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SUMMARY

Acute myeloid leukemia (AML) is organized as a
cellular hierarchy initiated and maintained by a
subset of self-renewing leukemia stem cells (LSC).
We hypothesized that increased CD47 expression
on human AML LSC contributes to pathogenesis by
inhibiting their phagocytosis through the interaction
of CD47 with an inhibitory receptor on phagocytes.
We found that CD47 was more highly expressed on
AML LSC than their normal counterparts, and that
increased CD47 expression predicted worse overall
survival in three independent cohorts of adult AML
patients. Furthermore, blocking monoclonal anti-
bodies directed against CD47 preferentially enabled
phagocytosis of AML LSC and inhibited their engraft-
ment in vivo. Finally, treatment of human AML LSC-
engrafted mice with anti-CD47 antibody depleted
AML and targeted AML LSC. In summary, increased
CD47 expression is an independent, poor prognostic
factor that can be targeted on human AML stem cells
with blocking monoclonal antibodies capable of
enabling phagocytosis of LSC.

INTRODUCTION

According to the cancer stem cell model, tumors are organized

as a cellular hierarchy maintained by a small pool of self-renew-

ing cancer stem cells that must be eliminated in order to eradi-

cate the tumor (Jordan et al., 2006; Reya et al., 2001). For the

development of cancer stem cell-targeted therapies, it is neces-

sary to identify molecules and pathways that are preferentially

expressed in these cancer stem cells and that are critical for

pathogenesis.
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To date, human acute myeloid leukemia (AML) stem cells

(LSC) are the most well studied cancer stem cell population

(Wang and Dick, 2005). AML is an aggressive malignancy with

5 year overall survival between 30%–40%, and much lower for

those over age 65 (Estey and Dohner, 2006; Lowenberg et al.,

1999). Cytogenetic abnormalities are prognostic in adults with

AML; however, up to 50% have a normal karyotype (Byrd

et al., 2002; Grimwade et al., 1998). In these patients, the pres-

ence of specific molecular mutations can provide prognostic

information, particularly internal tandem duplications within the

fms-related tyrosine kinase 3 gene (FLT3-ITD) (Mrozek et al.,

2007; Schlenk et al., 2008).

In published reports assaying a variety of subtypes of AML,

LSC were found to be negative for expression of lineage markers

(Lin�), positive for expression of CD34, and negative for expres-

sion of CD38 (Bonnet and Dick, 1997; Wang and Dick, 2005). We

have recently shown that the Lin�CD34+CD38�CD90� fraction

of human cord blood contains a non-hematopoietic stem cell

(HSC) multipotent progenitor (MPP) and have hypothesized

that this MPP is the cell of origin for human AML (Majeti et al.,

2007). Consistent with this hypothesis, we have shown that

pre-leukemic mutations occur in a clonal HSC population, even-

tually leading to the development of LSC at the MPP stage in

AML or the granulocyte-macrophage progenitor (GMP) stage

in myeloid blast crisis chronic myeloid leukemia (CML) (Jamieson

et al., 2004; Miyamoto et al., 2000; Weissman, 2005).

We report here the identification of higher expression of CD47

on AML LSC compared to their normal counterparts, HSC and

MPP, a finding corroborated by microarray gene expression

analysis (Majeti et al., 2009). CD47 is a widely expressed trans-

membrane protein (Brown and Frazier, 2001). CD47 serves as

the ligand for signal regulatory protein alpha (SIRPa), which is

expressed on phagocytic cells including macrophages and

dendritic cells, that when activated initiates a signal transduction

cascade resulting in inhibition of phagocytosis (Barclay and

Brown, 2006; Blazar et al., 2001; Okazawa et al., 2005;
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Figure 1. CD47 Is More Highly Expressed on AML LSC Compared to Their Normal Counterparts

(A) Relative CD47 expression on normal bone marrow HSC (Lin�CD34+CD38�CD90+) and MPP (Lin�CD34+CD38�CD90�CD45RA�), as well as LSC

(Lin�CD34+CD38�CD90�) and bulk leukemia cells from human AML samples, was determined by flow cytometry. Mean fluorescence intensity was normalized for

cell size and against lineage-positive cells to account for analysis on different days. The same sample of normal bone marrow (red, n = 3) or AML (blue, n = 13) is indi-

cated by the same symbol in the different populations. Normalized mean expression (and range) for each population were as follows: HSC 30.6 (28.8–33.4), MPP 31.8

(30.0–33.4), LSC 59.8 (21.6–104.7), and bulk AML 56.3 (22.1–85.1). The differences between the mean expression of HSC with LSC (p = 0.003), HSC with bulk

leukemia (p = 0.001), MPP with LSC (p = 0.004), and MPP with bulk leukemia (p = 0.002) were statistically significant using a two-sided Student’s t test. The difference

between the mean expression of AML LSC compared to bulk AML was not statistically significant with p = 0.50 using a paired two-sided Student’s t test.

(B) Clinical and molecular characteristics of primary human AML samples manipulated in vitro and/or in vivo.
Oldenborg et al., 2000, 2001). In our own studies, we have found

that expression of mouse CD47 in a human AML cell line inhibits

phagocytosis and facilitates engraftment in immunodeficient

mice, and that CD47 expression on mouse HSC and progenitors

increases upon mobilization and is required for engraftment

upon transplantation (Jaiswal et al., 2009 [this issue of Cell]).

We hypothesize that increased expression of CD47 on human

AML contributes to pathogenesis by inhibiting phagocytosis of

these cells through the interaction of CD47 with SIRPa.

RESULTS

CD47 Is More Highly Expressed on AML LSC Than
on Their Normal Counterparts and Is Associated
with the FLT3-ITD Mutation
In our investigation of several mouse models of myeloid leukemia,

we identified increased expression of CD47 on mouse leukemia
cells compared to normal bone marrow (Jaiswal et al., 2009).

