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INTRODUCTION

Let R be a discrete valuation ring with field of fractions F and let X be a
central simple F-algebra. There exists a well-developed theory of the R-or-
ders in X, that is those R-subalgebras 4 of X that arc finitely generated as
R-modules and for which 4F=2" In this paper we describe an alternate
approach to part of this theory, employing the generalized cohomology
theory first developed in Haile, Larson, and Sweedler [5]. In the present
setting the two-cocycles of that theory can be used to form “crossed-
product orders,” analogous to the crossed-product algebras in the theory of
central simple algebras.

The collection of crossed-product orders contains, up to a suitable
notion of equivalence, all the maximal orders over R (assuming the residue
field of R is perfect). Morcover, the concrete nature of the construction
allows a different perspective on the structure of the crossed-product
orders, and so in particular on maximal orders. On the other hand, this
class of orders is to some extent complementary to that determined by
standard homological considerations: if a crossed-product order is
hereditary, then it is in fact maximal. In this sense the crossed-product con-
struction provides a collection of orders that occur naturally, yet different
from those studied classically. In this paper, however, the main emphasis is
on those aspects of the theory related to maximal orders.

We want to be more precise. Let K/F be a finite Galois extension of fields
with group G and let S be the integral ciosure of R in K. Assume S/R is
unramified (so that S/R is itself a Galois extension). Let §* =S5—{0}.
Consider normalized two-cocycles f: GxG— S#, that is, functions
satisfying f°(z, y) f(o, 1y) = f(0, 1) f(o1,7) for all o, 1, yeG and
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CROSSED-PRODUCT ORDERS 117

f(l,0)=f(a,1)=1 for all 6eG. From such a cocycle we can form a
crossed-product order A,, given by A, =11, _;Sx, with the usual rules of
multiplication (x,s=o(s)x, for all se S, oeG, x,x, = f(0, 1) x,,). This
R-algebra A, is an order in the classical crossed product F-algebra
Ef = UUEGKxa'

This then is the class of orders we wish to consider. In the first section we
derive some basic properties of the cocycles and the orders. We show how
to associate a finite graph to each cocycle. One of the themes of the paper
is the relationship between properties of this graph and the structure of the
order. Also in this section we show that if the residue field is perfect, then
every maximal order is equivalent to a crossed-product order.

In the second and third sections the orders are considered in more detail.
In Section 2 we assume that S is a discrete valuation ring (DVR). In this
special case the structure of the order is quite rigid and quite explicit results
are obtained. For example, in this case the crossed-product orders are
primary, that is, have a unique maximal ideal, and there is a simple charac-
terization of those cocycles (in terms of the associated graph) which give
rise to maximal orders. Also in this section we show how to determine the
ideals in the order and give necessary and sufficient conditions for two
orders A, and A4, to be isomorphic as R-algebras. In particular we prove
that if A, and A4, are maximal, then Ay, is isomorphic to A4, as an
R-algebra if and only if /| and f, are cohomologous over S (in the usual
sense). Again this is all in the case where S is a discrete valuation ring.

In Section 3 we take up the general case (S/R unramified but S not
necessarily local). Here things are much more complicated. In particular,
A, is no longer necessarily primary and the first important result is a con-
dition on the cocycle f equivalent to A, being primary. Let G and S be as
above and let M be a maximal ideal of S with decomposition group D,,. If
J: GxG— Sis a cocycle, then A, is primary if and only if there are coset
representatives g,,.., g, of D, in G, that is G=),D, g, with
flg,, g7 )¢ M for all i (As it turns out, the existence of such a set of
representatives for one maximal ideal S implies the existence of suitable
sets of representatives for all the maximal ideals of S.) Using this result, we
show that the primary crossed-product orders are very well-behaved: If £, :
D, xD, —»S<S,, denotes the restriction of f (and S,, is the localization
of § at M), then we can form the new crossed-product order A,,,. Since S,
is local, we know the structure of 4,, from Section 2. If A, is primary, then
there is a one-to-one product preserving correspondence between the ideals
of A,and the ideals of 4,,. This is proved in the same way as an analogous
result of Harada (Lemma 1 of [6]), the crucial point being the existence of
the “good” set of coset representatives of D,, in G. In particular, in the case
where A, is primary, we show that A4, is maximal if and only if 4,, is
maximal and in this sense we are back in the nice situation of Section 2.
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Along the way we obtain results on the relationship between the graph of f
and the graphs of the cocycles f,,, as M varies through the maximal ideal
of S. We also show how to compute the ideals of the primary orders and
end the section with a determination of when two maximal crossed-product
orders are R-isomorphic.

In the final section, examples are given of the various definitions and
results of the preceding sections.

I want to thank Moss Sweedler and Richard Larson for useful conver-
sations about various aspects of this paper.

1. GENERALITIES

Let R be a discrete valuation ring (DVR) with field of fractions F,
maximal ideal m = (r) and residue field k. Let K/F be a finite Galois exten-
sion with group G. Let S be the integral closure of R in K and let S*
denote S— {0}. Let U(S) denote the group of units of S. Let Z*(G, S*)
denote the set of normalized cocycles /= G x G — S#, that is such functions
fsatisfying °(t, 7) f(o, 17) = f(a, 7) f(o1,7) for all 6, 7, ye G and f(o, 1} =
f(1,6)=1 for all 6 eG. Call two such cocycles f and g cohomologous over
S, and write f ~ ¢g, if there is a one-cochain a: G — U(S) such that
f(a, 1) = (a(c) a°(t)/a(a7)) g(o, 7) for all o, 7€ G. The set of equivalence
classes, denoted N?(G, S), is a monoid under pointwise multiplication.

There is a canonical map N*G,S)— H*G,K) which is a
homomorphism of monoids. This map is easily seen to be surjective. There
is also a canonical map N*G, S)— M*G,S) where S=S5/mS and
M?(G, §) denotes the cohomology theory of Haile et al. (HLS) [5]. The
map is given by reducing the values of the cocycle modulo m. (Note that
the reduced cocycle may take on noninvertible values, for example zero, so
the image lies in M*(G, S) rather than H*(G, S).)

If f: GxG—S* is a (normalized) cocycle, we let A, denote the
corresponding crossed-product R-algebra, that is, 4,=11,_;Sx,, where
each x, is an indeterminate and we multiply by the rules x,s =o(s)x, for
all 6eG, seS and x,x, = f(o,1)x,, for all o, teG. The resulting
R-algebra is associative with identity 1 =x, and center R = Rx,. In fact, 4,
is clearly an R-order in the central simple crossed-product F-algebra
2, =U,.sKx,.

Our first aim is to give a partial characterization of the orders that
appear this way, in the case where S/R is unramified. The following lemma
is useful for this and other purposes.

LEMMA 1. Assume S/R is unramified. Let f: G x G — K~ be a cocycle and
let £, =1,Kx, be the corresponding crossed-product algebra. Let T be a
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finitely generated S @ rS-submodule of X, (where S acts on the left and right
via the inclusion S€ X ). Then T=1U, (T n Kx,).

Proof. For each 6eG let K, ={keK |kx,+ Y .., k.x, €T for some
k.eK}. Then K, is the image of TnKx, in K under the canonical
numomorpumu (K is viewed as an S® S-module via the action
(s ®s,) k=s,ko(s,)). Since T is finitely generated over S® §, so is K. It
follows that K, is an S-fractional ideal and hence K, = Sk, for some
k,eK Lety,=k,x,. Then TSy, Sy,.

We need to show T<> Tn Kx,. Since Trn Kx, <Sy,, it suffices to
show that if 3 s, y, €T, where s, €S for all o, then s, y, €T for all o.
Suppose this is not true and let t=3"7_, s, y, be a counterexample with r
as small as possible. We have r>2. Let I={se S| ss, y,, €T}, an ideal of
S. We want to show I=S. If I# S, then there is a maximal ideal M of S
such that /< M. Since S/R is unramified it is Galois, and so there is an
element se S such that a,(s)— o,(s)¢ M. Consider o,(s)t—ts=(0,(s) —
01(9)) 51 Vo, + (02(5) — 63(8)) 5370y + 7+ + (02(5)—0,(5)) 5, ,,. This is
an element of T and so by minimality, (¢,(s)—0,(s))s,y,, € T. Hence
a5(s)—o,(s)eI< M, a contradiction. J

CoROLLARY 1.2. Iff: GxG — S” is acocycle and A, =11, _;Sx, is the
corresponding order, then every S® S-submodule T of A, (in particular every
ideal of A,) satisfies T=1,(T n Sx,).

Proof. Given the lemma we need only observe that T Kx,6 <
A;nKx, =8x,. |

PROPOSITION 1.3.  Assume S/R is unramified and let f: Gx G — K™ be a
cocycle. Let X be the corresponding crossed-product algebra and let A< X,
be an R-order. There is a cocycle g: Gx G — S*, g~ f over K, such that
A=A, (viewed as a subalgebra of X, in the natural way) if and only if
A= S.

Proof. 1If A=A,, g as in the statement, then certainly 4 2 S. Conver-
sely, suppose 42 S. Then 4 is a finitely generated S® S-submodule of 2,
so A=1_,4n Kx, by Lemma 1.1. Moreover as in the proof of that lemma,
for each o€ G, A N Kx, = Sy, for some y, € Kx,. Since 4 is an order in X,
v, #0forall 6 e G. Hence if g: G x G — S* is defined by g(a, 7) y,, = v, ¥,
then g is a cocycle and 4=4,. |

CorROLLARY 14. If Ac X, is a maximal order, then A is conjugate to a
crossed-product order in L.

Proof. The ring S < 2, can be embedded in a maximal order B. By the
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proposition B is a crossed-product order. Since all maximal orders in a
fixed central simple F-algebra are conjugate, we are done. |

Let A, B be R-orders (in some, possibly different, F-central simple
algebras). Following Auslander and Goldman [3], we will call 4 and B
equivalent if there are positive integers m and n such that A® M, (R) =

B® g M, (R) as R-algebras. They show that if 4 is a maximal order and B is
equivalent to A4, then B is also maximal. (See Proposition 8.6 of [3].)

