitro preparations. In any case, the use of a single inhibitor
may allow for reduced tussive responses while still preserving the
overall ability to respond to tussive stimuli; in contrast to combined
TRPA1/TRPV1 inhibitors which would wipe out the cough response
to these endogenous tussive agonists.

A decrease in lung pH has also been observed in respiratory
pathologies associated with an enhanced cough reflex [94,95]. The
balance of pH within the body is normally maintained within a
narrow range in healthy individuals, and it is therefore not sur-
prising that acidic stimuli activate C-fibre and Ad nerve fibres
leading to activation of the cough reflex [4,28,34,42,76]. Low pH-
induced cough is known to be partially mediated via the TRPV1
ion channel [34,96,97]. However, it has yet to be definitively
established what other ion channel(s) also play a role. The most
likely candidates are members of the Acid Sensing Ion Channel
(ASIC) family, and there is some in vitro evidence supporting this
claim [96,97]. However, the TRPA1 and TRPV4 ion channels are also
purported to sense changes in pH [98,99]. Research investigating
the tussive effects of low pH is complicated by the likelihood that
different levels of pH may be mediated by different ion channels
(akin to temperature where different TRP channels are activated by
certain ranges of heat or cold). This is compounded by the inability
to determine what level of pH is actually reaching the nerve end-
ings within the airways, due to the ability of the respiratory tract to
buffer inhaled substances. Moreover, the tools currently available
which modulate the ASIC ion channels are inadequate.

Further to the above discussion, it is still unclear whether there
is cooperation between TRPV1 and TRPA1 channels. Both are acti-
vated by tussive agents and seem to be commonly activated
downstream of GPCR coupling, so it could be possible that they act
in concert to elicit functional responses. It has also been suggested
that TRPA1 channels can be activated by an overflow of calcium in
the locale of other activated channels or via release of intracellular
stores from the endoplasmic reticulum, without TRPA1 ever being
modified by a reactive ligand [100,101]. There is evidence for this
type of coupling with bradykinin signalling in trigeminal neurons
[20]. However, whether TRP channel co-operation exists in gener-
ating a cough reflex has yet to be determined.

5. Other TRPs that could be involved in the cough reflex

There is an expanding body of literature investigating the role of
TRPA1 and TRPV1 in modulating airway sensory afferents and the
tussive reflex [37,38,43,47,50,69,102]. By contrast, the role of other
TRP channels in the airways is relatively unexplored. TRPM8 (Mel-
astatin 8) is a temperature sensor which is activated in the ranges of
innocuous (26e15 �C) to noxious cold (<15 �C), and by cooling
compounds such as menthol and icilin [103,104]. TRPM8 has been
suggested to be the ion channel responsible for cough and airway
constriction associatedwith inhaling cold air, however this has yet to
be substantiated [104,105]. There is also conflicting data on the anti-
tussive effects of TRPM8,with some studies suggesting thatmenthol
inhibits the cough reflex [107e109]. Though its efficacy as an anti-
tussive is uncertain, menthol is widely used in over-the-counter
cough therapies [106e109]. The conflicting data on TRPM8 is
confounded by the lack of selective tools, as both menthol and icilin
are known to activate TRPA1 at higher concentrations. There have
recently been a number of novel TRPM8 inhibitors developed, but
these compounds are yet to be thoroughly validated [106].

The TRPV4 ion channel has also recently become of interest in
the respiratory field, as there are polymorphisms of this channel
associated with both COPD and cystic fibrosis [66,68]. TRPV4 is
expressed in airway tissues, including airway smooth muscle, the
alveolar wall, lung tissue, lung vessels and inflammatory cells [110e
113]. Moreover, TRPV4 is expressed in DRG neurons [114], sug-
gesting that it may also be expressed on the sensory nerve endings
of the airway. TRPV4 was originally characterised as a sensor of
osmotic and mechanical stimuli [115,116]. Similar to TRPA1 and
TRPV1, TRPV4 is also known to be sensitised by PAR2 signalling,
resulting in increased sensitivity to painful mechanical stimuli
[114]. This data suggests that dysfunction of TRPV4may be involved
in the pathogenesis of airway disease, and could play a role in
sensitisation of afferent nerves, which could hold implications for
cough pathologies.

6. Disease relevance and problems in the clinic

The majority of pre-clinical cough research has thus far focused
on sensory afferents, receptors and ion channels that are mediating
the cough reflex under healthy conditions. However, it is chronic
cough associated with respiratory disease that is driving the call for
novel and effective anti-tussive therapies. Indeed, now that re-
searchers have begun to elucidate the mechanisms that drive the
cough reflex in the healthy state, emphasis has begun to shift to-
wards trying to understand what is changing in disease states to
lead to hypersensitive pathologies. As you would expect, the TRP
ion channels are the main focus of this research.

