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Many human genes are associated with dispersed arrays of transcriptional enhancers that regulate their
expression in time and space. Studies in invertebratemodel systems have suggested that these elements could
function as discrete and independent regulatory units, but the in vivo combinatorial properties of vertebrate
enhancers remain poorly understood. To explore the modularity and regulatory autonomy of human
developmental enhancers, we experimentally concatenated up to four enhancers from different genes and
used a transgenic mouse assay to compare the in vivo activity of these compound elements with that of the
single modules. In all of the six different combinations of elements tested, the reporter gene activity patterns
were additive without signs of interference between the individual modules, indicating that regulatory
specificity was maintained despite the presence of closely-positioned heterologous enhancers. Even in cases
where two elements drove expression in close anatomical proximity, such aswithin neighboring subregions of
the developing limb bud, the compound patterns did not show signs of cross-inhibition between individual
elements or novel expression sites. These data indicate that human developmental enhancers are highly
modular and functionally autonomous and suggest that genomic enhancer shuffling may have contributed to
the evolution of complex gene expression patterns in vertebrates.
Published by Elsevier Inc.
Introduction
The regulation of many human genes is controlled by multiple
discrete enhancer sequences with different tissue specificities (e.g.
references [1–6]). Such enhancers activate gene expression indepen-
dent of their orientation [7] and are commonly scattered across large
noncoding intervals [8,9], in some extreme cases functioning N1 Mb
from their gene promoter target [10,11]. While progress towards
genome-wide annotation of developmental enhancers has been made
by coupling comparative genomic and chromatin immunoprecipita-
tion-sequencing approaches to experimental studies in mice and fish
[12–15], the functional and evolutionary significance of their
dispersed arrangement remains unclear. Structural modularity of
enhancer architecture may facilitate evolutionary fine tuning of
distinct aspects of expression patterns [16,17], but observations in
invertebrate models [18,19] have also raised the possibility that
intergenic translocation of preformed enhancer modules may have
contributed to the evolution of complex gene expression patterns in
vertebrates. However, an open question remains whether this
proposed mechanism of regulatory evolution is feasible since it
requires that enhancers accurately retain their individual activities
when placed into a new genomic context.
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Results

Heterologous pairs of enhancers have additive regulatory properties

To explore the prevalence of possible positive or negative
interactions among human developmental enhancers, we recombined
enhancer modules from different, functionally unrelated genes and
studied their regulatory in vivo properties during embryonic devel-
opment in transgenic mice. We selected for this purpose six in vivo
validated enhancers [12,13] (E1–E6, Fig. 1a; Suppl. Table 1). When
individually coupled to a minimal heat shock protein 68 promoter
linked to a LacZ reporter gene (Fig.1b; [13,20]), each of these elements
drove reproducible tissue-specific expression in transgenic mouse
embryos. Representative patterns observed with these single enhan-
cers are shown in Fig. 1c. Of note, the enhancers were selected for
analysis based on their expression patterns which are easily
distinguished at the resolution of whole-mount staining, yet also
include features that are located in close spatial proximity. In
particular, activity patterns comprise different subregions of the
developing forebrain (E2 and E6), the midbrain (E5 and E6), the
hindbrain (E5 and E6), and three different subregions of the
developing limb (E1, E3, and E4). A detailed overview of the strong
reproducibility of these features in independent transgenic embryos,
as well as additional reproducible features that were observed for the
individual patterns, is provided in Suppl. Table 2. All elements are
located on different human chromosomes and thereby are expected to
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Fig. 2. Temporal and spatial additivity of individual enhancer activities within the developing limb. (a–l) Dorsal surface view of forelimb buds of individual embryos transgenic for E3
(a–d), E4 (e–h) and the compound enhancer E3+E4 (i–l). For each construct, embryos were collected at e10.5 (a, e, i), e11.5 (b, f, j), and e12.5 (c, d, g, h, k, l) and representative limbs
were stage-matched based on morphology. The transgenic status of the embryo shown in (e) was confirmed by genotyping.
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regulate independent gene(s), with the exception of E1 and E2 which
are within introns of different genes on chromosome 1 but are located
more than 5 Mb apart from each other. All elements are located at
least 30 kb away from the closest known promoter, with 4 elements
found within genes (E1, E2, E3 and E6) and the remaining 2 elements
found between genes (E4 and E5).