This prompted investigation of CD47 expression on human

AML LSC and their normal counterparts. Using flow cytometry,

CD47 was more highly expressed on multiple specimens of

AML LSC than on normal bone marrow HSC and MPP (Figure 1).

This increased expression extended to the bulk leukemia cells,

which expressed CD47 similarly to the LSC-enriched fraction.

Examination of a subset of these samples indicated that CD47

surface expression correlated with CD47 mRNA expression

(Figure S1 available online). To investigate CD47 expression

across morphologic, cytogenetic, and molecular subgroups of

AML, gene expression data from a previously described cohort

of 285 adult patients were analyzed (Valk et al., 2004). No signif-

icant difference in CD47 expression among FAB (French-Amer-

ican-British) subtypes was found (Figure S2A). In most cytoge-

netic subgroups, CD47 was expressed at similar levels, except

for cases harboring t(8;21)(q22;q22), a favorable risk group that
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had a statistically significant lower CD47 expression (Fig-

ure S2B). In molecularly characterized AML subgroups, no

significant association was found between CD47 expression

and mutations in the tyrosine kinase domain of FLT3 (FLT3-

TKD), overexpression of EVI1, or mutations in CEBPA, NRAS,

or KRAS. However, higher CD47 expression was strongly corre-

lated with the presence of FLT3-ITD (p < 0.001), which is ob-

served in nearly one-third of AML with normal karyotypes and

is associated with worse overall survival (Mrozek et al., 2007;

Schlenk et al., 2008). This finding was separately confirmed in

two independent datasets of 214 and 137 AML patients (Table

S1) (Bullinger et al., 2008; Jongen-Lavrencic et al., 2008).

Identification and Separation of Normal HSC
from Leukemia Cells in the Same Patient Based
on Differential CD47 Expression
In the LSC-enriched Lin�CD34+CD38� fraction of specimen

SU008, a rare population of CD47lo-expressing cells was de-

tected, in addition to the majority CD47hi-expressing cells

(Figure 2A). These populations were isolated by fluorescence-

activated cell sorting (FACS) to >98% purity and either trans-

planted into newborn NOG mice or plated into complete methyl-

cellulose. The CD47hi cells failed to engraft in vivo or form any

colonies in vitro, as can be observed with some AML specimens

(Ailles et al., 1997). However, the CD47lo cells engrafted with

normal myelo-lymphoid hematopoiesis in vivo and formed

numerous morphologically normal myeloid colonies in vitro

(Figures 2B and 2C). This specimen harbored the FLT3-ITD muta-

tion, which was detected in the bulk leukemia cells (Figure 2D).

The purified CD47hi cells contained the FLT3-ITD mutation and

therefore were part of the leukemic clone, whereas the CD47lo

cells did not. Human cells isolated from mice engrafted with the

CD47lo cells contained only wild-type FLT3, indicating that the

CD47lo cells contained normal hematopoietic progenitors.

Increased CD47 Expression in Human AML
Is Associated with Poor Clinical Outcomes
We hypothesized that increased CD47 expression on human AML

contributes to pathogenesis and predicted that AML with higher

expression of CD47 would be associated with worse clinical

outcomes.Consistentwith thishypothesis,analysisofapreviously

described group of 285 adult AML patients with diverse cytoge-

netic and molecular abnormalities (Valk et al., 2004) revealed

that a dichotomous stratification of patients into low CD47 and

high CD47 expression groups was associated with a significantly

increased risk of death in the high expressing group (p = 0.03,

Figures S3A–S3C). The association of overall survival with this

dichotomous stratification of CD47 expression was validated in

a second test cohort of 242 adult patients (Metzeler et al., 2008)

withnormalkaryotypes (NK-AML) (p= 0.01, Figures S3A and S3D).

Applying this stratification to a distinct validation cohort of 137

adult patients with normal karyotypes (Bullinger et al., 2008), we

confirmed the prognostic value of CD47 expression for both

overall and event-free survival (Figure 3). Analysis of clinical

characteristics of the low and high CD47 expression groups in

this cross-validation cohort also identified statistically significant

differences in white blood cell (WBC) count and FLT3-ITD status

and no differences in rates of complete remission and type of
288 Cell 138, 286–299, July 24, 2009 ª2009 Elsevier Inc.
consolidative therapy including allogeneic transplantation

(Table S1). Kaplan-Meier analysis demonstrated that high

CD47 expression at diagnosis was significantly associated

with worse event-free and overall survival (Figures 3A and 3B).

Patients in the low CD47 expression group had a median

event-free survival of 17.1 months compared to 6.8 months in

the high CD47 expression group, corresponding to a hazard ratio

of 1.94 (95% confidence interval 1.30 to 3.77, p = 0.004). For

overall survival, patients in the low CD47 expression group had

a median of 22.1 months compared to 9.1 months in the high

CD47 expression group, corresponding to a hazard ratio of

2.02 (95% confidence interval 1.37 to 4.03, p = 0.002). When

CD47 expression was considered as a continuous variable,

increased expression was also associated with a worse event-

free (p = 0.02) and overall survival (p = 0.02).

Despite the association with FLT3-ITD (Table S1), increased

CD47 expression at diagnosis was significantly associated

with worse event-free and overall survival in the subgroup of

74 patients without FLT3-ITD, when considered either as a binary

classification (Figures 3C and 3D) or as a continuous variable

(p = 0.02 for both event-free and overall survival). In multivariable

analysis considering age, FLT3-ITD status, and CD47 expres-

sion as a continuous variable, increased CD47 expression re-

mained associated with worse event-free survival with a hazard

ratio of 1.33 (95% confidence interval 1.03 to 1.73, p = 0.03) and

overall survival with a hazard ratio of 1.31 (95% confidence

interval 1.00 to 1.71, p = 0.05) (Table S2).