In pre-clinical models, both chronic and sub-chronic exposure to
cigarette smoke have been observed to cause an increase in the
number of coughs caused by stimulation with capsaicin or citric
acid in guinea pigs in vivo [56e59], which corresponds with
enhanced sensory nerve reactivity to these TRPV1 stimuli in vitro
[58]. Moreover, animal models of viral infection have been shown
to lead to changes in airway nerves and an enhanced cough reflex.
For example, infection of guinea pigs with sendai virus was shown
to induce transient neurokinin expression in the nodose neurons of
large cell body diameter (a feature of non-nociceptive afferents)
and which project nerve fibres to the trachea. Expression of neu-
rokinins is normally a hallmark of nociceptive C-fibre afferents that
also express the TRPV1 ion channel. This is an important discovery,
suggesting that viral infection induces a phenotypic change in the
vagal afferent innervation of the airway, which could lead to an
enhanced cough reflex [44]. Unfortunately cough was not directly
investigated in this study. However, it has recently been shown by
another group that infectionwith parainfluenza 3 virus does indeed
lead to cough hypersensitivity in guinea pigs subsequently exposed
to aerosolised capsaicin [61]. Interestingly, Ye and colleagues
observed significantly enhanced cough sensitivity in the viral
treated group compared to control through to post infection day 42,
even though the viral infection had all-but cleared by this time. This
suggests that the animals developed “post-viral cough” in their
disease model [61]. Similar to viral infection, animal models of
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allergy have shown a phenotypic switch in neurons of large cell
body diameter, which begin to express neurokinins [45]. The same
group also recently observed that Ad-type fibres can be induced to
express TRPV1 ion channels during allergic inflammation [47].
Together the above data paints the picture of a plastic and flexible
peripheral nervous system, which is capable of adapting to its
environment and expanding the range of stimuli capable of acti-
vating certain nerve fibres. This is likely to be important in the
development of chronic pathologies, for which TRPV1 and possibly
other ion channels of the same family appear to play a vital role.

In the clinic it has been established that chronic coughers of
varying aetiologies exhibit hypersensitivity to capsaicin challenge
in comparison to healthy controls. Some of the pathologies linked
to capsaicin hypersensitivity include asthma, COPD, rhinitis, inter-
stitial lung disease and upper respiratory tract infections
[4,9,35,78,117e121]. Moreover, expression of TRPV1 in the lung is
increased in patients who suffer from chronic cough [122]. These
findings implicate TRPV1 in the pathogenesis of chronic cough
associated with respiratory diseases and have highlighted TRPV1 as
a potential novel therapeutic target. However, in clinical trials
investigating TRPV1 antagonists as potential analgesics, it was
discovered that inhibition of this ion channel with certain TRPV1
antagonists causes hyperthermia [123,124]. This is a potentially
confounding effect in the development of TRPV1 therapies, and
there is nowa dedicated search for efficacious TRPV1 inhibitors that
do not affect body temperature [124e126].

TRPA1 has been implicated in pain hypersensitivity [127,128]
and the late asthmatic response [102], though data on an equiva-
lent role for TRPA1 in excessive cough is currently lacking probably
due to the lack of commercially available tools. Clinical trials
investigating TRPA1 as a target for cough are yet to be attempted
due to the poor selectivity and potency of first generation antago-
nists [129]. Similarly, selective antibodies for TRPA1 are not
currently available, and so studies have not yet been conducted to
show if TRPA1 expression changes under pathological conditions
associated with enhanced cough in man. These studies are impor-
tant, as evidence would suggest that TRPA1 will be just as impor-
tant as TRPV1 in cough associated with disease, if not more-so due
to the types of irritant that bind to and activate TRPA1. With the
recent development of better pharmacological tools, studies
investigating the role of TRPA1 in pre-clinical models of cough
pathologies will be a priority, and hopefully clinical trials will be
forthcoming in the near future.
7. Summary

In the last two decades, scientists investigating cough have
made come a long way in understanding the mechanisms driving
this reflex, and how it is being modulated by both endogenous and
exogenous compounds. Most recently, findings have linked TRPA1
and TRPV1 as possible ‘common effectors’ of the tussive response
downstream of GPCR coupling by inflammatory mediators such as
PGE2 and bradykinin. Moreover, a variety of TRP channels as well as
ASICs are proposed to be associated with the sensation of acidic
stimuli (e.g. TRPA1, TRPV1 and TRPV4). Pre-clinical and clinical
evidence continues to demonstrate a role for these ion channels as
potentially important targets for the treatment of cough associated
with respiratory pathologies.
References

[1] Widdicombe J. Neurophysiology of the cough reflex. Eur Respir J 1995;8:
1193e202.