PROPOSITION 1.5. Assume k is perfect. Let A be a maximal R-order.
Then there is Galois extension K of F such that S, the integral closure of R in
K, is unramified over R and a cocycle f: Gx G — S* such that A is
equivalent to Aj.

Proof. Let 2=A® gF. By [1, Theorem 3.3], there is a K and an S as
in the statement such that K splits 2. It follows that X is Brauer equivalent
to a crossed product algebra X, for some cocycle g: GxG— K*. By
Corollary 1.4 we may assume g(G x G)< S* and A4, is a maximal order in
2,. Let m and n be chosen so that 2® M (F)=2, ® M, (F). Then
A® M, (R) is a maximal order in X ® M, (F) and A, ® M,,(R) is
maximal in 2, ® M, (F). Hence AQ M, (R)=A4, ®M,(R) and we are
done. |

Thus we see that even in the rather special situation where S/R is
unramified, we are able to capture, up to equivalence, all the maximal
R-orders (assuming k is perfect). With this excuse we are going to assume
from this point forward that S/R is an unramified extension.

Let f: Gx G — S* be a cocycle and let 4, =11, Sx, be the corresponding
order. Let H= {ce G| f(o,0 ") is a unit in S}. Then H is a subgroup of G
and H= {ceG|x, is invertible in 4,}. As in HLS, we can associate to f a
partial ordering on G/H by the rule cH <tH if f(o, 5 't) is a unit. It is
easily checked that this is well defined and a partial ordering, and depends
only on the cohomology class of f on S. Moreover, this ordering has the
coset H as its unique least element and is lower subtractive: Given o H < tH,
we have cH<yH < tH if and only if 0 ~'yH <o~ 'tH. For each subgroup
T of G and each lower subtractive partial ordering # on G/T with unique
least element 7, we let N3G, S)={[f]eN*G,S)|T is the subgroup
associated to f'and 6 is the partial ordering on G/T determined by f'}. Then
N3(G, S) is a submonoid of N*(G, S), possibly empty. Putting these pieces
together, we obtain a decomposition N*(G, S)=JsN2(G, S), where the
union is disjoint and taken over all partial orderings as described above.

Under the map N*(G, S)— M?*(G, S) described earlier the image of
N}(G, S) lies in the group M2(G, S), where e, is the idempotent cosickle
corresponding to the partial ordering 8. (See HLS, Sect. 7.) On the other
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hand, the image of N2(G, S) in H*(G, K) is easily seen to be a subgroup
(because H*(G, K) is torsion) and so we have the diagram

NG, S) —— H*(G, K)

|

M2(G, 5).

Moreover, the Brauer group of S/R acts on each of these objects in
canonical ways and the maps are B(S/R)-set maps.

Let M,, M,,.., M, be the maximal ideals of S and let M, =(n,), =, €S,
1<i<r. Let P be the submonoid of S§* generated by the =,’s, so
P={mki-- |k, >0 for all i}. If /2 GxG—S* is a cocycle, we can
decompose f uniquely into f=f,f,, where f(GxG)=P and
JAG xG)< U(S). It is easy to see that f, and f, are again cocycles. We will
make use of this decomposition in a later section.

Finally, again for later use, we record the following result on
automorphisms.

ProprosiTION 1.6. Let f: GxG—S* be a cocycle. Let ¢ be an
automorphism of A, such that ¢|g = identity. Then there is a unit u in S such
that ¢(a)=uau™" for all ae A,. In particular, ¢ is inner.

Proof. Let A,=11,Sx, as usual. The automorphism ¢ extends to an
automorphism ¢ of £, such that ¢, =identity. By the Skolem-Noether
theorem, there is an invertible element a in X, such that #=1,, the inner
automorphism determined by a. Moreover, since § is the identity on K, we
conclude that a centralizes K, so a€ K. Returning to A4, since ¢ is the iden-
tity on S, it follows easily that for all 0 € G, ¢(x,)=u,x, for some unit u,
in S. Hence a/o(a)=u, for all ¢eG. As in the discussion preceding this
proposition, let M, = (xn;), i=1,2,..,r be the maximal ideals of S. Let
a=vn% - gk where each k, is an integer and v is a unit of S. From the
condition that a/o(a) is a unit and the fact that G acts transitively on the
maximal ideals of S, it follows that k, =k, for all / and j. Hence a = un* for
some integer k and some unit u of S. Since ne R, we have §=1, =1, and
so ¢ =1, as desired. |

2. THE CASE WHERE S Is A DVR

In this section and the next we undertake an investigation of the struc-
ture of the crossed-product orders. We will look at the relationship between
that structure and properties of the graphs associated to the cocycle, and
determine what about the graph makes the order maximal.
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Let R, F, S, K, G, k, and m= (n) be as in Section 1. Recall that we are
assuming throughout that S/R is unramified. In this section we will assume
that S is itself a DVR.

Let f: GxG~—S* be a normalized cocycle and let A, denote the
corresponding crossed-product order. Let H be the subgroup associated to
J- We have A,=B,®J, where B,=11,_,S8x, and J=11,,,Sx, and the
sum is direct as R-modules.

PROPOSITION 2.1. (a) The set B, is an R-subalgebra of A,. Moreover, B,
is Azumaya with center S”.

(b) The ideal mB, ®J is the radical of A, and is the unique maximal
(2-sided) ideal of A,.

Proof. (a) Since H is a subgroup of G, it follows easily that B, is a sub-
algebra of A, Now f(HxH)< U(S): if h,, h, € H, then f"(h,, hy')=
f(hy, hy) f(hyhy, hy'), so f(hy, hy)e U(S). Clearly then B, is the crossed
product algebra determined by f'|,,, 5. It follows that B, is Azumaya over
its center S (see DeMeyer and Ingraham [4]). Since S* is unramified
over R, B, is in fact separable over R.

(b) The k-algebra 4, = A,/mA_,is the crossed product algebra for the
cosickle /2 G x G — S/mS in the sense of HLS. In particular, 4, has radical
J and A,/7 is simple. The desired result follows. |l

Remark. A ring A is called primary if A/rad(A) is simple Artinian. By
Proposition 2.1 each 4, is primary.

In the last section we showed that every maximal R-order is equivalent
to a crossed-product order. We are now heading for a characterization of
those cocycles, and hence those partial orderings, which give rise to
maximal orders.

PROPOSITION 3.2. Assume S is a DVR. Let f be a cocycle with associated
subgroup H. Suppose A, is maximal. Then there is an element 6 € G, g ¢ H,
such that cH < tH for all 1e G— H.

Proof. Let r=|H|. Number the elements of G, say o,, 0,,..., g, in such
a way that the following two conditions hoild.

(1) o,H=0,Hif kr+1<i, j<(k+1)r for some k, 0 <k <n/r and
(2) ifo,Hso;H, then i j.
It is easy to see that such a numbering exists. Note that since H is the uni-
que minimal element in the ordering on G/H, we have H= {7,, 0,,.., 0, }.

Now suppose A, is maximal. Then there is an element y € A, such that
rad(A,)= yA,= A,y (see Reiner [7, Theorem 18.7]). Let y=377_, b, x,,.
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Since yerad(4,)=n(ll,., Sx,)+ U, Sx,, we see that b, emS, for
o€ H. Given i, 1 <i<n, there are elements ¢; in S, 1 < j<n, such that

(Z . ) nx,, o0,€H
Ci X, =
j G y xrr,, O'[¢H.

Expanding the left-hand side and computing the coefficient of a given x
we obtain for each i,

(%4
7, k=iand 6, H

Zcub(; o flo,070)=(1, k=iando,¢H

0, k#1L
Let C be the n x n matrix whose {i, j) component is c,j and let B be the
nxn matrix whose (j, k) component bgf- iCs . The relations

given above can be expressed as the matrix equatlon'

nl, | 0
CB*(O 1)’

where 7, is the rxr identity., By our assumption on the ordering
f(aj,a* o.)emS if o,H#0,H and j>k. Moreover, if o,H=0,H, then
.0, 'g, € Hand boj - €mS. Hence letting a “bar” denote reduction modulo
m, we see that B is block strictly upper triangular, that is,

0 * x %
B= 0 = * ,
0
O *
0
where each asterisk denotes an r x r block. In addition, we have
~= (010
BC = <0 1),

where I is the (n —r) x {n—r) identity. It follows that the matrix obtained
from B by eliminating the first column and last row of blocks is invertible
(over S§/mS). Hence each of its diagonal blocks is invertible. Let k be an
integer, 1 <k < (n/r)— 1. A typical such diagonal r x r block has (i, j) entry
equal to

krai

1 ..
Ei;i,o(k,m,ﬂf(gkwis Ol i0tk+ 1yr 4 ) I<ij<r
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But either floy, , ., 04 Tk 4+ 1)+ ,) IS zero for all 4, j, or is nonzero for all ;,
J, since all the o, ; belong to the same coset modulo H as i varies (and
similarly for the a(k +1)-+,)- By the invertibility of the block we conclude
that f(o, s, 652 0w 15,0 18 a unit in S for all &, i, j, where 1 <k <n/r,
1<y, j<r.Henceo,, H<0, , H - <0,_,, H Lettingo=o0,,,, we
are done. ||

THEOREM 2.3. Assume S is a DVR. Let [ Gx G —» 8% be a cocycle and
let H be its associated subgroup. The crossed-product order A, is maximal if
and only if the following conditions are satisfied:

(1) The subgroup H is normal in G and G/H is cyclic.

{2) There is an element o€G such that G/H=<{cH)> and
flo, 0 YemS—m*S, and

(3) The graph of f'is the simple chain H<oH<d’H< '+ <6™ 'H,
where m=|G/H|.