Monoclonal Antibodies Directed against Human CD47
Preferentially Enable Phagocytosis of AML LSC
by Human Macrophages
We hypothesized that increased CD47 expression on human

AML contributes to pathogenesis by inhibiting phagocytosis of

leukemia cells, leading us to predict that disruption of the

CD47-SIRPa interaction with a monoclonal antibody directed

against CD47 will preferentially enable the phagocytosis of

AML LSC. Several anti-human CD47 monoclonal antibodies

have been generated including some capable of blocking the

CD47-SIRPa interaction (B6H12.2 and BRIC126) and others

unable to do so (2D3) (Subramanian et al., 2006). The ability of

these antibodies to enable phagocytosis of AML LSC, or normal

human bone marrow CD34+ cells, by human macrophages

in vitro was tested. Incubation of AML LSC with human macro-

phages in the presence of IgG1 isotype control antibody or

mouse anti-human CD45 IgG1 monoclonal antibody did not

result in significant phagocytosis, as determined by either immu-

nofluorescence microscopy (Figure 4A) or flow cytometry

(Figure S5). However, addition of the blocking anti-CD47 anti-

bodies B6H12.2 and BRIC126, but not the nonblocking anti-

CD47 antibody 2D3, enabled phagocytosis of AML LSC (Figures

4A and 4C). No phagocytosis of normal CD34+ cells was

observed with any of the antibodies (Figure 4C).

Monoclonal Antibodies Directed against Human CD47
or Mouse SIRPa Enable Phagocytosis of AML LSC
by Mouse Macrophages
The CD47-SIRPa interaction has been implicated as a critical

regulator ofxenotransplantation rejection inseveral cross-species



Figure 2. Identification and Separation of Normal HSC From Leukemia Cells in the Same Patient Based on Differential CD47 Expression

(A) CD47 expression on the Lin�CD34+CD38� LSC-enriched fraction of specimen SU008 was determined by flow cytometry. CD47hi- and CD47lo-expressing

cells were identified and purified using FACS. The left panels are gated on lineage-negative cells, while the right panels are gated on Lin�CD34+CD38� cells.

(B) Lin�CD34+CD38�CD47lo and Lin�CD34+CD38�CD47hi cells were plated into complete methylcellulose, capable of supporting the growth of all myeloid colo-

nies. Fourteen days later, myeloid colony formation was determined by morphologic assessment. Representative CFU-G/M (left) and BFU-E (right) are presented.

(C) Lin�CD34+CD38�CD47lo cells were transplanted into two newborn NOG mice. Twelve weeks later, the mice were sacrificed and the bone marrow was

analyzed by flow cytometry for the presence of human CD45+CD33+ myeloid cells and human CD45+CD19+ lymphoid cells.

(D) Normal bone marrow HSC, bulk SU008 leukemia cells, Lin�CD34+CD38�CD47hi cells, Lin�CD34+CD38�CD47lo cells, or human CD45+ cells purified from

the bone marrow of mice engrafted with Lin�CD34+CD38�CD47lo cells were assessed by PCR for the presence of the FLT3-ITD mutation. The wild-type (WT)

FLT3 and the FLT3-ITD products are indicated.
transplants; however, there are conflicting reports of the ability of

CD47 from one species to bind and stimulate SIRPa of a different

species (Ide et al., 2007; Subramanian et al., 2006; Takenaka

et al., 2007). In order to directly assess the effect of inhibiting

the interaction of human CD47 with mouse SIRPa, the in vitro

phagocytosis assays described above were conducted with
mouse macrophages. Incubation of AML LSC with mouse

macrophages in the presence of IgG1 isotype control antibody

or mouse anti-human CD45 IgG1 monoclonal antibody did not

result in significant phagocytosis, as determined by either immu-

nofluorescence microscopy (Figure 4B) or flow cytometry (Fig-

ure S5). However, addition of the blocking anti-CD47 antibodies
Cell 138, 286–299, July 24, 2009 ª2009 Elsevier Inc. 289



Figure 3. Increased CD47 Expression in Human AML Is Associated with Poor Clinical Outcomes

Event-free (A and C) and overall (B and D) survival of 132 AML patients with normal cytogenetics (A and B) and the subset of 74 patients without the FLT3-ITD

mutation (C and D). Patients were stratified into low CD47 and high CD47 expression groups based on an optimal threshold (28% high, 72% low) determined by

microarray analysis from an independent training data set. The significance measures are based on log-likelihood estimates of the p value, when treating the

model with CD47 expression as a binary classification.
B6H12.2 and BRIC126, but not the nonblocking 2D3, enabled

phagocytosis of AML LSC (Figures 4B and 4C). The CD47-SIRPa

interaction was alternatively disrupted by a monoclonal antibody

directed against mouse SIRPa, which also enabled phagocy-

tosis of AML LSC (Figure 4C).

A Monoclonal Antibody Directed against CD47
Does Not Induce Apoptosis of AML LSC
Antibodies directed against CD47 have been shown to directly

induce apoptosis of several malignant hematopoietic cell lines,

as well as primary human chronic lymphocytic leukemia B cells,

only when immobilized or crosslinked (Kikuchi et al., 2004, 2005;

Mateo et al., 1999; Uno et al., 2007). These prior reports raise

the alternative hypothesis that anti-CD47 antibodies induce

apoptosis of AML LSC, which are then recognized by macro-

phages and phagocytosed. In order to assess the ability of the

blocking anti-CD47 antibody B6H12.2 to directly induce

apoptosis of primary human AML LSC, these cells were incu-

bated in vitro with antibodies as described above, but in the
290 Cell 138, 286–299, July 24, 2009 ª2009 Elsevier Inc.
absence of macrophages, and expression of Annexin V was

determined by flow cytometry. No increase in Annexin V-positive

apoptotic cells was detected with the anti-CD47 antibody com-

pared to controls over the time period tested (Figure 4D). Even

when plate-bound, the anti-CD47 antibody did not induce

apoptosis of AML LSC (Figure S7D). Furthermore, phagocytosis

of AML LSC was detected as early as 15 min after incubation

with blocking anti-CD47 antibody, while no apoptosis was de-

tected at 2 hr (Figure S7E). These results indicate that the block-

ing anti-CD47 antibody B6H12.2 does not directly induce

apoptosis of human AML LSC.