[2] Fuller R, Choudry N. Increased cough reflex associated with angiotensin
converting enzyme inhibitor cough. Br Med J 1987;295:1025e6.
[3] Irwin R, Boulet L, Cloutier M, Fuller R, Gold P, Hoffstein V, et al. Managing
cough as a defense mechanism and as a symptom. Chest 1998;114(2 Suppl.):
133Se81S.

[4] Morice A, Fontana G, Belvisi M, Birring S, Chung K, Dicpinigaitis P, et al. ERS
guidelines on the assessment of cough. Eur Respir J 2007;29:1256e76.

[5] Niimi A, Chung K. Airway inflammation and remodelling changes in patients
with chronic cough: do they tell us about the cause of cough? Pulm Phar-
macol Ther 2004;17:441e6.

[6] Klink ME, Dodge R, Quan SF. The relation of sleep complaints to respiratory
symptoms in a general population. Chest 1994;105:151e4.

[7] Everett CF, Kastelik JA, Thompson RH, Morice AH. Chronic persistent cough
in the community: a questionnaire survey. Cough 2007. http://dx.doi.org/
10.1186/1745-9974-3-5.

[8] Browne WJ, Wood CJ, Desai M, Weller PH. Urinary incontinence in 9e16 year
olds with cystic fibrosis compared to other respiratory conditions and a
normal group. J Cystic Fibrosis 2009;8:50e7.

[9] Karlsson J, Fuller R. Pharmacological regulation of the cough reflex - from
experimental models to antitussive effects in man. Pulm Pharmacol Ther
1999;12:215e28.

[10] Schroeder K, Fahey T. Systematic review of randomised controlled trials of
over the counter cough medicines for acute cough in adults. Br Med J
2002;324:1e6.

[11] Vassilev Z, Chu A, Ruck B, Adams E, Marcus S. Adverse reactions to over-the-
counter cough and cold products among children: the cases managed out of
hospitals. J Clin Pharm Ther 2009;34:313e8.

[12] Reynolds S, Mackenzie A, Spina D, Page C. The pharmacology of cough.
Trends Pharmacol Sci 2004;25:569e76.

[13] Belvisi M, Geppetti P. Cough 7: current and future drugs for the treatment of
chronic cough. Thorax 2004;59:438e40.

[14] McLeod R, Tulshian D, Bolser D, Varty G, Baptista M, Fernandez X, et al. Phar-
macological profile of the NOP agonist and cough suppressing agent
SCH 486757 (8-[Bis(2-Chlorophenyl)Methyl]-3-(2-Pyrimidinyl)-8-Azabicyclo
[3.2.1]Octan-3-Ol) in preclinical models. Eur J Pharmacol 2010;630:112e20.

[15] American Academy of Pediatrics. Use of codeine- and dextromethorphan-
containing cough remedies in children. Pediatrics 1997;99:918e20.

[16] Centre for Disease Control. Infant deaths associated with cough and cold
medicationse two states, 2005. Morbidity Mortality Weekly Rep 2007;56(1):
1e4.

[17] Oh E, Mazzone S, Canning B, Weinreich D. Reflex regulation of airway
sympathetic nerves in guinea-pigs. J Physiol 2006;573:549e64.

[18] Kaufman M, Coleridge H, Coleridge J, Baker D. Bradykinin stimulates afferent
vagal C-fibers in intrapulmonary airways of dogs. J Appl Physiol Resp Environ
Exerc Physiol 1980;48(3):511e7.

[19] Caterina M, Schumacher M, Tominaga M, Rosen T, Levine J, Julius D. The
capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature
1997;389:816e24.

[20] Bautista D, Jordt S, Nikai T, Tsuruda P, Read A, Poblete J, et al. TRPA1 mediates
the inflammatory actions of environmental irritants and proalgesic agents.
Cell 2006;124:1269e82.

[21] Trevisani M, Siemens J, Materazzi S, Bautista D, Nassini R, Campi B, et al. 4-
hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic
inflammation through activation of the irritant receptor TRPA1. Proc Nat
Acad Sci 2007;104:13519e24.

[22] Andersson D, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a
sensory receptor for multiple products of oxidative stress. J Neurosci
2008;28:2485e94.

[23] Taylor-Clark T, McAlexander M, Nassenstein C, Sheardown S, Wilson S,
Thornton J, et al. Relative contributions of TRPA1 and TRPV1 channels in the
activation of vagal bronchopulmonary C-fibres by the endogenous autacoid
4-oxononenal. J Physiol 2008;586:3447e59.