Moreover, under these conditions, rad(A,)=A,x, =x,A4,.

Proof. First assume A, is maximal. From the previous proposition we
know there is an element ce G — H such that cH<tH for all te G— H.
Let ¢ be minimal with ¢'e H. We first claim cH<o*H< - <¢'"'H. In
fact, if 1<i<t—1, then cH<o'*'H and oH <o'H. Thus, by lower sub-
tractivity, cH <o'H<¢'*'H. Next let ge G— H. Choose i maximal such
that | <i<r—1 and o'H< gH. We claim gH=¢'H. If not, then from
oc'H< gH and cH<o 'gH we conclude by lower subtractivity that
o'H<o'"'"H< gH, a contradiction. Hence we see that  =m and the graph
of fis the chain H<oH<o*H< - <™ 'H.

We now show H is normal. From lower subtractivity it follows that the
action of H on G/H by left multiplication preserves the order. Since oH is
the unique element of height one, we have hoH=0¢H for all e H. Thus
6Hg '=H, so H is normal.

Next we show that f(o, 0~ ')e mS—m>*S. Suppose (o, 6~ ')em?S. An
easy cocycle computation gives f(o',0 ‘6*)em?S for all k, i with
O<k<ism-—1 Let A,=1I, Sx, =11, Kx, = X as usual. Define elements
y, €&y, y€ G, by the formula

i
-x,, yec" 'H
n
Yy =
X, yéo™ 'H.

It is straightforward to show that for all J, ye G, we have y;y, €Sy;,.
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Thus 4,=11I, Sy, is an R-order in X, properly containing A,. This con-
tradicts the maximality of 4.

The converse statement will foliow if we show that given f satisfying (1),
(2), and (3), then rad(4,)=A4,x,=x,A,. Recall that rad(4,)=
T pep Sxp+ 1, 4w Sx,. Since cH< tH for all t¢ H and (x,x,-1)S=nS,
it follows that x, 4, =rad(A4,). To show 4,x, =rad(4,), it suffices to show
f(te™!, @) is a unit for all ¢ H. But tH=0"H for some k, | <k<m— 1.
By the normality of H, we see t6 " 'H=0¢""'H<¢"H=1H, as desired. |

It is instructive to compare this result with the exact sequence of Auslan-
der and Brumer [1]. Under the conditions of the theorem, they derive the
sequence

0 B(S/R) - B(K/F) > 1(G) -0,

where B(S/R) is the subgroup of elements of B(R) split by S, B(K/F) is the
analogous subgroup for K/F and y(G) is the character group of G. If we
begin with a crossed-product algebra X, [ f] € B(K/F), then the sequence
associates to [ /] a character of G, that is a normal subgroup H of G with
cyclic quotient and a distinguished generator oH of G/H (where the
character sends oH to (1/|H| Z in Q/Z).

If we assume, as we may, that f(Gx G)< § and A4, is maximal, then the
previous theorem in particular associates a normal subgroup with cyclic
quotient and a distinguished generator for that quotient. It is not difficult
to show that this leads to the same character as determined by the
sequence. In conjunction with the decomposition of Proposition 3.1, this
gives a different perspective on the role of that character.

We next want to describe the ideals of the crossed-product orders. Let f:
G x G — §7% be a cocycle (recall that we are assuming Sis a DVR). Let 7 be
an ideal of 4, =11, Sx,. Let A= A,. Since I is in particular an S® S-sub-
module of 4 we may apply Lemma 1.1 and obtain I=1I,. ., (InSx,)=
U, 1,x,, where I, = {se S|sx, eI}. In particular, I=3Y, AI,x,A. Since S
is a DVR, all the ideals of S are G-stable, so we see that =3 _I (Ax_ A).
We have therefore proved the following result.

ProPOSITION 24. If I is an ideal of A=A, =1,.; Sx,, then I=
S oA (Ax,A), where I, = {seS|sx,el}. 1

Since each I, is an ideal in S, we see that to determine the ideals of A, it
suffices to describe the ideals generated by the elements x,, 0 € G. We will
see that this can be done by using the graphs associated to f. Let vi K-> Z
be the valuation associated to S (so v(n)=1).

ProposITION 2.5. If 6€G, then Ax,A=11,T,x,, where T, =n*'S and
ky = minteG{U(f(as 071‘[))"' U(f(VT ~-1’ T))}
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Proof.  Clearly Ax, A = 3, 5c6 Sxy X, X4. Hence T,x, =
e SX, X5 X,-1,-1,. This can be written in a more useful way by letting
a=yt~'. We obtain T,x,=3, 8%, 1x,%,-1, =[%, S (d,6 '7)
S(yr~', 1)]x,. The proposition follows easily. |

The integers k,, ye G, can be determined by considering “weighted”
graphs. For each coset ¢H, we construct a copy of the left graph of f and
weight it by attaching to the coset tH the integer v(f(g, 6 7)), which in
some sense measures how far o H is from being less than tH. Similarly, for
each coset Ho, we construct a copy of the right graph of f and weight it by
attaching to the coset Hrt the integer v(f(za "', g)). Clearly the integers k,
and hence the ideals Ax, A4 can be determined from these 2[ G : H] graphs.
An example will be given in the last section.

The last thing we want to do in this section is to determine when two
crossed-products orders are R-algebra isomorphic. Let f: Gx G — S* be a
cocycle and let H be its associated subgroup. Let a,, 0,,.., 6,, be a set of
left coset representatives of H in G (i.e., G=] ¢,H).

PROPOSITION 2.6. Let ¢: S— A, be an R-algebra imbedding. There is an
integer I, 1<i<m and an invertible element ac A, such that
ag(s)a ' =aa) for all s€ S. In particular, $(S) is conjugate to S.

Proof. Let A=A,. The map ¢ allows us to put an 4® ,S-module
structure on A via the formula (¢ ® s)x = ax¢@(s) for all a, xe 4, se S. Let
A, denote 4 with this module structure. Similarly, for each i the map o,
endows 4 with the 4 ® S-module structure given by (a® s)x = axo (s). Let
A; denote A with this module structure. We claim that for some i, 4, is
isomorphic to 4, as an 4 ® S-module. We will assume the claim for the
moment and show how to complete the proof. Let y: A, — 4, be an
A® S-module isomorphism. Then Y ((a®s)x)=(a®s)¥(x) for all a,
xeA, seS. Hence ylaxg(s))=ap(s)o(s). It follows easily that
Y(a)=ay(l) for all ae 4 and ¢(s) Y(1)=y(1)a(s) for all seS. Since ¥
is an isomorphism, the element (1) is invertible. But then
Y1)t d(s)y(1y=0,(s) for all se S, as desired.

We now proceed to prove the claim. First observe that each of the
modules 4,, A,, 1 <i<m, is projective over A ® S and isomorphic to A4 as
a left A-module (where A4 is viewed as a subring of 4 ® S). To see the pro-
Jectivity consider, for example, the module 4. Since S/R is Galois, there is
a unique minimal idempotent ¢ in ¢(S)® S such that (1 ®s)e=(g(s)® 1)e
for all se S. The ideal (¢(S)® S)(1 — ¢) is the kernel of the homomorphism
P(S)R S — ¢(S) given by ¢(s)® r— ¢(sr). There is a left 4 ® S-module
homomorphism 4 ® S — A4, given by a® s+ ag(s). This map is surjective
and sends eed(S)®S<A®S to 1. It is then easy to see that the map
Ay > A® S given by ar— (a® 1)e is an A ® S-module homomorphism and
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a splitting. Hence A is projective. The modules A4; are handled in the same
way.

Let “~" denote reduction modulo the radical of A® S and let “
denote reduction modulo m. If N,, N, are projective 4 ® S-modules, then
they are isomorphic if and only if N,, N, are isomorphic as 4 ® S-modules.
Now let A,=B,®J as usual. As noted before, 4, =B, @® J is the crossed

--luct algebra for the cosickle £ in the sense of Section 10 of HLS. In par-
“UTRUAT, Bf is simple with center L=S8". (Recall that S/k is Galois with
group G.) Then A® ,S=(B®35)® (J® J) has radical J® S and A® S =
B®,.S. The algebra B®S is semisimple with center L® ,S=
S ® - ®F,, where S, is k-isomorphic to S and isomorphism is given by
[®s+— Y, 04l)s. Moreover, B®&S5=11,B® ,S,, where S, is viewed as a
left L-module via ;. Each of these components is simple and has dimen-
sion [S: L]? over its center (which is S, for the ith component). For each i
we can make B into a left B® S-module by setting (b ® s)c = beo (s) for b,
ceB, se8 Call the resulting module B, Then clearly A, B, over
AR S=B®,S. Since [B,:5,]1=[S5: L], it follows that B, is an irreducible
module over B® , .S, and that B® , S, is split. Moreover, any module for
B®, S of dimension [S: L7 over § must be irreducible and 1somorph1c to
somc B,. But A4, is isomorphic to 4 as a left A4-module, and so A¢ 1s
1somorph1c to B as a left B® S-module. In particular, [Ad, S1=[S:L]
and so A,,, =~ B, for some i. Hence Ay=A,over A®S. |

The group G acts on N*G,S) by the rule (o-f)a, B)=
f%(o " 'ag, 0 " 'Ba) for 6, a, B e G. The next theorem says that the R-algebra
isomorphism classes of crossed product orders are in one-to-one correspon-
dence with the orbits of this action (when S is a DVR).

THEOREM 2.7. Assume S is a DVR. Ler [ f1], [ f>]1€ N*(G, S). Let H be
the subgroup associated to f| and let ¢, 0,,..,06,, be a set of left coset
representatives of H in G (i.e., G=Uo H). Then A, =~ A,, as R-algebras if
and only if [, ~a; ' [y for some i.