These enhancers are experimentally defined by their ability to
drive reporter gene expression in transgenic mouse embryos, but (as
for most human developmental enhancers) it is unknown whether
additional cis-regulatory cues such as general or tissue-specific
repressor/silencer activities are also embedded in these elements
that might affect the activity of other regulatory elements in their
vicinity. To determine the combinatorial properties of these human
enhancers, we generated five constructs containing pair-wise tandem
fusions of the heterologous enhancers described above (Fig. 1b). For
each construct, we obtained multiple transgenic embryos at e11.5
(representing 8 to 15 independent transgenic integration events, see
Suppl. Table 2). In each of the cases studied we observed reproducible
patterns that were a direct superimposition of the two individual
patterns (Fig. 1d–h). For instance, as one representative example, a
construct containing E2 (forebrain) coupled to E5 (medial–dorsal and
lateral cell populations of the midbrain and ventral hindbrain) targets
reporter gene expression to the same respective subregions of the
fore-, mid- and hindbrain as observed for E2 and E5 alone (Fig. 1c, e).
Using the presence of reproducible staining in individual anatomical
structures as a qualitative measure, we observed no disruption of
enhancer activities in the tandem fusion constructs in comparison to
each enhancer element alone (Suppl. Table 2). Conversely, the
concatenation of heterologous enhancers did not result in any
reproducible staining in additional anatomical structures or domains
outside of those observed for the individual enhancer constructs.
These data indicate that in all instances tested, the two enhancers
Fig. 1. Spatial additivity of tissue-specific enhancers fused from different genes. (a) Genomi
bracketing each enhancer is shown, including intron/exon structure of overlapping genes
included an ultraconserved core region (Suppl. Table 1; [27]). (b) Single and compound en
embryonic day 11.5. (d–i) In vivo activity of heterologous compound enhancers. (d) E1
representative embryo is shown for each single and compound pattern, see Suppl. Table 2 f
retained their specificity independent of each other despite the
artificial coupling of enhancer modules that regulate different genes.

Complex but predictable regulatory output from a heterologous
multi-enhancer array

To test whether more complex combinations of enhancer modules
would result in positive or negative interactions, we concatenated four
different enhancers from unrelated genes and tested the activity of
this compound construct at embryonic day 11.5. Similar to the additive
results observed in the combination of two discrete enhancers,
independent transgenic embryos for the compound 4-mer construct
had highly reproducible patterns that included all the major features
of the individual patterns, while not introducing additional repro-
ducibly stained structures (Fig. 1i, Suppl. Table 2). Thus, even when
multiple distant-acting enhancers were combined in close proximity
in a single construct, the individual enhancer units retained their
distinct spatial specificities at this time-point.

Both spatial and temporal regulatory specificity are preserved

In addition to spatial properties, we also examined temporal
aspects of expression driven by concatenated enhancers. We selected
for this purpose construct E3+E4, containing a pair of enhancers that
drove expression in the developing limb (Fig. 1f), where morpholo-
gical changes enable precise developmental stage matching of
independently generated transgenic embryos. When tested individu-
ally at stages ranging from e10.5 to e12.5, enhancer E3 alone targets
expression to the apical ectodermal ridge (AER) and the surface
ectoderm of the limb bud (Fig. 2a–d). In contrast, E4 alone does not
drive limb staining at e10.5, but targets expression to a sharply
restricted central cell population in the limb at e11.5 that continues
c environment of six conserved enhancers used in this study. A 50 kb genomic interval
(black) and conservation in 17 vertebrates (color shaded boxes; [26]). All enhancers
hancer constructs for in vivo testing. (c) Enhancer activity of single elements at mouse
+E2, e) E2+E5, f) E3+E4, g) E1+E5, h) E5+E6, i) E1+E2+E5+E6. Only one
or reproducibility across independent transgenic animals.
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throughout e12.5 (Fig. 2e–h). In order to compare the developmental
progression of expression driven by constructs E3, E4, and E3+E4, we
collected multiple transgenic embryos at e10.5, e11.5 and e12.5 for
each construct. We found that the compound construct E3+E4 drove
AER expression at all time-points examined, whereas the medial
expression domain was first observed at e11.5 as with E4 alone,
indicating that the developmental onset of expression driven by E4 is
not affected by the presence of E3 in its immediate proximity. Taken
together, these results indicate that the functional independence of
human developmental enhancers and the absence of obvious
regulatory interference among them could allow the generation of
complex spatiotemporal expression patterns through modular inter-
genic recombination of enhancers.