[24] Bessac B, Sivula M, von Hehn C, Escalera J, Cohn L, Jordt S. TRPA1 is a major
oxidant sensor in murine airway sensory neurons. J Clin Invest 2008;118:
1899e910.

[25] Kummer W, Fischer A, Kurkowski R, Heym C. The sensory and sympathetic
innervation of guinea-pig lung and trachea as studied by retrograde
neuronal tracing and double-labelling immunohistochemistry. Neurosci
1992;49:715e37.

[26] Widdicombe J. Neuroregulation of cough: implications for drug therapy. Curr
Opin Pharmacol 2002;2:256e63.

[27] Undem B, Chuaychoo B, Lee M, Weinreich D, Myers A, Kollarik M. Subtypes
of vagal afferent C-fibres in guinea-pig lungs. J Physiol 2004;556:905e17.

[28] Chou Y, Scarupa M, Mori N, Canning B. Differential effects of airway afferent
nerve subtypes on cough and respiration in anesthetized guinea pigs. Am J
Physiol Reg Int Comp Physiol 2008;295:R1572e84.

[29] Bergren DR. Sensory receptor activation by mediators of defense reflexes in
guinea-pig lungs. Respir Physiol 1997;108:195e204.

[30] Taylor-Clark TE, Kollarik M, MacGlashan Jr DW, Undem BJ. Nasal sensory
nerve populations responding to histamine and capsaicin. J Allergy Clin
Immunol 2005;116:1282e8.

[31] Chuaychoo B, Lee MG, Kollarik M, Undem BJ. Effect of 5-hydroxytryptamine
on vagal C-fiber subtypes in guinea pig lungs. Pulm Pharmacol Ther 2005;18:
269e76.

[32] Chuaychoo B, Lee MG, Kollarik M, Pullmann Jr R, Undem BJ. Evidence for both
adenosine A1 and A2A receptors activating single vagal sensory C-fibres in
guinea pig lungs. J Physiol 2006;575:481e90.

http://dx.doi.org/10.1186/1745-9974-3-5
http://dx.doi.org/10.1186/1745-9974-3-5


M.S. Grace et al. / Pulmonary Pharmacology & Therapeutics 26 (2013) 498e507506
[33] Laude E, Higgins K, Morice A. A comparative study of the effects of citric acid,
capsaicin and resiniferatoxin on the cough challenge in guinea-pig and man.
Pulm Pharmacol 1993;6:171e5.

[34] Lalloo U, Fox A, Belvisi M, Chung K, Barnes P. Capsazepine inhibits cough
induced by capsaicin and citric acid but not by hypertonic saline in guinea
pigs. J Appl Physiol 1995;79:1082e7.

[35] Doherty M, Mister R, Pearson M, Calverley P. Capsaicin responsiveness and
cough in asthma and chronic obstructive pulmonary disease. Thorax
2000;55:643e9.

[36] Trevisani M, Milan A, Gatti R, Zanasi A, Harrison S, Fontana G, et al. An-
titussive activity of iodo-resiniferatoxin in guinea pigs. Thorax 2004;59:
769e72.

[37] Birrell M, Belvisi M, Grace M, Sadofsky L, Faruqi S, Hele D, et al. TRPA1 ag-
onists evoke coughing in guinea pig and human volunteers. Am J Respir Crit
Care Med 2009;180:1042e7.

[38] Andrè E, Gatti R, Trevisani M, Preti D, Baraldi PG, Patacchini R, et al. Transient
receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents.
Br J Pharmacol 2009;158:1621e8.

[39] Tatar M, Webber SE, Widdicombe JG. Lung C-fibre receptor activation and
defensive reflexes in anaesthetized cats. J Physiol 1988;402:411e20.

[40] Tatar M, Sant’Ambrogio G, Sant’Ambrogio F. Laryngeal and tracheobronchial
cough in anesthetized dogs. J Appl Physiol 1994;76:2672e9.

[41] Widdicombe JG. Receptors in the trachea and bronchi of the cat. J Physiol
1954;123:71e104.

[42] Canning B, Mazzone S, Meeker S, Mori N, Reynolds S, Undem B. Identification
of the tracheal and laryngeal afferent neurones mediating cough in anaes-
thetized guinea-pigs. J Physiol 2004;557:543e58.

[43] Canning B, Mori N, Mazzone S. Vagal afferent nerves regulating the cough
reflex. Respir Physiol Neurobiol 2006;152:223e42.

[44] Carr M, Hunter D, Jacoby D, Undem B. Expression of tachykinins in non-
nociceptive vagal afferent neurons during respiratory viral infection in
guinea pigs. A J Respir Crit Care Med 2002;165:1071e5.