Proof. We first show that for all teG, 4,4, ,. In fact, if
An, =1, Sx, and 4, ., =11, Sy,, then one can easily check that the map
from A, to A4, , given by >, s,x,+—>,1(S,) V.-t 1S an R-algebra
isomorphism.

Conversely, suppose 4, = A4, . It follows from Proposition 2.6 that there
is an integer i and an R-algebra isomorphism y: 4, - 4, such that
Y(s)=o04s) for all seS. By the first part of this proof there is an
isomorphism ¢: A; —> A, -1y, such that ¢(s)=a;'(s). The composite ¢y
Ap > A, 5 is then the identity on S. It follows by standard arguments
that f, ~ a L. fiover S. 1

481:105:1-9
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COROLLARY 2.8.  Assume S is a DVR. Suppose A, and A, are maximal
orders. Then A, = A;, as R-algebras if and only if f, ~ f, over S.

Proof. 11 fi ~ f, over S, then 4, and A, are clearly isomorphic. Con-
versely, suppose 4, = A,. Since 4, is maximal, we know by Theorem 2.3
that H is normal in G with G/H cyclic and the graph of f is of the form
H<oH<e’H< - <o™ 'H, where G/H={oH> |G/H|=m, and
flo, 67 ") emS —m?S. 1t is easy to see that it follows that for all o, fe G,
f(a, B)¢m*S (and, of course, f(a, f)e U(S) if and only if xe H or pe H).
Now by the theorem we know that /5, ~¢’- f, for some i, 0<i<m— 1. It
suffices then to show that o'- f, ~ f, for all i. For that it suffices to show
there is an R-algebra automorphism y; of 4, such that y, =¢' on S. We
will show that if 4, =11, Sx,, then x,4,x,'=A,, where the inverse x '
is taken in X;. This automorphism equals ¢ on S, so it and its powers will

then settle the issue. Now to see that x, 4, x'=4,, it is enough to show
that for all teG, x,x.x;'=u,, 1x,,  for some unit wu, -1 in S.
But x,'=f(c o) 'x, . Hence x,x.x;'=f" ("' 06)"flo1)

flot, 6" )x,0p-1 = flo, 1) flot0 ', 0)x,,, 1. By the remarks above either
v(flo,1))=0v(flota ', 0))=1 or v(f(a, 1)) =v(f(o16 !, 6))=0. In either
case the result is a unit muitiple of x,., -1, as desired. |

Remark. It should be observed that we can now determine the outer
automorphism group of a maximal order A, quite explicitly: By
Proposition 2.6 any automorphism ¢ is congruent modulo an inner
automorphism to an automorphism ¢ which preserves S (and so is equal to
6" on S, where H<SoH< --- <¢™ 'H is the graph of f and i is some
integer, 0<i<m—1). By Lemma 1.6 and the proof of Corollary 2.8, the
automorphism ¢ is congruent modulo an inner to conjugation by x,. But
conjugation by x,: is not inner because x,. is not invertible in A4,. Hence
Out(A4,) = {¢,», where ¢, is the image of the automorphism given by con-
jugation by x,. In particular, Out(4,) is cyclic of order [G: H]. This
should be compared with Corollary 37.32 of [7]. In particular, we see by
that corollary that [G: H] is the index of ramification of the division
algebra part of the completion of 4,.

3. THE GENERAL CASE

In this section we investigate the structure of the crossed product orders
when S is not necessarily a DVR. Let R, F, S, K, G be as usual (S/R
unramified). The basic idea is to reduce to the case of a DVR by replacing
A, by the algebra CAr(SD)G—) S%, , where M is a maximal ideal of S, D is the
decomposition group of M, and C,(S”) is the centralizer of $”, the fixed
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ring under D, in A, (the tensor product is over S”). This moves the sctting
from S/R to S,,/S% and S,, is a DVR.

To begin let /: Gx G — S be a cocycle with associated subgroup H. As
before we have the decomposition 4, = B, ® J, where B,=11,_, Sx, and
J=1, ¢4 Sx,. We want to determine the radical of 4,. If 6€G, we let
I, =11 M, where the product i1s taken over those maximal ideals M of S
such that f(o,0 ')¢M. In other words, I, =(mS; f(o,0 '))=
{xeS|xflo,6 "YemS}.

ProrosiTiON 3.1, (a) The set B, is a subalgebra of A,. Moreover, B, is
Azumaya with center S,

(b) The radical of A, is given by rad(4,)=11,.41,x,.

Proof. (a) The argument of part (a) of Proposition 2.1 applies.

(b) We first show I=1I,.5/,x, is an ideal in A4,. To see that [ is
a right ideal, it suffices to show that (/,x,)x -, =1, x, for all g,7t€G.
That is, we need to show I, f(6,6 't)=I,. From the identity
fe7 't ") flo,o V)= flo,07't) f(r,7 "), we obtain I, f(c, 0 '1)
flr,m <, flo,0 "YemS. Hence I,f(o,06 't)=I, as desired.
Similarly, to show I is a left ideal, we need I;“’lf(w", o)< I for all o,
1€ G. From the identity 1 ‘(6,7 ') fro "ot )= f(toe ', o) f(r,1 )
we see that it suffices to show I '/ '(g,1 ') f(tg ‘o1 ")
mS.  But [ flo,7 V" (we ot y=1,f(e,1 ") flor ' 10
I.f(t 16 ") flo,0 )<, f(6,06 'Y= mS as desired.

To see that / is in fact the radical of A, first note that /= mA,, so we
may work modulo mA, . Since A, = A,/mA,is a finite-dimensional k = R/m
algebra, it suffices to show J is the maximal nilpotent ideal of 4,. To show
I is nilpotent, it is enough to show that 7/ has a k-basis of nilpotent
elements, that is, it suffices to show I, x, is nilpotent for all ¢. But if 7 is the
order of ¢ in G, then (I,x,) =1.I7--- 19 'f(o,0) fle},6) - f(6' "', 0) S
2 flo~ ", o)=(, f(6.6 )" 'cmS, Thus I,x, =0. We now have /<
rad(A4,). Suppose the inclusion is strict. We know rad(4,)=
II,(rad(4,)n Sx,) by Lemma 2.1. Hence there are elements e G and
a,€S—1, such that a,x,erad(A4,). But then rad(4,)s(a,x,)x,-1 =
a, f{o,c7'). By the remarks above (a, f(6, 6" ')) e mS for some r. But
then a, f(o,0" 'YemS, so a, el,. |

N

If Sis not a DVR, it is not necessarily true that rad(4,) is a maximal
ideal, i.e., that A, is primary. Maximal orders are primary so we first want
to characterize the condition of being primary in terms of the cocycle 7. For
each maximal ideal M of S we let D,, denote the decomposition group of
M, thatis, D,, = {6€ G| M°=M}. Since S/R is unramified, the group D,,
may be identified with the Galois group of S/M over k.
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THEOREM 3.2. Let f: GxG— S* be a cocycle. The crossed product
order A, is primary if and only if for every maximal ideal M of S there is a
set of right coset representatives g, g,.., &, of D, in G (ie., G is the dis-
joint union \); D, g;) such that for all i, f(g,, g7 ') ¢ M.

Proof. Let A= A,. If I'is an ideal of A, then I=11I,(/n Sx,). It follows
that A4 is primary if and only if the following condition holds: If ¢ € G and
T is an ideal of S such that T & [, then ATx, A= A.

Now suppose A is primary. Let M be a maximal ideal of S and let
M=[] Nmaxn-nm N Since =mS, the criterion above gives
A=AMx, A= AMA. It follows that S=Y X, Mx, =Y, M f(6,0 ")
Now let G={J;_, h;D,, be a left coset decomposmon. Then

i=1

S=% Y M"f(h,d,d ‘h,')=ZM”/<Zf(h,d, d'hS ')>.
i deDy i d

As i varies from 1 to r, the ideals M" range over the r maximal ideals of S.
It must then be the case that for all i, >, f(h,;d, d 'h; ') ¢ M". Hence for
each i there is an element d, € D, such that f(h;d,, d; 'h; ') ¢ M". Replac-
ing h, by i, = h,d, we have a set of left coset representatives A, As.,..., i, of
D,, in G such that f(h, i ')¢ M" Letting g, =k ' we obtain a set of
right coset representatives of Dy, in G and f(g,, g7 ') = f*(g;, ', g)¢ M.

We proceed to the converse. Suppose e G and T is an ideal of S such
that T & I,. We need to show ATx,A=A. Since T & I, there is a
maximal ideal M of S such that f(¢, 6" ')¢ M and T ¢ M. Since it does no
harm to replace 7 by a possible smaller ideal of S, we may assume that
TcMand T ¢ M.

By hypothesis we have a coset decomposition G= U, 01 8 with
flg g7 ' Y¢M. Thus ATx, A 23, x,-1Tx,x, 1, =3, T% /g' ((r o 'g)
flg ', &) = X, S; (say). But f”(a"‘, g) flo,07'g,) = flo,0” )¢ M, so
f% (0,0 g ME Also f(g; ', g:) = f% (g g,*‘)éMg' Hence for
each i we have S, &€ M$ "and S, c M# ' Tt follows that >:;S;=Sand so
ATx,A=A4. |

Let M be a maximal ideal of S. The cocycle f: G x G — S*determines a
cocycle f,: Dy x D, — S% by restriction (and the inclusion of S in the
localization S,,). Let T= S”*, the fixed ring of D,,. The centralizer C 4(T)
of T'in A, can be expressed as I1,. p, Sx, and is a T-order. The algebra
Ay, is the localization of C,(T) at the maximal ideal M T of T. Let
H,, be the subgroup of D, associated to f,,, that is, H, =
{deDy | fu(d,d™"') is a unit}={deD, | f(d, d ')¢ M}. We want to
compare the orderings on G/H and D, /H,,. To do this, we introduce an
intermediate relation: For o, 1€ G, define 6H < ,,tH if f(0,6 1) ¢ M. It is
easy to see that this is well defined. The following proposition shows that
the relation is transitive and a form of lower subtractivity holds.
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ProrosiTioN 3.3. (a) Suppose oH< ytH and tH< ,yH. Then
oH< ,,yH.