A Monoclonal Antibody Directed against Human CD47
Inhibits AML LSC Engraftment and Depletes AML In Vivo
The ability of the blocking anti-CD47 antibody B6H12.2 to target

AML LSC in vivo was tested. First, a pre-coating strategy was

utilized in which AML LSC were purified by FACS and incubated

with IgG1 isotype control, anti-human CD45, or anti-human

CD47 antibody. An aliquot of the cells was analyzed for coating



by staining with a secondary antibody, demonstrating that both

anti-CD45 and anti-CD47 antibody bound the cells (Figure S9A).

The remaining cells were transplanted into newborn NOG mice

that were analyzed for leukemic engraftment 13 weeks later. In

all but one mouse, the isotype control and anti-CD45 antibody-

coated cells exhibited long-term leukemic engraftment; however,

most mice transplanted with cells coated with anti-CD47 anti-

body had no detectable leukemia engraftment (Figure S9B).

Next, a treatment strategy was utilized in which mice were first

engrafted with human AML LSC and then administered daily

intraperitoneal injections of 100 mg of either mouse IgG or anti-

CD47 antibody for 14 days, with leukemic engraftment deter-

mined pre- and post-treatment. Analysis of the peripheral blood

showed near complete elimination of circulating leukemia in

mice treated with anti-CD47 antibody, often after a single

dose, with no response in control mice (Figures 5A and 5B). Simi-

larly, there was a significant reduction in leukemic engraftment in

the bone marrow of mice treated with anti-CD47 antibody, while

leukemic involvement increased in control IgG-treated mice

(Figures 5C, 5D, and S10A). Histologic analysis of the bone

marrow identified monomorphic leukemic blasts in control IgG-

treated mice (Figure 5E, panels 1 and 2) and cleared hypocellular

areas in anti-CD47 antibody-treated mice (Figure 5E, panels 4

and 5). In the bone marrow of some anti-CD47 antibody-treated

mice that contained residual leukemia, macrophages were de-

tected containing phagocytosed pyknotic cells (Figure 5E,

panels 3 and 6).

A Monoclonal Antibody Directed against Mouse CD47
Enables Phagocytosis of Mouse AML and Does Not
Deplete Normal HSC In Vivo
CD47 is expressed at low levels on most normal tissues,

including HSC. In order to investigate the viability of targeting

CD47 as a therapeutic strategy, we utilized a mouse model of

AML and a blocking anti-mouse CD47 monoclonal antibody

(MIAP301) (Oldenborg et al., 2001). A serially transplantable

mouse model of AML was generated by transduction of 5-fluo-

ruracil-treated wild-type bone marrow with a retrovirus encoding

HoxA9 and Meis1, as well as GFP (Lessard and Sauvageau,

2003). These mouse leukemia cells exhibited a 3- to 5-fold

increase in CD47 surface expression compared to normal

bone marrow (data not shown), similar to that observed with

human AML. We first investigated the ability of the blocking

anti-mouse CD47 monoclonal antibody to enable phagocytosis

of the mouse leukemia cells and found that unlike an isotype-

matched control, anti-mouse CD47 antibody enabled phagocy-

tosis of GFP-positive leukemia cells by mouse macrophages

in vitro (Figures 6A and 6B). Next, wild-type mice were adminis-

tered daily intraperitoneal injections of 200 mg of anti-mouse

CD47 antibody for 14 days. This dose resulted in antibody

coating of 100% of total bone marrow cells (data not shown).

The mice appeared grossly normal and were sacrificed at the

end of the treatment course. Analysis of the bone marrow

showed no difference in overall cellularity (data not shown),

percentage of Lin�Kit+Sca+ (KLS) cells (Figure 6C), or per-

centage of HSC (Figure 6D). Complete blood counts showed

no evidence of anemia but did indicate isolated neutropenia in

the anti-CD47 antibody-treated mice (Table S3). Metabolic
panels showed no serological evidence of hepatic or renal

damage (Table S4). Finally, in a pilot experiment, we found that

treatment of mouse leukemia-engrafted mice with the anti-

mouse CD47 antibody resulted in a statistically significant

increased survival compared to control IgG (Figure S11). These

results suggest that targeting CD47 with a blocking monoclonal

antibody yields no unacceptable toxicity and is a viable thera-

peutic strategy.

A Monoclonal Antibody Directed against Human CD47
Enables Phagocytosis of AML In Vivo and Targets
AML LSC
The in vivo mechanism of the anti-human CD47 antibody was

investigated using two approaches to determine if the blocking

B6H12.2 anti-CD47 antibody eliminates human AML in vivo by

enabling phagocytosis of these cells. First, primary human

AML LSC were transduced with a lentivirus expressing GFP

and transplanted into NOG mice. Engrafted mice were treated

with a single dose of mouse IgG or anti-CD47 antibody, and 4 hr

later bone marrow, spleen, and liver were examined by flow

cytometry for the presence of GFP-positive human leukemia cells

within F4/80-positive mouse phagocytes. Unlike IgG control-

treated mice, human GFP+ AML cells were detected within

phagocytes from all three tissues in anti-CD47-treated mice

(Figures 7A and 7B). In the second experiment, mouse phago-

cytes were depleted in human AML LSC-engrafted mice prior

to treatment with anti-CD47 antibody by administering liposomal

clodronate, which accumulates in lysosomes resulting in death of

phagocytes (Figure S12A). Depletion of phagocytes inhibited the

ability of anti-CD47 antibody to eliminate human AML from both

the peripheral blood and bone marrow in vivo (Figure 7C).