[45] Myers A, Kajekar R, Undem B. Allergic inflammation-induced neuropeptide
production in rapidly adapting afferent nerves in guinea pig airways. Am J
Physiol Lung Cell Mol Physiol 2002;282:L775e81.

[46] Zhang G, Lin RL, Wiggers M, Snow DM, Lee LY. Altered expression of TRPV1
and sensitivity to capsaicin in pulmonary myelinated afferents following
chronic airway inflammation in the rat. J Physiol 2008;586:5771e86.

[47] Lieu TM, Myers AC, Meeker S, Undem BJ. TRPV1 induction in airway vagal
low-threshold mechanosensory neurons by allergen challenge and neuro-
trophic factors. Am J Physiol Lung Cell Mol Physiol 2012;302:1941e8.

[48] Lee M, Undem B, Brown C, Carr M. Effect of nociceptin in acid-evoked cough
and airway sensory nerve activation in guinea pigs. Am J Respir Crit Care
Med 2006;173:271e5.

[49] Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan D, Braun A,
et al. Expression and function of the ion channel TRPA1 in vagal afferent
nerves innervating mouse lungs. J Physiol 2008;586:1595e604.

[50] Grace MS, Birrell MA, Dubuis E, Maher SA, Belvisi MG. Transient receptor
potential ion channels mediate the tussive response to prostaglandin E2 and
bradykinin. Thorax 2012;67:891e900.

[51] Kwong K, Lee LY. Prostaglandin E2 potentiates a TTX-resistant sodium cur-
rent in rat capsaicin-sensitive vagal pulmonary sensory neurones. J Physiol
2005;564:437e50.

[52] Maher S, Birrell M, Belvisi M. Prostaglandin E2 mediates cough via the EP3
receptor: implications for future disease therapy. Am J Respir Crit Care Med
2009;180:923e8.

[53] Fox AJ, Barnes PJ, Urban L, Dray A. An in vitro study of the properties of single
fibre afferents innervating guinea-pig airways. J Physiol 1993;469:21e35.

[54] Adcock JJ, Douglas GJ, Garabette M, Gascoigne M, Beatch G, Walker M, et al.
RSD931, a novel anti-tussive agent acting on airway sensory nerves. Br J
Pharmacol 2003;138:407e16.

[55] Karlsson JA, Sant’Ambrogio G, Widdicombe J. Afferent neural pathways in
cough and reflex bronchoconstriction. J Appl Physiol 1988;65:1007e23.

[56] Karlsson JA, Zackrisson C, Lundberg JM. Hyperresponsiveness to tussive
stimuli in cigarette smoke exposed guinea-pigs: a role for capsaicin-
sensitive, calcitonin gene-related peptide-containing nerves. Acta Physiol
Scand 1991;141:445e54.

[57] Lewis C, Ambrose C, Banner K, Battram C, Butler K, Giddings J, et al. Animal
models of cough: literature review and presentation of a novel cigarette
smoke-enhanced cough model in the guinea-pig. Pulm Pharmacol Ther
2007;20:325e33.

[58] Grace MS, Birrell MA, Dubuis E, Belvisi MG. Tobacco smoke induced cough:
mechanisms driving acute and chronic cough pathology. In:
Moldoveanu AM, editor. Advanced topics in environmental health and air
pollution case studies. 2nd ed. In Tech; 2011. p. 97e120.

[59] Bergren DR. Chronic tobacco smoke exposure increases cough to capsaicin in
awake guinea pigs. Respir Physiol 2001;126:127e40.

[60] Johnston NW. The similarities and differences of epidemic cycles of chronic
obstructive pulmonary disease and asthma exacerbations. Proc Am Thorac
Soc 2007;4:591e6.

[61] Ye XM, Zhong NS, Liu LC, Chen RC. Cough reflex sensitivity is increased in
guinea pigs with parainfluenza virus infection. Exper Lung Res 2011;37:
186e94.

[62] Zosky GR, Sly PD. Animal models of asthma. Clin Exper Allergy 2007;37:
973e88.
[63] Kelsall A, Houghton LA, Jones H, Decalmer S, McGuinness K, Smith JA. A novel
approach to studying the relationship between subjective and objective
measures of cough. Chest 2011;139:569e75.

[64] Montell C, Rubin G. Molecular characterization of the Drosophila trp locus: a
putative integral membrane protein required for phototransduction. Neuron
1989;2:1313e23.

[65] Clapham D. TRP channels as cellular sensors. Nature 2003;426:517e24.
[66] Arniges M, Vasquez E, Fernandez-Fernandez JM, Valverde MA. Swelling-

activated Ca2þ entry via TRPV4 channel is defective in cystic fibrosis airway
epithelia. J Biol Chem 2004;279:54062e8.