(b) Suppose cH< p,yH. We have oH < ,,tH< y,vH if and only if
o ' tH< yo1:0 'y H.

Proof. Both statements follow easily from the identity f(o, 0 '1)
fl, ey =f e ', e ) flo, o y).

It should be noted that this relation is not necessarily a partial ordering:
The inequalities o H < ,,7H and tH < ,,yH do not imply ¢ H = tH but only
that f(o 't,7 '6)¢ M° '". Also it is clear that if o, teD,,, then
oH< y,tH if and only if 6H,, <tH,,.

Now assume A, is primary and let 6 € G. By Theorem 3.2, there is an
element de D,, such that f(d~'c, 6 ~'d)¢ M. From the identity f(d, d 'o)
flo, 67 'd)= f%d ‘6, 0 'd), we see that dH< ,,6H and ¢H < ,, dH. Sup-
pose r is another element of D,, with f(r ‘6,6 'r)¢ M. Then rH< ,,0H
and oH< y,rH, so dH< ,,rH and rH< ,,dH. By the remarks following
Proposition 3.3, we conclude that dH,, =rH,,. Hence d is uniquely deter-
mined by ¢ up to H,,. Moreover, it is easy to see that if he H, then
fld'ch, h"'67'd)¢ M. Thus we have a well-defined function ¢,,:
G/H - D,,/H,, given by ¢H+ dH,,, where f(d ', 'd)¢ M.

PROPOSITION 3.4. Assume A, is primary. Let M be a maximal ideal of S.

(a) The map ¢4, described above is a Dy -set map and is surjective.

(b) For all 6, 1eG, cH< ytH if and only if ¢, (cH)< ¢p(tH). In
particular, ¢, is a map of partially ordered sets.

(¢) The canonical map ¢: G/H — [ 14s max D a/H s IS injective.

Proof. (a) Since ¢, (dH)=dH,, for all de D,,, the map is surjective.
Let deD,, oeG. We want to show ¢,(doH)=d¢,(cH). Let
dulcH)=rH,,, reD,,. Its suffices to show f((dr) ' do, (do)~'dr)¢ M.
But this is clear.

(b) Let ¢, (cH)=dH,, and ¢, (tH)=rH,,, where d, reD,,. We
have seen that cH< ,,dH < ,0H and tH< y,,rH< ,,tH. It follows that
oH< ytH if and only if dH< ,rH. But by the remarks following
Proposition 3.3, this latter inequality is equivalent to dH,, <rH,,.

(c) If ¢p(cH)=¢,(tH) for all maximal ideals M of S, then
oH < y,tH and tH < ,,0H for all M. Hence f(6, 0" 't) and f(z, T ') are
units, so cH=1tH. | ‘

Remark. The map ¢,,: G/H—> D, H,, is defined independent of any
particular choice of coset representatives satisfying the hypotheses of
Theorem 3.2. However, for computational purposes, it should be noted that
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if G=|) D,, g is a coset decomposition with f(g, g ') ¢ M for all represen-
tatives g, then for o0 € G with ¢ =dg, de D,, and g a coset representative,
we have ¢,,(0 H)=dH,, (because f(d 0,07 'd)= f(g, g~ "))

We want to obtain information about the relations among the cocycles
fa as M ranges through the maximal ideals of S, (in the case where A, is
primary).

The following lemma is very useful.

LemMmA 3.5. Let geG with f(g, g ') ¢ M. Then we have:

(a) flg, x)¢ M for all xe G,
(b) f(x, g)éM" for all xeG,
(c) flg ", x)¢eM* " forall xeG.

Proof. They are all straightforward. To see the first, use the identity
(g1 gx) f(g, x)= f(g, g ). The others are similar. [

We now introduce a function which is somewhat more natural than the
cocycle, at least with respect to the graph of the cocycle. If f/: Gx G — S* is
a cocycle, we define F: Gx G — S§* by F(a, f)= f(a, a ™ 'B) for o, f G. Of
course F'is not a cocycle. Note that F(a, §) is a unit if and only if aH < SH.
For us this function is useful mostly because it simplifies notation. If M is a
maximal ideal of S, let v,,: K— Z be the corresponding valuation.

LemMma 3.6. Lert f, F be as above.

(a) If M is a wmaximal ideal of S and h,,h,eH,, then
vl Flahy, Bhy)) = vp(Fla, B)) for all a, Be D,

(b) If hy, hy e H, then vy (F(ah,, Bhy))=v,(F(a B)) for all a,feG
and all maximal ideals M of S (i.e., F(ah,, Bh,) F(o, B) ™" is a unit).

Proof. We have the identities
[y, e 'Bhy) f (o o Bhy) = fla, hy) flahy, by ta ™ Bhy)
and
a7 By hy) fla o™ Bhy) = f(a, a™'B) f(B, ha).

Both parts of the lemma follow from these identities, in conjunction with
Lemma 3.5. |

Because of this lemma we will abuse notation and write expressions of
the form v, (F(aH,,, BH,)) for o, fe D,,, meaning v, (F(ah,, ph,)) for
any choice of A, h,e H,,. We will also let ¢,, denote both the map
G/H— D,,/H,, and the induced map G — D,,/H,,.



CROSSED-PRODUCT ORDERS 133

Before stating the next proposition a remark on notation is appropriate.
If geG, then f(g, g )¢ M if and only if f(g !, g)¢ M* '. Hence the
existence of a right coset decomposition G=1J; D, g; with f(g,, g, V¢ M
is equivalent to the existence of a left coset decomposition G=\J,r,D,,
with f(r,, r; )¢ M" It is often more convenient to use the left decom-
position

PROPOSITION 3.7. Let f: GxG—S* be a cocycle such that A, is
primary and let M be a maximal ideal of S.

(1) For all o, Be G, vpyy(F(a, B)) =0y (F($p(2), 4 (B)))
(2) Let geG with f(g, g ') ¢ M*. Then:

(@) vp(Fla, B))=vu(Fgrlg'a), drlg'p))) for all o, feG.

(b) Ifd, reD,,, then v, (F(gdg ', grg ') = v, (F(d,r)).

(c) We have H,,=gH,g ' and the map D, /H = D ye/H ppe
given by conjugation by g is an isomorphism of partially ordered sets.

(d) Forall 6eG, ¢plo)=2gdulg '0)g "

Proof. (1) Let G=),D, g be a coset decomposition with
(g, g7 ") ¢ M (which exists by Theorem 3.2). Let « =dg,, f =rg;, where d,
reD,,. As was noted in the discussion following Proposition 3.4,
dp()=dH,, and ¢,,(B)=rH,,. The result now follows from part (a) of
Lemma 3.6.

(2)(a) We have f*(g~'a, a7 ') f(g. g 'B)=1(g g 'a) fla, 2" 'p).
Hence by Lemma 3.5, vy«(F(a, B))=04(F5(g ‘o, g 1)) =v,4,(Flg o,

g 'B)), which equals v, (F(¢,(g~'®), $r(g " '$)) by part (1).

(2)(b) By part (2)(a), vu(F(gdg ', grg ) =vp(F(gp(dg™"),
dulrg ")) =v,(F(d, r)) by part (a) of Proposition 3.4.

(c) This is an easy consequence of part (b).
-1

(d) Let x be an element of D,,. such that g¢,(g 'c)g '=
xHpeo Then vydF(x 'o,1)) = 0 (Flgpylg 'x o). dulg ') =
vp(F(g ™ 'x 7 'g(dulg o)1) = vp(F(g 'Hyeg 1)) = vp(F(Hy, 1))
=0, where we have used (2)(a), (2)(b), and part (a) of Proposition 3.4. By
the definition of ¢,,., we conclude that ¢,,.(c) = xH ¢, as desired. ||

Parts (2a) and (2b) in conjunction with part (d) of Proposition 3.4 give a
fairly complete picture of the ordering on G/H in terms of the orderings on
D,,/H, as M ranges through the maximal ideals of § (in the case where A4,
is primary). An example will be given in the last section.

We are now heading for Theorem 3.10, which says that if 4, is primary
and M is a maximal ideal of S, then there is a one-to-one correspondence
between the ideals of A, and the ideals of 4,, . The proof is based on an
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argument of Harada [6]. He proved the result in the case where the values
of the cocycle are all units, but with a weaker assumption on S (tamely
ramified).

Recall that if T is an ideal in the crossed product order 4,, then T is an
S® S-submodule of A4, and so by Lemmall we have T=
e T Sx,)=11,T,x,, where T, = {seS|sx,eT}.

Lemma 3.8. Let T=11, T,x, be an ideal of A,.
1) IfeeGandheH, then T,, =T, and T,, = T"

(2 If M is a maximal ideal of Sandoe D,,, he H,,, then v,(T,.}=
UM(Tﬂh) = UM( Trf)

Proof. (1) If heH, then x, is invertible in A4, We have
TonXon 2(T,x,)x, =T, f(o, h}x,, =T, x,, because f(o, k) is a unit. By
the invertibility of x,, it follows that T, = T,. That T,, = 7" follows by
considering x, T, x,.

(2) This is proved in the same way as part (1), with the observation
that if he D,,, then v, (T")=10,/(T,). }

Because of this lemma, we will abuse notation and write expressions of
the form v, (T4,.,), meaning v,,(T,) for any choice of 4 for which
pulo)=dH,,.

PROPOSITION 3.9. Assume A, is primary. Let T=11,T,x, be an ideal
of Ay.
(1) For all maximal ideals M of S, v4,(T,) =T 4,5\
(2) K M is a maximal ideal of S and ge G with f(g, g ') ¢ M¥,

then:
(@) ope(Tygg-1)=vp(T,) for all de D ,.
(b) Forall 6eG, vyl T,) = 04(Ty, 05 -15))
(c) Forallo, 1eG, vy T ) = 0ad T g o101 Vguia— 1oy

{Note that this last expression makes sense by part (2) of Lemma 3.8.)