Finally, in vivo targeting of AML LSC was investigated. First,

the percentage of CD34+ LSC-enriched human leukemia cells

present in the bone marrow after treatment was determined by

flow cytometry. Treatment with anti-CD47 antibody resulted in

a statistically significant decrease in the percentage of human

CD34+ leukemia cells remaining in the bone marrow after treat-

ment (Figures 7D and S10B). Next, targeting of AML LSC was

functionally assessed by secondary transplantation of bone

marrow from IgG control or anti-CD47 antibody-treated mice.

Secondary mice transplanted from IgG-treated mice engrafted

human leukemia in the peripheral blood (Figure S13) and bone

marrow (Figure 7E). However, secondary mice transplanted

from anti-CD47-treated mice developed no engraftment in the

blood or marrow, which could be the result of in vivo antibody

coating with anti-CD47. Regardless, the lack of secondary

engraftment clearly indicates that treatment with anti-CD47

antibody targeted AML LSC in vivo.

DISCUSSION

We report here the identification of higher expression of CD47 on

AML LSC compared to their normal counterparts and hypothe-

size that increased expression of CD47 on human AML contrib-

utes to pathogenesis by inhibiting phagocytosis of these cells

through the interaction of CD47 with SIRPa (Figure S14A).

Consistent with this hypothesis, we demonstrate that increased

expression of CD47 in human AML is associated with decreased
Cell 138, 286–299, July 24, 2009 ª2009 Elsevier Inc. 291



Figure 4. Monoclonal Antibodies Directed against Human CD47 Preferentially Enable Phagocytosis of Human AML LSC by Human and

Mouse Macrophages In Vitro

(A and B) CFSE-labeled AML LSC were incubated with human peripheral blood-derived macrophages (A) or mouse bone marrow-derived macrophages (B) in the

presence of IgG1 isotype control, anti-CD45 IgG1, or anti-CD47 (B6H12.2) IgG1 antibody. These cells were assessed by immunofluorescence microscopy for the

presence of fluorescently labeled LSC within the macrophages (indicated by arrows).

(C) CFSE-labeled AML LSC or normal bone marrow CD34+ cells were incubated with human (left) or mouse (right) macrophages in the presence of the indicated

antibodies and then assessed for phagocytosis by immunofluorescence microscopy. The phagocytic index was determined for each condition by calculating the

number of ingested cells per 100 macrophages. For AML LSC, the differences between isotype or anti-CD45 antibody with blocking anti-CD47 antibody treat-

ment (B6H12.2 and BRIC126) were statistically significant with p < 0.001 for all pairwise comparisons with human and mouse macrophages. For human
292 Cell 138, 286–299, July 24, 2009 ª2009 Elsevier Inc.



overall survival. We also demonstrate that disruption of the

CD47-SIRPa interaction with monoclonal antibodies directed

against CD47 preferentially enables phagocytosis of AML LSC

by macrophages, inhibits engraftment, and targets AML LSC

in vivo. Together, these results establish the rationale for consid-

ering the use of an anti-CD47 monoclonal antibody as a therapy

for human AML.

The enabling of phagocytosis by blocking monoclonal anti-

bodies directed against CD47 is a mechanism of action for a ther-

apeutic monoclonal antibody in the treatment of cancer that has

not, to our knowledge, been previously described. Currently

approved antibody therapies are believed to act via stimulation

of antibody-dependent cellular cytotoxicity (ADCC), via disrup-

tion of critical receptor-ligand interactions, or through unknown

mechanisms (Adams and Weiner, 2005). Blocking anti-CD47

monoclonal antibodies would treat human AML by enabling

phagocytosis and elimination of AML LSC (Figure S14B). In

support of this mechanism of action in vivo, we show that treat-

ment of human AML LSC-engrafted mice with anti-CD47 anti-

body results in rapid phagocytosis of AML cells (Figures 7A

and 7B), and that depletion of phagocytes with clodronate abro-

gates this effect (Figure 7C).

As demonstrated here, CD47 contributes to pathogenesis by

conferring a survival advantage to LSC and progeny blasts

through evasion of phagocytosis by the innate immune system.

Moreover, some dendritic cells express SIRPa (Braun et al.,

2006; Latour et al., 2001; Sarfati et al., 2008; Seiffert et al.,

1999), and we propose that increased CD47 expression on

AML LSC also serves to prevent the activation of adaptive

T cell immune responses.

AML LSC are enriched in the Lin�CD34+CD38� fraction, which

in normal bone marrow contains HSC and MPP. The identification

of cell-surface molecules that can distinguish between leukemic

and normal stem cells is essential for flow cytometry-based

assessment of minimal residual disease (MRD) and for the devel-

opment of prospective separation strategies for use in cellular

therapies. Several candidate molecules, including CD123

(Jordan et al., 2000), CD44 (Jin et al., 2006), CD96 (Hosen et al.,

2007), CLL-1 (van Rhenen et al., 2007), and now CD47, have

recently been identified. We demonstrate not only that CD47 is

more highly expressed on AML LSC compared to normal HSC

and MPP but also that this differential expression can be used

to separate normal HSC/MPP from leukemia cells. This demon-

stration of the prospective separation of normal HSC from

leukemia cells in the same patient sample offers the possibility

of leukemia-depleted autologous HSC transplantation therapies.

Targeting of CD47 on AML LSC with Therapeutic
Monoclonal Antibodies
Cell-surface molecules preferentially expressed on AML LSC

compared to their normal counterparts are candidates for target-

ing with therapeutic monoclonal antibodies. Thus far, several
molecules, including CD33 (Adams and Weiner, 2005), CD44

(Jin et al., 2006), CD123 (Jin et al., 2009), and now CD47, have

been targeted on AML. Here we report that a monoclonal anti-

body directed against CD47 targets AML LSC in vivo, as shown

by direct reduction in the percentage of human CD34+ LSC-

enriched leukemia cells in the bone marrow and complete

elimination of engraftment in secondary transplants (Figures 7D

and 7E).