[67] Nilius B. TRP channels in disease. Biochim Biophys Acta 2007;1772:
805e12.

[68] Zhu G, Gulsvik A, Bakke P, Ghatta S, AndersonW, Lomas DA, et al. Association
of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease.
Hum Mol Genet 2009;18:2053e62.

[69] Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway
chemosensation and reflex control. Physiology 2008;23:60e70.

[70] Nassini R, Materazzi S, De Siena G, De Cesaris F, Geppetti P. Transient re-
ceptor potential channels as novel drug targets in respiratory diseases. Curr
Opin Invest Drugs 2010;11:535e42.

[71] Jordt S, Tominaga M, Julius D. Acid potentiation of the capsaicin receptor
determined by a key extracellular site. Proc Nat Acad Sci USA 2000;97:
8134e9.

[72] Zygmunt P, Petersson J, Andersson D, Chuang H, Sørgård M, Di Marzo V, et al.
Vanilloid receptors on sensory nerves mediate the vasodilator action of
anandamide. Nature 1999;400:452e7.

[73] Jia Y, McLeod R, Wang X, Parra L, Egan R, Hey J. Anandamide induces cough
in conscious guinea-pigs through VR1 receptors. Br J Pharmacol 2002;137:
831e6.

[74] Kagaya M, Lamb J, Robbins J, Page C, Spina D. Characterization of the anan-
damide induced depolarization of guinea-pig isolated vagus nerve. Br J
Pharmacol 2002;137:39e48.

[75] Carr M, Kollarik M, Meeker S, Undem B. A role for TRPV1 in bradykinin-
induced excitation of vagal airway afferent nerve terminals. J Pharmacol
Exper Ther 2003;304:1275e9.

[76] Kollarik M, Undem B. Activation of bronchopulmonary vagal afferent nerves
with bradykinin, acid and vanilloid receptor agonists in wild-type and
TRPV1�/� mice. J Physiol 2004;555:115e23.

[77] Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, et al. Sensitization
of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prosta-
glandins. Mol Pain 2005;1(3). http://dx.doi.org/10.1186/1744-8069-1-3.

[78] Morice A, Kastelik J, Thompson R. Cough challenge in the assessment of
cough reflex. Br J Clin Pharmacol 2001;52:365e75.

[79] Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with trans-
membrane domains is specifically lost after oncogenic transformation of
human fibroblasts. J Biol Chem 1999;274:7325e33.

[80] Story G, Peier A, Reeve A, Eid S, Mosbacher J, Hricik T, et al. ANKTM1, a TRP-
like channel expressed in nociceptive neurons, is activated by cold tem-
peratures. Cell 2003;112:819e29.

[81] Bautista D, Movahed P, Hinman A, Axelsson H, Sterner O, Högestätt E, et al.
Pungent products from garlic activate the sensory ion channel TRPA1. Proc
Nat Acad Sci USA 2005;102:12248e52.

[82] Finotto S, Fabbri L, Rado V, Mapp C, Maestrelli P. Increase in numbers of CD8
positive lymphocytes and eosinophils in peripheral blood of subjects with
late asthmatic reactions induced by toluene diisocyanate. Br J Indust Med
1991;48:116e21.

[83] Vandenplas O, Malo J, Saetta M, Mapp C, Fabbri L. Occupational asthma and
extrinsic alveolitis due to isocyanates: current status and perspectives. Br J
Indust Med 1993;50:213e28.

[84] Bandell M, Story G, Hwang S, Viswanath V, Eid S, Petrus M, et al. Noxious
cold ion channel TRPA1 is activated by pungent compounds and bradykinin.
Neuron 2004;41:849e57.

[85] Macpherson L, Dubin A, Evans M, Marr F, Schultz P, Cravatt B, et al. Noxious
compounds activate TRPA1 ion channels through covalent modification of
cysteines. Nature 2007;445:541e5.

[86] Taylor-Clark T, Undem B, MacGlashan D, Ghatta S, Carr M, McAlexander M.
Prostaglandin-induced activation of nociceptive neurons via direct interac-
tion with transient receptor potential A1 (TRPA1). Mol Pharmacol 2008;73:
274e81.

[87] Choudry N, Fuller R, Pride N. Sensitivity of the human cough reflex: effect of
inflammatory mediators prostaglandin E2, bradykinin, and histamine. Am
Rev Respir Dis 1989;140:137e41.

[88] Fox A, Lalloo U, Belvisi M, Bernareggi M, Chung K, Barnes P. Bradykinin-
evoked sensitization of airway sensory nerves: a mechanism for ACE-
inhibitor cough. Nat Med 1996;2:814e7.