Discussion

The high degree of regulatory autonomy observed in this study
suggests that functional independence and spatiotemporal additivity
are common features of human distant-acting enhancer modules.
Only a limited number of permutations of a small subset of human
enhancers were tested in the present study, therefore it remains to be
determined whether these properties are a universal feature applying
to all developmental enhancers. Moreover, the LacZ-based approach
used in this study provides direct evidence for qualitative additivity of
patterns, yet we cannot exclude the possibility that subtle quantitative
differences in enhancer activities between single and compound
constructs were not detectable. These potential limitations notwith-
standing, our results indicate that emerging collections of human and
other vertebrate enhancers [12–15] provide a toolbox enabling the
design of regulatory composites driving customized, complex in vivo
expression patterns in a predictablemanner due to the additive nature
of the individual components.

These observations also have potential evolutionary implications,
as it has been proposed that duplication of regulatory elements into
new genomic locations may have contributed to the emergence of
complex gene expression patterns [17,21,22]. Bona fide examples of
intergenic enhancer shuffling in the human genome remain to be
identified, but recent comparative genomic evidence suggests that
exaptation of transposable genome elements occurred on a pervasive
scale [23]. While some of these mobile elements gave rise to
functional enhancers [24,25], it remains uncertain whether such
transposon-derived elements typically arose de novo or if partially
preformed cis-regulatory functions were already embedded at the
time of their translocation.

The remarkable modular additivity of spatial and temporal
enhancer activities indicates that functional distant-acting enhancers,
if translocated into new genomic environments, have the potential to
transfer aspects of expression patterns between genes without
disrupting the function of pre-existing enhancers. We expect that
the combinatorial properties of human enhancers demonstrated
through our experiments will provide confidence and a conceptual
basis for constructing increasingly complex arrays of enhancers by
homologous recombination in mice, which is expected to provide
further insights into enhancer shuffling as a potential mechanism of
vertebrate genome evolution.

Materials and methods

Enhancer reporter constructs

All enhancer sequences were PCR amplified from human
genomic DNA (Clontech) using the primers listed in Suppl. Table
1. PCR fragments were cloned into the pENTR plasmid (Invitrogen),
transferred into an Hsp68–LacZ reporter vector containing a Gate-
way cassette using LR recombination (Invitrogen; [13,20]) and
sequence validated.
Compound enhancers

To generate compound enhancers, inserts from individual con-
structs were subcloned by standard molecular cloning techniques.
Sequence and orientation of enhancers in the final constructs are
indicated in Suppl. Table 1. Residual multiple cloning site fragments of
up to48 bp residing between enhancers are also listed in Suppl. Table 1.

Transgenic mice

Transgenic mouse embryos were generated by pronuclear injec-
tion in accordance with protocols reviewed and approved by the
Lawrence Berkeley National Laboratory Animal Welfare and Research
Committee. Zygotes at 0.5 dpc for pronuclear injection were collected
from FVB strain donor females (Charles River) and, after injection,
transferred into pseudopregnant CD-1 strain recipient females
(Charles River). Embryos were collected and stained for LacZ activity
as previously described [8].

Assessment of reporter gene expression

Only anatomical structures in which reporter gene expression was
present in at least three embryos resulting from independent
transgene integration events were considered reproducible. Repro-
ducibilities for all patterns observed with individual and compound
enhancers are listed in Suppl. Table 2.
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