Targeting of leukemia cells and cell lines with anti-CD47

antibodies has previously been reported to directly induce

apoptosis. Treatment of primary human B-CLL cells was shown

to induce caspase-independent cell death (Mateo et al., 1999),

while a different anti-CD47 antibody was shown to induce

apoptosis of several hematopoietic cell lines (Kikuchi et al.,

2004, 2005; Uno et al., 2007). These reports raise the alternative

hypothesis that anti-CD47 antibodies induce apoptosis of AML

LSC, which are then recognized by macrophages and phagocy-

tosed. However, several caveats must be considered when

comparing these prior reports to our current study. First, the

report on B-CLL involved a mature lymphocytic neoplasm, which

is very biologically different from immature aggressive AML, and

demonstrated apoptosis not with soluble antibody but only with

crosslinking of antibody, which can result in different effects.

Second, the additional reports utilized cell lines and not primary

leukemia cells, which are very biologically distinct regarding both

proliferation and cell death. Ultimately, we feel that it is not

possible to extrapolate the effect of anti-CD47 antibodies from

these reports to primary human AML cells.

Several lines of evidence suggest that targeting of CD47 with

a monoclonal antibody acts by disrupting the CD47-SIRPa inter-

action, thereby preventing a phagocytic inhibitory signal, rather

than by acting through induction of apoptosis, ADCC, or other

mechanisms. First, two blocking anti-CD47 antibodies enabled

AML LSC phagocytosis, while one nonblocking antibody did

not, even though all three bind the cells similarly (Figures 4C

and S6). Second, an anti-mouse SIRPa antibody also enabled

phagocytosis of human AML LSC by mouse macrophages,

demonstrating phagocytosis without direct binding of antibody

to AML LSC (Figure 4C). Third, in the case of the B6H12.2 anti-

body used for most of our experiments, no direct induction of

apoptosis of primary AML LSC was detected when added either

as a soluble antibody or as an immobilized plate-bound antibody

(Figures 4D and S7D). Fourth, phagocytosis of AML LSC was

detected as early as 15 min after addition of anti-CD47 antibody,

while no apoptosis was detected at 2 hr (Figures 4D and S7E). In

fact, only minimal Annexin V-positive staining was detected on

Jurkat cells 2 hr after incubation with immobilized plate-bound

anti-CD47 antibody (Figure S7C). Fifth, if phagocytosis were

occurring secondary to apoptosis, then depletion of phagocytes

with clodronate should not inhibit the effect of the antibody,

which would still directly kill the leukemia cells. However, clodr-

onate did inhibit the ability of anti-CD47 antibody to deplete
macrophages, the differences between AML LSC and normal CD34+ cells were statistically significant for B6H12.2 (p < 0.001) and BRIC126 (p = 0.002). For

mouse macrophages, the difference between isotype control and anti-SIRPa antibody was statistically significant (p = 0.02).

(D) AML LSC were incubated in the presence of the indicated antibodies or the staurosporine-positive control as described above, but in the absence of macro-

phages. At the end of the incubation, apoptotic cells were identified by Annexin V staining as determined by flow cytometry. No statistically significant increase in

apoptosis was detected with any of the antibodies.
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Figure 5. A Monoclonal Antibody Directed against Human CD47 Depletes AML In Vivo

(A–D) Newborn NOG mice were transplanted with AML LSC, and 8–12 weeks later, peripheral blood (A and B) and bone marrow (C and D) were analyzed for

baseline engraftment prior to treatment with anti-CD47 (B6H12.2) or control IgG antibody (Day 0). Mice were treated with daily 100 mg intraperitoneal injections

for 14 days, at the end of which they were sacrificed and peripheral blood and bone marrow were analyzed for the percentage of human CD45+CD33+ leukemia.

(A) Pre- and post-treatment human leukemic chimerism in the peripheral blood from representative anti-CD47 antibody and control IgG-treated mice as deter-

mined by flow cytometry. (B) Summary of human leukemic chimerism in the peripheral blood assessed on multiple days during the course of treatment demon-

strated elimination of leukemia in anti-CD47 antibody-treated mice compared to control IgG treatment (p = 0.007). (C) Pre- and post-treatment human leukemic

chimerism in the bone marrow from representative anti-CD47 antibody or control IgG-treated mice as determined by flow cytometry. (D) Summary of human

leukemic chimerism in the bone marrow on day 14 relative to day 0 demonstrated a dramatic reduction in leukemic burden in anti-CD47 antibody-treated

mice compared to control IgG treatment (p = 0.006).

(E) H&E sections of representative mouse bone marrow cavities from mice engrafted with SU004 AML LSC post-treatment with either control IgG (panels 1 and 2)

or anti-CD47 antibody (panels 4 and 5). IgG-treated marrows were packed with monomorphic leukemic blasts, while anti-CD47-treated marrows were hypocel-

lular, demonstrating elimination of the human leukemia. In some anti-CD47 antibody-treated mice that contained residual leukemia, macrophages were detected

containing phagocytosed pyknotic cells (panels 3 and 6, arrows).
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Figure 6. A Monoclonal Antibody Directed against Mouse CD47 Enables Phagocytosis of Mouse AML and Does Not Deplete Normal HSC

In Vivo

(A) GFP+ mouse AML cells were incubated with mouse bone marrow-derived macrophages in vitro in the presence of 10 mg/ml of rat IgG2a isotype control or

anti-mouse CD47 antibody for 2 hours. Phagocytosis of GFP+ leukemia cells was observed by fluorescence microscopy (arrows).

(B) Quantitative analysis of phagocytosis was determined by calculating the phagocytic index in triplicate assays. Anti-MsCD47 antibody enabled a statistically

significant increase in phagocytosis of mouse leukemia cells compared to isotype control (p < 0.001). Error bars indicate the standard deviation of triplicate

measurements.