[89] Ho C, Gu Q, Hong J, Lee L. Prostaglandin E2 enhances chemical and me-
chanical sensitivities of pulmonary C fibers in the rat. A J Respir Crit Care
Med 2000;162:528e33.

[90] Hwang S, Oh U. Hot channels in airways: pharmacology of the vanilloid
receptor. Curr Opin Pharmacol 2002;2:235e42.

[91] Lee L, Kwong K, Lin Y, Gu Q. Hypersensitivity of bronchopulmonary C-fibers
induced by airway mucosal inflammation: cellular mechanisms. Pulm
Pharmacol Ther 2002;15:199e204.

[92] Costello J, Dunlop L, Gardiner P. Characteristics of prostaglandin induced
cough in man. Br J Clin Pharmacol 1985;20:355e9.

http://dx.doi.org/10.1186/1744-8069-1-3


M.S. Grace et al. / Pulmonary Pharmacology & Therapeutics 26 (2013) 498e507 507
[93] Katsumata U, Kiyohisa S, Ukiie Y, Sasaki H, Takishima T. Bradykinin-induced
cough reflex markedly increases in patients with cough associated with
captopril and enalapril. Tohoku J Exper Med 1991;164:103e9.

[94] Hunt J, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills T, et al. Endoge-
nous airway acidification: implications for asthma pathophysiology. Am J
Respir Crit Care Med 2000;161:694e9.

[95] Kostikas K, Papatheodorou G, Ganas K, Psathakis K, Panagou P, Loukides S.
pH in expired breath condensate of patients with inflammatory airway
diseases. Am J Respir Crit Care Med 2002;165:1364e70.

[96] Kollarik M, Undem B. Mechanisms of acid-induced activation of airway
afferent nerve fibres in guinea-pig. J Physiol 2002;543:591e600.

[97] Kollarik M, Ru F, Undem B. Acid-sensitive vagal sensory pathways and cough.
Pulm Pharmacol Ther 2007;20:402e11.

[98] Suzuki M, Mizuno A, Kodaira K, Imai M. Impaired pressure sensation in mice
lacking TRPV4. J Biol Chem 2003;278:22664e8.

[99] Wang Y, Chang R, Allgood S, Silver W, Liman E. A TRPA1-dependent
mechanism for the pungent sensation of weak acids. J Gen Physiol
2011;137:493e505.

[100] Zurborg S, Yurgionas B, Jira J, Caspani O, Heppenstall P. Direct activation of
the ion channel TRPA1 by Ca2þ. Nat Neurosci 2007;10:277e9.

[101] Cavanaugh E, Simkin D, Kim D. Activation of transient receptor potential A1
channels by mustard oil, tetrahydrocannabinol and Ca2þ reveals different
functional channel states. Neuroscience 2008;154:1467e76.

[102] Raemdonck K, de Alba J, Birrell MA, Grace MG, Maher SA, Irvin CG, et al.
A role for sensory nerves in the late asthmatic response. Thorax 2012;67:
19e25.

[103] McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor
reveals a general role for TRP channels in thermosensation. Nature
2002;416:52e8.

[104] Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, et al.
A TRP channel that senses cold stimuli and menthol. Cell 2002;108:705e15.

[105] Xing H, Ling JX, Chen M, Johnson RD, Tominaga M, Wang CY, et al. TRPM8
mechanism of autonomic nerve response to cold in respiratory airway. Mol
Pain 2008;4. http://dx.doi.org/10.1186/1744-8069-4-22.

[106] Preti D, Szallasi A, Patacchini R. TRP channels as therapeutic targets in airway
disorders: a patent review. Expert Opin Ther Patents 2012;22:663e95.

[107] Laude EA, Morice AH, Grattan TJ. The antitussive effects of menthol, camphor
and cineole in conscious guinea pigs. Pulm Pharmacol 1994;7:179e84.

[108] Morice AH, Marshall AE, Higgins KS, Grattan TJ. Effect of inhaled menthol on
citric acid induced cough in normal subjects. Thorax 1994;49:1024e6.

[109] Kenia P, Houghton T, Beardsmore C. Does inhaling menthol affect nasal
patency or cough? Pediatr Pulmonol 2008;43:532e7.

[110] Jia Y, Wang X, Varty L, Rizzo CA, Yang R, Correll CC, et al. Functional TRPV4
channels are expressed in human airway smooth muscle cells. Am J Physiol
Lung Cell Mol Physiol 2004;287:L272e8.

[111] Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI. Transient
receptor potential vanilloid 4-mediated disruption of the alveolar septal
barrier: a novel mechanism of acute lung injury. Circ Res 2006;99:988e95.