Proof. (1) Let 6=dg, where deD,, and f(g, g ')¢ M (which is
possible because A4, is primary). By the remark following Proposition 3.4,
¢alo)=dH,,. Hence v,(T,)=0,{T,)=v,(T,) by the preceding lemma.

(2a) Clearly T,4-1Xp01 2 X (Tyxg)x,- = T5f(g d)
flgd, g7 )x,4o-1. By Lemma35, f(g.d)f(gd g ')¢M*  Thus
Uprel Tg ug—1) S 0pe(T8) = 0,(T,). The other direction is similar.

(2b) By part 2(d) of Proposition 3.7, ¢ ,(0) = gdr(g 'o)g ' The
result now follows from part (a).
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(2¢) Let o7'g=yd, where deD, and f(y,7 ')éM’. Then
UMX(TZ’H) = Uage 1‘f(Tva’lt) = UM7‘(T0’11') = UM(T¢M()J’1(I’11')) =
U T ppgiae—10)) = Var(T e -10))- But g lo=d !y~ and f(y ', 7)¢M, so
d"'H, =¢,(g '), as desired. ||

If I is an ideal of S and M is a maximal ideal of S, let I,, denote the
localization of I at M.

THEOREM 3.10. If A, is primary and M is a maximal ideal of S, then the
map T=1,T,x, = Uucp,(Ti)sxs is a one-to-one, product-preserving
correspondence between the ideals of A, and the ideals of A,,,.

Proof.  First note that if T'is an ideal of 4, then I1,. 5, (T,) 4 X, is just
the localization at M n S of T C,(S”) and so is an ideal of 4,,,. (See
the discussion following Proposition 3.2.)

Let G=1J gD, be a coset decomposition with f(g, g~ ')¢ M*. We first
show that the map from ideals of 4, to ideals of 4, is one-to-one. Suppose
T=11I,T,x,and U=11,U,x, are ideals of 4, such that v,,(T,)=v,,/(U,)
for all deD,,. We need to show T=U. It suffices to show
vare(T,) = 0,:(U,) for all 0 € G and all of our special coset representatives
g But by Proposition 3.9, vys(T,)=04(Tg,p-10) =V Ugpyo-1o)) =
vae(U,), where as usual we are using Lemma 3.6 to abuse notation.

To see that the map is surjective, let 1., T,x, be an ideal of 4,,. For
each g e G, let U, be the ideal of S determined by the conditions » m(Us)=
var(T4,0 1)) foOr all coset representatives g. We claim that U=11,_., U, x,
is an ideal (if so, then U T ,x, is clear). We need to show Ux, < U and
x. U< U for all 1eG. This reduces to showing U, f(s,6 't)= U, and

o, flo,e7't)cs U forall o, 7. Let F: GxG — S* be as usual.

To prove the first of these inclusions note that for every coset represen-
tative g,

Uare( U, f(0, 67 11)) = 04e(U,) + 0 56( Flo, 7))
= UM(T¢M(g’lo')) + o (Fl@alg™ lU)a ¢M(g-lf)))

by Proposition 3.9,

= UM(T¢M(g'1a)F(¢M(g710')a ¢M(g711')))

2 v T¢M(g 'r)) =0 U,),

where the inequality follows from the fact that [ T,x, is an ideal of 4,,,.
Hence U, F(o, 1)< U,.

To prove U .\ f(o,0 't)c U, we first claim that vy (U?_. )=
Ua(T gy e-16)- U gaiz-10y)- (This is the same argument as that given for part
2(c) of Proposition 3.9, except we do not know yet that U is an ideal.)
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Let ¢~ 'g=yd, where de D,, and y is one of our coset representatives.
Then vpe(Us-1) = 0,0-1(Us-11) = 0an(Uys-1) = 0alTyp-10-159) =
U T appie—10y) = O0m(T g -10)- 1 gage-1ry)- This proves the claim. To prove
the second inclusion we observe that by the claim and Proposition 3.9,
Oae(Us-tcF(0,1)) = 04l Tppiet10r- 1guie- 0 F(@a(8710), $urlg ') >
V(T 4,5 1)) because II T,x, is an ideal of A4,

Finally we need to show the correspondence preserves products. Let U =
I, U,x, and T=11, T,x, be ideals of 4,. We want

I (UT)g)yxs =(H (Ud)de) (H (T,,)de)
d d

de Dy

Then inclusion “2” is clear. It suffices then to show that if 6eG and
deD,, then (U,T? ,,F(o,d))yx,<srhs. But v, (U,T?.,F(o,d))=
Ul Usior Tprrio)—‘omay F(@ma(0), #44(d))) by Propositions 3.9 and 3.7. It
follows that (U,T;-1,F(o,d))yxs = (Usyo)s Xpuo (T ppior-14iar)
X o)~ 1gsia)> SO W€ are done. |

CoroOLLARY 3.11.  Assume A, is primary and M is a maximal ideal of S.
The cross-product order A, is maximal if and only if A,,, is maximal.

Proof. 1f C is a primary order over a discrete valuation 7, then C is
maximal if and only if some power of rad(C) is equal to mC where m is the
maximal ideal of T. In our case, under the one-to-one correspondence of
the theorem, rad (4,) corresponds to rad(A4,,) and mA, corresponds to
mA;, = (M~ S”") A, . Since the correspondence preserves products, the
result follows. |

The theorem also allows one to determine the ideals of a primary order
A,. In Section 2 we discussed a method for determining the ideals of 4, ,
where M is a maximal ideal of S. The one-to-one correspondence of
Theorem 3.10, together with part (2b) of Proposition 3.9, allow that deter-
mination for 4,. We will give an example in last section.

We now obtain another result concerning the relationship between A,
and A,, for A, primary.

THEOREM 3.12. If A, is primary and M is a maximal ideal of S, then
Ay/rad(A,) is isomorphic as a k-algebra to M (A, /rad(A,,)) (the ring of
rxr matrices over A, [rad(A,, ), where r =[G : D,,].

Proof. Let A, and A, denote the residue class algebras. It suffices to
display a set of matrix units e;; in 4, 1 <i, j<r such that e, d,e;, ~ 4,,.
Let SimS=K, P - PK,, where K, =2S/M,, and M=M,, M,,.., M, are
the maximal ideals of S. Let ¢, be the minimal idempotent of S generating
K, Let G=\J'_, g;D,, be a coset decomposition with f(g,, g, ') ¢ M#& and
let ~A,=1ISx,. Since [*(g; ', g)=/S(g,8 ") flg.g ' g) and
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flg ' g)¢M, we see that f(g,g7',g)¢M* and so that
e flg.g " g)#0. Let c; €K, be the inverse of e; f(g;g; ', g), that is,
e flg.g s g)cy=e; Lete; =c;%, - g '» 1 <0, j<r. We claim that the e;
form a set of matrlx umts That >ie —1 is clear. We need to verify that

¢er = d,.e,. First note that because G =) g,D,,, we have g, (Kl) =K, for

all i, Hence g,g,“(K)— . If j#k, then e ey, = CyXgg lck,xg,“,g 1=
Ci8:81 M(Cu) Xgg1 Xy, g =0 because g,g,* Ye) K, Moreover e e, =
C; 88 (],)f(g,g] ,gjg, X Xegr ! =CuXg grts where to get the last

equality we use the identity
—1
f55 (gier ' ) flgigm ' g)
=flg.g ' g8 ")V fle.g ' g8 ") fle.g ', g

Finally, we need to compute e,, 4,¢,,. Recall that rad(4,)=U,c.¢ 1, x,,
where I, =(mS; f(o,07")). Hence e, A,e), =11, e,,(S/I,) o(e,;)%,. But
e (S/1,)o(e;)#0 if and only if o(e;;)=e,, and e, ¢ I,, that is, if and
only if ce{reG|teD, and f(r,7 )¢ M}=H,. Hence endre, =
HdEHMled_AfM I

Remark. Let A, be maximal. /}n argument similar to that given for
Theorem 3.12 shows that if R is the completion of R, then
A;® rR= M,(4;,), where f,,: Dy xD, — S, is the obvious “com-
pletion” of f,, (and has the same associated subgroup and graph). In fact,
the formulas of the theorem again determine a complete set of matrix units
(recall that K= K® ,.F is isomorphic to II, K, where K, is the completion
of K at M,). In particular, the division algebra part of X2, ® F is the same
as the division algebra part of 2z, and hence that division algebra part has
ramification index [D,,: H,,] (see the remarks following Corollary 2.8). B
Corollary 37.32 of [ 7], we conclude that the outer automorphism group of
Ay has order [D,,: H,,]. We will use this observation later.

For any cocycle f: Gx G — S* it is easy to see that the center of Z =
A,/rad(Af Jis L={5eS8|o(s)—sel, foralloeG}.If Afis primary, then L
is a field and by the precedmg proposmon L, = LK, is the center of 4 o
i=1,2,.,r. Hence =Kf  and [Af L]—[G D1 [AfM L]—
[G:D, [K L] = [G HM]2 We will use this computation in a sub-
sequent result.

We are now heading for a determination of conditions on two cocycles f,
and f, equivalent to 4, and A, being R-algebra isomorphic, in the case
where A, and A4, are maximal. To begin suppose M is a maximal ideal of
S and f: Dy, x D, — S% is a cocycle. Let F: D,, x D,, - S% be given by
Fla,7)=f(o,0 't)foralle,teD,,. Let M=M,, M,,.., M, be the full set
of maximal ideals of S and choose #; € S such that M, =(=n,), i=1,2,..,r.
As in Section 1, let P be the submonoid of S* generated by =, n,,..., 7,;
that is, P={nf---n% | 0<k, for all i}. We want to lift f to G. Let
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G=U);8Dy=U;Dyg "' be a coset decomposition. Let ¢.G — D,, be
given by ¢(dg;')=d if de D,, and g, ! is one of the right coset represen-
tatives. Define F: GxG—-PcS* by the rules v,4(F(o,1))=
va(F(d(g; '), ¢(g; 1)) for all i. Let f : GxG—>P<S* be given by
f(o, ©) = F(o, a1).