(C and D) C57BL/6 wild-type mice were treated for 14 days with daily 200 mg intraperitoneal injections of either anti-msCD47 or rat IgG control antibody. Bone

marrow from these mice was aspirated pre- and post-treatment and indicated no effect of either treatment on the frequency of Lin�Kit+Sca+ (KLS) cells (C) or

Lin�Kit+Sca+Flk2�CD34� HSC (D) in the bone marrow. Representative flow cytometry plots are shown in (C). No differences in the percentage of HSC pre- and

post-treatment were observed with either control IgG (p = 0.09) or anti-msCD47 (p = 0.81).
human AML (Figure 7C), indicating that enabling of phagocy-

tosis is the most likely mechanism. Finally, the isotype-matched

anti-CD45 antibody, which also binds LSC, failed to produce

the same effects, making ADCC less likely (Figure 4). In fact,

the B6H12.2 antibody is mouse isotype IgG1, which is less

effective at engaging mouse Fc receptors than antibodies of

isotype IgG2a or IgG2b (Nimmerjahn and Ravetch, 2007). For

human clinical therapies, blocking CD47 on AML LSC with

humanized monoclonal antibodies should promote LSC phago-

cytosis through a similar mechanism, as indicated by the

human macrophage-mediated in vitro phagocytosis (Figures

4A and 4C).
Higher CD47 expression is detected on AML LSC; however,

CD47 is expressed on normal tissues, including bone marrow

HSC. We identified a preferential effect of anti-CD47 antibodies

in enabling the phagocytosis of AML LSC compared to normal

bone marrow CD34+ cells by human macrophages in vitro. In

fact, no increased phagocytosis of normal CD34+ cells com-

pared to isotype control was detected, suggesting that blocking

CD47 with monoclonal antibodies is a viable therapeutic strategy

for human AML. We speculate that this difference is due to the

presence of as yet unknown stimuli for phagocytosis on AML

LSC that are lacking on normal CD34+ cells. We have now

administered a blocking anti-mouse CD47 antibody to normal
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Figure 7. A Monoclonal Antibody Directed against Human CD47 Enables Phagocytosis of AML In Vivo and Targets LSC
(A and B) Flow cytometry plots (A) and quantitation (B) from NOG mice engrafted with lentivirally transduced GFP-positive SU028 AML LSC, 4 hr after treatment

with a single 100 mg intraperitoneal dose of anti-CD47 antibody (B6H12.2) or control IgG (n = 2 for each). Cell suspensions from bone marrow, spleen, and liver

were stained for human CD45 and mouse F4/80, which recognizes phagocytes. All plots are gated on human CD45-negative cells. Double-positive events repre-

sent GFP-positive leukemia cells within mouse phagocytes. Error bars indicate the standard deviation of duplicate measurements.

(C) NOG mice engrafted with the indicated AML LSC were treated with liposomal clodronate to deplete phagocytes and administered daily intraperitoneal injec-

tions of anti-CD47 antibody for 14 days. The percentage of residual human leukemia cells in the peripheral blood (left) and bone marrow (right) was determined as

described above. Depletion of phagocytes resulted in a statistically significant inhibition of the ability of anti-CD47 antibody to eliminate human AML from both the

peripheral blood (p = 0.03) and bone marrow (p = 0.04). Clodronate treatment by itself had no effect on leukemic engraftment (Figures S12A and S12B).

(D) The percentage of human CD34+ LSC-enriched human leukemia cells remaining in the bone marrow after treatment with either IgG control or anti-CD47 anti-

body was determined by flow cytometry. Treatment with anti-CD47 antibody resulted in a statistically significant decrease (p < 0.001) compared to the control.

(E) 500,000 whole bone marrow cells from IgG control (n = 12) or anti-CD47 (n = 9) antibody-treated mice were secondarily transplanted into NOG mice. Twelve

weeks later, secondary mice were sacrificed and analyzed for human leukemia engraftment in the peripheral blood (Figure S13) and bone marrow as described

above. Secondary mice transplanted from IgG-treated mice engrafted human leukemia in the bone marrow, while secondary mice transplanted from anti-CD47-

treated mice developed no engraftment (p < 0.001). Statistical significance was determined using Fisher’s exact test.
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mice on a schedule similar to the anti-human CD47 antibody and

find coating of all bone marrow cells with no reduction in HSC, no

liver or kidney toxicity, and only isolated neutropenia in complete

blood counts (Figure 6 and Tables S3 and S4), suggesting that

this antibody has no unacceptable toxicity and does not deplete

normal mouse HSC.

The experimental evidence presented here provides the ratio-

nale for anti-CD47 monoclonal antibodies as monotherapy for

AML. However, such antibodies may be equally, if not more

effective as part of a combination strategy. The combination of

a blocking anti-CD47 antibody with a second antibody able to

bind an LSC-specific molecule (for example CD96) and engage

Fc receptors on phagocytes may result in a synergistic stimulus

for phagocytosis and specific elimination of AML LSC (Fig-

ure S14C). Furthermore, combinations of monoclonal antibodies

to AML LSC that include blocking anti-CD47 and human IgG1

antibodies directed against two other cell-surface antigens will

be more likely to eliminate leukemia cells with pre-existing

epitope variants or antigen loss that are likely to recur in patients

treated with a single antibody.

EXPERIMENTAL PROCEDURES

Human Samples

Normal human bone marrow mononuclear cells were purchased from AllCells

Inc. (Emeryville, CA, USA). Human AML samples (Figure 1B) were obtained

from patients at the Stanford Medical Center with informed consent, according

to an IRB-approved protocol (Stanford IRB# 76935 and 6453). Human CD34-

positive cells were enriched with magnetic beads (Miltenyi Biotech, Auburn,

CA, USA).