[112 Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T. Cation channels of
the transient receptor potential superfamily: their role in physiological and
pathophysiological processes of smooth muscle cells. Pharmacol Ther
2006;112:744e60.
[113] Yang XR, Lin MJ, McIntosh LS, Sham JS. Functional expression of transient
receptor potential melastatin- and vanilloid-related channels in pulmonary
arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol
2006;290:L1267e76.

[114] Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti SM, Altier C, et al.
Protease-activated receptor 2 sensitises the transient receptor potential
vanilloid 4 ion channel to cause mechanical hyperalgesia. J Physiol
2007;578:715e33.

[115] Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, et al.
Vanilloid receptor-related osmotically activated channel (VR-OAC), a
candidate vertebrate osmoreceptor. Cell 2000;103:525e35.

[116] Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. OTRPC4, a
nonselective cation channel that confers sensitivity to extracellular osmo-
larity. Nat Cell Biol 2000;2:695e702.

[117] O’Connell F, Thomas V, Studham J, Pride N, Fuller R. Capsaicin cough sensi-
tivity increases during upper respiratory infection. Respir Med 1996;90:
279e86.

[118] Higenbottam T. Chronic cough and the cough reflex in common lung dis-
eases. Pulm Pharmacol Ther 2002;15:241e7.

[119] Nakajima T, Nishimura Y, Nishiuma T, Kotani Y, Nakata H, Yokoyama M.
Cough sensitivity in pure cough variant asthma elicited using continuous
capsaicin inhalation. Aller Int 2006;55:149e55.

[120] Plevkova J, Varechova S, Brozmanov M, Tatar M. Testing of cough reflex
sensitivity in children suffering from allergic rhinitis and common cold.
J Physiol Pharmacol 2006;57(Suppl. 4):289e96.

[121] Pecova R, Zucha J, Pec M, Neuschlova M, Hanzel P, Tatar M. Cough reflex
sensitivity testing in seasonal allergic rhinitis patients and healthy volun-
teers. J Physiol Pharmacol 2008;59(Suppl. 6):557e64.

[122] Groneberg D, Niimi A, Dinh Q, Cosio B, Hew M, Fischer A, et al. Increased
expression of transient receptor potential vanilloid-1 in airway nerves of
chronic cough. Am J Respir Crit Care Med 2004;170:1276e80.

[123] Gavva N, Treanor J, Garami A, Fang L, Surapaneni S, Akrami A, et al. Phar-
macological blockade of the vanilloid receptor TRPV1 elicits marked hy-
perthermia in humans. Pain 2008;136:202e10.

[124] Lehto S, Tamir R, Deng H, Klionsky L, Kuang R, Le A, et al. Antihyperalgesic
effects of (R, E)-N-(2-Hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-
1-yl)-4-(trifluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient
receptor potential vanilloid type 1 modulator that does not cause hyper-
thermia in rats. J Pharmacol Exper Ther 2008;326:218e29.

[125] Patapoutian A, Tate S, Woolf C. Transient receptor potential channels: tar-
geting pain at the source. Nat Rev Drug Discov 2009;8:55e68.

[126] Gunthorpe M, Chizh B. Clinical development of TRPV1 antagonists: targeting
a pivotal point in the pain pathway. Drug Discov Today 2009;14:56e67.

[127] Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, et al.
TRPA1 induced in sensory neurons contributes to cold hyperalgesia after
inflammation and nerve injury. J Clin Invest 2005;115:2393e401.

[128] Eid S, Crown E, Moore E, Liang H, Choong K, Dima S, et al. HC-030031, a
TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-
induced mechanical hypersensitivity. Mol Pain 2008;4:48.

[129] Baraldi PG, Preti D, Materazzi S, Geppetti P. Transient receptor potential
Ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-
inflammatory agents. J Med Chem 2010;53:5085e107.

http://dx.doi.org/10.1186/1744-8069-4-22

	Pre-clinical studies in cough research: Role of Transient Receptor Potential (TRP) channels
	1. Introduction
	2. Airway sensory nerves
	2.1. C-fibres
	2.2. Aδ cough receptors
	2.3. Rapidly adapting receptors (RARs) and slowly adapting receptors (SARs)

	3. Methods used to investigate the cough reflex
	3.1. Calcium imaging of sensory ganglia
	3.2. Isolated vagus nerve depolarisation assay
	3.3. Single fibre recording from airway afferents
	3.4. In vivo cough models
	3.5. Disease models
	3.6. Clinical trials

	4. Transient receptor potential ion channels and cough: history and recent developments
	5. Other TRPs that could be involved in the cough reflex
	6. Disease relevance and problems in the clinic
	7. Summary
	References