PROPOSITION 3.13.  The function f described above is a cocycle and A IS
primary.

Proof. We need to show that for all g, 1, yeG we have
flo,67 ') f(r, v 'y)= (e ', 17 'y) f(o, 6~ 'y), that is, F(o, 1) F(z,y)=
Fo(67't, 0 'y) Ko, y). Since F(G x G) < P, it suffices to show that the v,
valuation of both sides is the same for all i. Let g = g,. Then v,,(F(o, 1)) +

vae(F(1, 7)) = vy(Flg(g 'o), ¢(g ') +vu(Flglg 't), dlg 'v) =
ou(F " g(g o) " (g 1) dlg o) ! dle ')+l Fidlg o),
#(g 'y))) because F comes from the cocycle f. To compute the right-
hand side, let o ~'g = hd, where h is one of the coset representatives and
deD,,. Note that d=¢(c 'g)"". Then v,(F(c 't,6°'y)) =
vpew(Flo 't07') = uulFlo 07 y)) = v (Fgth o),
gh~'a'y))) = vy (F((dg 1), ddg~'7))) = vp(Fldp(g '1), dp(g 7))
= vy(F(g(g ') ' d(g '1), 6(g 'o)"' d(g 'y))), as desired.

To show A, is primary it suffices, by Theorem 3.2, to find for each left
coset representative g; a full set of right coset representative 4, 1< /<,
such that 7( h;')¢ M* for all j. Given i, let h; =g, g, L 1<j<r Then
GZUiDMgfl = UgDug g = U Dyugg lg‘,-_:l =
U,DMg,gfgfl = U/DMmhij- Moreover, UM#:(](hij’ h,-,- ) = UMgl(F(h[ja 1))
= vp(Flo(g "), d(g7 D)) =vy(F(1,1))=0.

If /: GxG—->P<=S* is a cocycle, M a maximal ideal of S and
G=\J) gD,, a coset decomposition, we can form a new cocycle f:
GxG— P by lifting f,,: Dy xD, — S% as described above. For an
arbitrary cocycle f: G x G - S* we can decompose f = f, f, as described in
Section 1, and given a coset decomposition G =) gD,, we can form
F=17.7, We will call such a cocycle a twist of f.

ifs

PROPOSITION 3.14. If f: Gx G — S* is a cocycle such that A, is maximal
and [ is a twist of f, then A7 = A, as R-algebras.

Proof. First note that if d, re D,,, then v, (F(d,r))=v,(F(d,r)). In
particular, f,, and f,, determine the same graph. By the preceding
proposition Ay is primary, so we infer from Corollary 3.3 that A4; is
maximal. Since maximal orders in a fixed central simple algebra are
isomorphic, it suffices to show that f ~ 7 over K. Decompose f=r.f,and
7= fu],,. It suffices to show f, ~7p over K. We apply the exact sequence of
Auslander and Brumer 0 — B(S/R) — B(K/F) - y(D,,) — 0. Since f, and f;,
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determine the same character of D,,, it follows that f, ~uf,, where u:
G x G - U(S) is an invertible cocycle. Hence f, = (da) uf,, where da is the
coboundary of some cochain a: G — K*. If a is decomposed in the obvious
way as the product a =a,a,, then because f,(Gx G) < P and fp(G xG)c P,
it follows that f, = (da,)f,. |

Let f and 7 be as in Proposition 3.14. Since A, and A7 are maximal, there
are coset decompositions G=1\J; g;D,, = J; h; D, (wWhere g, D, = h,D,, for
all i) such that f(g,, g7 "Y¢ M* and f(h,, h7 ') ¢ M™. Suppose f ~ fover S.
Then f(h,h') ¢ M" = M* Since f5 (h,h7'g) flg; ' g) =
flg- L hy flgmth,h7'g), it follows from Lemma3.5 that
flg7thi,h; ' g;)¢ M. But g7 'h,e€ Dy, so g 'h,e Hy and g, Hy =h;H,,.
Since f and f are cohomologous over S if and only if there is an R-algebra
isomorphism : A, — Ay such that y(s)=s for all seS, such an
isomorphism exists only if g, H,, =h,H,, for all i

Keeping the analysis above in mind, begin again and let f/: Gx G —» S§*
be a cocycle with 4, maximal. For each i, i=1,2,.., r, let {d;} be a set of
left coset representatives of H,, in D,,. Let G=1] g,D,, be a coset decom-
position with f(g;, g ')¢ M*. Using the d; and this decomposition of G
we obtain, in the obvious way, a total of n=[D,, : H,,]'¢:?#1~! different
sets of coset representatives of D,, in G. Let = f,, f5,.., f, denote the
twists determined by f and these sets of coset representatives.
Proposition 3.14 and the analysis above show that 4, ~ A, as R-algebras
for all i, j but that if f; and f; are cohomologous over S, then i = j. For each
ilet y,: A, — A, be a fixed R-algebra isomorphism, y, =id. Let 4= A4,.
Each y; endows A with the structure of a left 4® S-module via
(a®s)x=axy(s) for a, xe A, se S. Let A, denote 4 equipped with this
module structure. As in the proof of Proposition 2.6, we see that each 4, is
a projective, cyclic A® S-module. We claim that if A4,=A; as
A® S-modules, then i=j. In fact, if y: 4, > A4, is an A® S-module
isomorphism, then the standard argument shows that (1) is invertible in
A; (=A) and Y (s)=y(1) " Ys)¥(1) for all seS. Let y: 4 > A be the
inner automorphism a (1)~ @y(1). The composite map Y 'y, from
Ay to A, is an R-algebra isomorphism and is the identity on S. Hence f;
and f; are cohomologous over S, so i= j. In this way we have produced
n=[D, : H, ]9 P1-1 different 4 ® S-module structures on 4. We can
go further. For each i we have seen that 4, is maximal. By the remarks
following Theorem 3.12, the order of the outer automorphism group of A,
is t=[Dy :Hy]J Let ¢, 1< <1, be a full set of representatives of the
inner automorphism group in the full automorphism group. For each i let
y;: A, —> A, be a fixed R-algebra isomorphism. Let ;= ,-¢, for
1 < j<t As usual each ; puts an 4 ® pS-module structure on 4. Let 4
denote A equipped with this structure. We claim that if 4,=4, as
AQ® S-modules, 1 < j, g<¢, then j=gq. To see this, suppose : 4, =+ A, is
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an A ® S-module isomorphism. Then as we saw above, it follows that y(1)
is invertible in 4 and (1)~' Yi(s) (1) =y, (s) for all seS. Hence if y
denotes conjugation by (1), then ¥ 'y ;: A, > A, is an R-algebra
automorphism which is the identity on S. But we have seen
(Proposition 1.6) that such an automorphism is inner, given by con-
jugation by a unit of S. It then follows that ¢, 't is inner, so j=gq.

By the argument above, we have produced [D,,: H,,] module struc-
tures on A for each twist f,. Since there are [D,,: H,, ] ?*1~! such
twists, we have accounted for [D,,: H,, ]9+ different 4 ® S-module
structures on A, namely the A4, 1<i<[D,:H,]9 21! and
1<j<[Dy:Hul

The next proposition shows that these are all the module structures of a
certain type. Let A®S denote the quotient of A ® S by its radical. It is
casy to see that A® S~ A® .S, where A= A/rad(4). Let L < 5 denote the

center of A®S and let Z,, be the quotient module of A4, Let
n=_[D, : Hy ¢ Pul 1

i

ProposITION 3.15. If N is a left A® S module that is faithful over 1 ® S
and has L-dimension equal to [G : H,,]% then N>~ 4, g for some i, j, 1 <i<n,
I<j<[Dy:Hyl

Proof. Let M=M,, M,,., M, be the maximal ideals of S and let
S=1I,K, as usual. Let L, = LK,, a subfield of K, isomorphic to L. Then
A®S~A®,5~11,A® ,K,. Let N,=(A®K,)N. Then N=II,N, is a
direct sum decomposition into A® S submodules. Since N is faithful over §
(identiﬁed with |® S< A/®‘3’), each N, is nonzero. For each i, A® K, =
A® ,,~,, K, where {0, | 1< j<[L;: k1} is the set of distinct embed-
dings of L; mto K;. By Theorem 32, A M (4 ,w) for all i. In particular, 4
18 split by K, for all i. Hence an irreducible 4 ® 1, ~«, K; module has
L,-dimension equal to [A: L]"Y?[K,: L,]. Using the computatlon follow-
ing Theorem 3.2, this dimension then equals [G:H,][K;:L;]=
(G:Hy [ Dy :Hyl=1G:H,1[D,: Hy] since these numbers are the
same for all i Hence [N,:L,]=[G:H,][Dy:H,y], so [N:L]=
S IN::L1=2[G:Dy,[G:H,][D,sy :Hy]1=[G: H, 1> But by assump-
tion [N:L]=[G: H,, % Tt follows that each N, is an irreducible 4 ® K-
module. Hence there are exactly [L: F]“’ bul=[D,,: H,,]°" Dul
possibilities for N. But each of the modules A,,, 1<ig<n 1< j<K[G: DM]
satisfies the hypotheses of the proposition too. Moreover since each 4,
projective, if 4, >~ A4, , then A4, ~A,, and so as we have seen i=p and

i = Py i =

j=¢q. Hence N A for some i, j. |

THEOREM 3.16. Let t: Gx G - S* be a cocycle with A, maximal. Then
A, = A, as R-algebras if and only if t ~ f, (over S) for some i, 1 <i<n.
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Proof. By Proposition 3.14, A, =~ A4, for all i. Suppose then that ¢:
A, — A, is an R-algebra isomorphism. As before we endow A4, with a left
A; ® S module structure via (a®s)x = axg(s) fgr a, xeA;, seS. If A,
denotes 4, with this new modulcz structure, then A, satisfies the hypotheses
of the proposition. Hence 4, = A, for some i, j and since 4, A4, are projec-
tive, we get A, = A4,. Now the argument preceding the proposition shows
that r~ f; over S and we are done. |

4, EXAMPLES

In this section we present some examples of the phenomena we have
been discussing. The following lemma is useful for narrowing the
possibilities for graphs of cocycles. The notation is as usual.