Flow Cytometry Analysis and Cell Sorting

A panel of antibodies was used for analysis and sorting of AML LSC

(Lin�CD34+CD38�CD90�, where lineage included CD3, CD19, and CD20),

HSC (Lin�CD34+CD38�CD90+), and MPP (Lin�CD34+CD38�CD90�CD45RA�)

as previously described (Majeti et al., 2007). Analysis of CD47 expression was

performed with an anti-human CD47 PE antibody (clone B6H12, BD Biosci-

ences, San Jose CA, USA). For analysis of mouse bone marrow, the following

antibodies were used: Sca1 PB, cKit Alexa 750, Flk2 PE, CD34 FITC, Lineage

(CD3, CD4, CD5, CD8, B220, Mac1) PeCy5 (Ebiosciences, San Diego,

CA, USA).

Anti-Human and -Mouse CD47 and Anti-Mouse SIRPa Antibodies

Monoclonal mouse anti-human CD47 antibodies included the following:

BRIC126, IgG2b (Abcam, Cambridge, MA, USA), 2D3, IgG1 (Ebiosciences),

and B6H12.2, IgG1. Monoclonal rat anti-mouse CD47 antibody used was

MIAP301, IgG2a. The B6H12.2 and MIAP301 hybridomas were obtained

from the American Type Culture Collection (Rockville, MD, USA). Antibody

was either purified from hybridoma supernatant using protein G affinity chro-

matography according to standard procedures or obtained from BioXCell

(Lebanon, NH, USA). Monoclonal rat anti-mouse SIRPa, P84, IgG1 was

purchased from BD PharMingen (San Jose, CA, USA). Isotype controls

included mouse IgG1 and rat IgG2a antibodies (Ebiosciences).

In Vitro Phagocytosis Assays

Human AML LSC or normal bone marrow CD34+ cells were CFSE-labeled

and incubated with either mouse or human macrophages in the presence of

7 mg/ml IgG1 isotype control, anti-CD45 IgG1, anti-CD47 (clones B6H12.2,

BRIC126, or 2D3), or anti-mouse SIRPa antibody for 2 hr. Mouse GFP-positive

leukemia cells were incubated with mouse macrophages in the presence of

10 mg/ml of rat IgG2a isotype control or anti-mouse CD47 (MIAP301) for

2 hr. Cells were then analyzed by fluorescence microscopy to determine the

phagocytic index (number of cells ingested per 100 macrophages). In some
experiments, cells were then harvested and stained with either a mouse or

human macrophage marker and phagocytosed cells were identified by flow

cytometry as macrophage+CFSE+. Statistical analysis using Student’s t test

was performed with GraphPad Prism. See Supplemental Experimental Proce-

dures for detailed procedures.

In Vivo Antibody Treatment of Human AML LSC Engrafted Mice

1–2.5 3 105 FACS-purified LSC were transplanted into NOG pups. Eight to

twelve weeks later, human AML engraftment (hCD45+CD33+ cells) was as-

sessed in the peripheral blood and bone marrow by tail bleed and aspiration

of the femur, respectively. Engrafted mice were then treated with daily intra-

peritoneal injections of 100 mg of anti-CD47 antibody or IgG control for 14

days. On day 15 mice were sacrificed and the peripheral blood and bone

marrow were analyzed for AML.

In Vivo Human AML Phagocytosis Assay

A GFP encoding lentivirus was prepared from the pCDH-CMV construct

(System Biosciences, Mountain View, CA, USA) using standard techniques.

AML LSC from sample SU028 were transduced overnight and transplanted

into newborn NOG pups as described. Twelve weeks later human

CD45+CD33+GFP+ leukemia engraftment was assessed in the peripheral

blood, and GFP+ human leukemia-engrafted mice were injected intraperitone-

ally with a single 100 mg dose of either anti-CD47 antibody (clone B6H12.2) or

IgG control. Four hours later, mice were sacrificed and bone marrow, spleen,

and liver were analyzed by flow cytometry for the presence of GFP+ leukemia

cells within F4/80-positive mouse phagocytes. The presence of human

CD45�GFP+ mouse F4/80+ events identified mouse phagocytes with ingested

human leukemia cells.

In Vivo Macrophage Depletion

Liposomal clodronate and control liposomes were prepared as described

(Jaiswal et al., 2009). Macrophages were depleted in AML LSC-engrafted

NOG mice with the following treatment schedule: 200 ml of either clodronate

or liposomal control was injected intravenously via the retro-orbital sinus

2 days prior to treatment of these mice with anti-CD47 antibody for IgG control.

One hundred microliters of either clodronate or liposomal control was then in-

jected in the same manner on days 2, 6, and 10 after initiation of daily antibody

treatment. Mice were then sacrificed on day 14 to assess human leukemic

engraftment as described.

Secondary Transplantation

AML LSC-engrafted mice treated with daily injections of either IgG control or

anti-CD47 antibody were sacrificed at the end of 14 days of treatment. 5 3

105 whole bone marrow cells were transplanted into newborn NOG mice.

Twelve weeks later peripheral blood and bone marrow was harvested and

analyzed for human CD45+CD33+ leukemia engraftment as described.

AML Patients, Microarray Gene Expression Data, and Statistical

Analysis

Gene expression and clinical data were analyzed for three previously

described cohorts of adult AML patients: (1) a training dataset of 285 patients

with diverse cytogenetic and molecular abnormalities described by Valk et al.

(2004), (2) a test dataset of 242 patients with normal karyotypes described by

Metzeler et al. (2008), and (3) a validation dataset of 137 patients with normal

karyotypes described by Bullinger et al. (2008). See Supplemental Experi-

mental Procedures for details of therapy. The clinical end points analyzed

included overall and event-free survival, with events defined as the interval

between study enrollment and removal from the study owing to a lack of

complete remission, relapse, or death from any cause, with data censored

for patients who did not have an event at the last follow-up visit. See Supple-

mental Experimental Procedures for detailed procedures.
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SUPPLEMENTAL DATA

Supplemental Data include fourteen figures, four tables, and Supplemental

Experimental Procedures and can be found with this article online at http://

www.cell.com/supplemental/S0092-8674(09)00650-3.
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