LemMMa 4.1.  Assume G is abelian and S is a DVR. Let f: Gx G — S be
a cocycle. Then v(f(a, 1)) =v(f(z, 6)) for all o,71€G. In particular, if H is
the subgroup of G associated to f, then cH < atH if and only if TH<otH.

Proof. 1t is easy to see that the second statement follows from the first.
Since f is a cocycle, there is a positive integer » such that f"~1 over K;
that is, there is a one-cochain «: G — K* such that f"(o,7)=
a(a) a’(t)/a(at) for all o, Te G. But then v(f"(o, 1)) =v(x(0)) + v(a°()) —
v(a(at)) = v(a(a))+v(x(1)) —v(a(to)) = v(a*(a))+v(a(r)) —v(a(10)) =
v(f"(t, @)). Hence v(f(o, 7)) = v(f(7,0)). |

We now proceed to the examples:

ExampLE 4.2. Let G= (o), the cyclic group of order four and assume
Sisa DVR (e.g, R=C[[x]] and S=C[[y]], where y*=x—1). It is not
difficult to write down all the graphs (i.e., partial orderings) on coset spaces
G/H satisfying

(1) H is the unique minimal element,
(2) The partial ordering is lower subtractive, and
(

3) If g, €@, then 6H <otH if and only if tH <gtH. They are as
follows:

o

(4,) (4,) G<0'2> (43)
I
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o 52 a2
(44) (A4s) (4e)
g’ ¢? a ¢? G ¢’
1 1 1
o
(A7) (A4g) o’ (4y) g
¢’ I a? o?
o d?

To see that these graphs actually arise as the graphs of cocycles, proceed
as follows. First note that it suffices to show A4,, 4,, A<, Ag, and A, arise
because the others can be obtained as products of these. But 4,, 4,, As,
and A, arise by the remarks subsequent to Theorem 2.3. To see that As
arises we will find an appropriate crossed product order as a subalgebra of
M, R)=A,, where f: GxG-S* is the identity cocycle. Let
A, =1I,_0 Sx, as usual and let y, =7nx,, po=7n"x2, y,=nx,. One
easily checks that S@® Sy, ® Sy, ® Sy, is a subalgebra of 4, and the
graph of the corresponding cocycle is 4.

Let g denote the cocycle we just found. It is given in the following:

g 1 T o’ a3
1 1 1 1 1
o 1 1 n? n?
o? 1 n? n? n?
a? 1 n? 2 1
Let g: GxG > S* be given b
g g y
g 1 I a? g’
1 1 1 1 1
4 1 1 T n
o’ 1 7 n? 7
o’ 1 bid s 1
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Then g”= § and g is itself a cocycle. The algebra A, is quite interesting
because it is not maximal but it is “irreducible”: it is not the product of
other non-Azumaya crossed product orders. We want to determine the
ideals of 4, =11, Sx, by the methods of Section Two. We first determine
the weighted graphs. By Lemma 4.1 the left and right graphs are the same.
They are

o (left and right)

o> (left and right)

o2 (left and right)

1

nz

Let A=A, By Proposition 2.5, Ax,A=1II}_,7"Sx,, where k=
min, g {v(f(o, 67 'T))+o(f(c’z !, 7))}, It is then easy to compute that
ko=1 4k, =0, and k; = 1, so Ax, 4 = nS ® nSx, ® Sx,» ® nSx,.
Similarly Ax,.A=n’S@®nSx, ® Sx,2 ®nSx,s and Ax4=nSDSx, P
Sx,» @ nSx,:. By the remarks preceding Proposition 2.5, the ideals of 4,
are obtained as sums of the form 74 + %1 4x, A + 7% 4x 4 + 75 Ax 2 A4,
where each k, is a nonnegative integer.

In this particular example, though, one can proceed more simply. From

4817105°1-10
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Lemma 4.1 it follows that Ax,, = x,: 4 for all / and thus Ax_A = Ax_ for all
i. This makes these ideals much easier to compute. Note that rad(4,)=
S@®nSx, ®nSx, . ®uSx s = Ax, + Ax,’.

ExaMPLE 4.3. We again take G = (o) the cyclic group of order four
but now assume S has exactly two maximal ideals, M, =(m,) and
M, = (n,) with o(n,)=n,, Dy, =<0>>=D,,. Let D, =D,,, i=1,2. Con-
sider the cocycle f: D, x D, —» S% given by

f 1 a?

Then A; is a maximal order (Theorem 2.3) and f has graph I]”z. As

described in Section 3, we lift fto f;: Gx G — S* using the coset decom-
position G=D, ueD, = D, u D,c’. The cocycle f, is given by

fi 1 I a? o?
1 1 1 1 1
o i i T, m,
o? 1 T, n n,
o’ 1 T, T, T

The graph of £, is

Lae -
—_ 9 9 o
Lo
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In this particular example we get an isomorphism of partially ordered sets
¢, xdy: G—= D xD,.

By the general theory A, is a maximal order. Moreover, under the one-
to-one correspondence between ideals of 4, and ideals of A, the ideal
A x,2 Ay corresponds to Arx,.Ay=rad(Ay). Hence rad(A4,)=A,x,:4.
But it is easy to see that A, x,: =x,A4, and so rad(A,)=A,x,=A,A,.

If we consider the other allowable coset decomposition, G =
D, vua’D, =D, v D,a, then we obtain the cocycle f5: G x G — S* given by

I8 1 I I ¢?
1 1 1 1 1
a f ! Ty ,
a2 1 n n n,
a? 1 L 7 n,

The graph of f, is the same as that of /|, but the functions ¢,: G —> D, are
now switched. Again, 4, is a maximal order and in fact 4, =4, as
R-algebras. However, we know there is no isomorphism 4, — A, which is
the identity on S.

ExaMPLE 44. Let G=S,, the symmetric group on three letters. Let
o=(1,2), 7=(1, 2, 3). Assume S has exactly two maximal ideals M, = (n,)
and M, =(m,), so that D, =<{t>=D,, Let D,=D,. Let f
D, xD, - §7, be the cocycle given by

r l T 72
1 1 1 1
T 1 1 bid
T { bid n
The graph of [is
)
12

T

1

Hence A7 is a maximal order. We lift f to f: Gx G — §* using the coset
decomposition G=D, veD, =D, uD;o. Then A, is maximal. In par-
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ticular, 4, is primary so the ordering on D, is obtained by conjugating the
ordering on D, by . Hence the graph of f restricted to D, x D, is

T

2
T

1

The map ¢, is determined from the coset decomposition G =D, u D¢ and
because M, = M9, the general theory tells us that ¢,(x)=o0¢,(x)c for all
x € G. We tabulate the results:

$ ¢

1 { 1

g [ 1

T T T

T° T T’
ot 2 T
a1’ T T

Thus, ¢, = ¢,, but of course the ordering on D, is different from that on
D,. From this table we see that the associtated subgroup for fis (o) and

the graph of f'is
<o \//1'2 {o>

(o)

One interesting aspect of this example is that rad(4,)=A4,(x, + x2) and
rad(4,) cannot be expressed as A4,x, for any choice of ge G. If the other
allowable coset decompositions are used, the effect is to replace (o) in the

graph of f by (ot) or {o1?>.

ExaMpLE 4.5. For the final example, let G =.S; but now assume S has
exactly three maximal ideals M,, M,, and M;. Let M,=(x,). Assume
(M )=M,, «(M,)=M,, o(M,)=M,, o(M,)=M;. Then D, =<0,
Dy, =<ot) and D, =<ot’). Let D,=D,,. Let /- D, xD, - S% be
given by
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The crossed-product order A; is maximal. As before we can lift fto G in
various ways to obtain maximal orders. First consider the coset decom-
position G=D, utD, ut*D, =D, uD,1? U D, t. If f, is the cocycle deter-
mined by this decomposition, then the orderings it induces on D, and D,
are obtained by conjugating the ordering on D, by 1 and t? respectively.
The graphs are

0T oT
and

i 1.

We can compute the functions ¢,: G — D, as described in the last exam-
ple (e.g, ¢,(x)=¢,:(x)= 1, (t 'x)r ! for all xeG). We tabulate the
results:

é, #> ¢
1 1 1 1
o o ot o1?
T 1 | 1
r? 1 t 1
ot o ot a1’
at? I3 ot ot

The graph of /| can be determined from this table. It is
o{1)
(1)

In particular {t) is the associated subgroup for f.

A more interesting cocycle, call it f,, arises from the coset decomposition
G=D,vetD, uot’D, =D, uD,stuD, o1’ In this case the orders on
D, and D, are as for f, and the functions ¢;: G — D, are given as follows:

[oxs
1 ot

¢l ¢Z ¢3
1 1 1 1
o o ot o1’
T o 0T 1
T o 1 o1’

1

1

5
o1~
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The associated subgroup for f, is trivial and the graph for f, is

a
2
T T
o1 o1’
1
The cocycle itself is given by
/> 1 G T 7 ot o1’
1 1 [ 1 1 1 1
[ 1 n T Ty A% 5 T4 i
T 1 EAE , A% %) { ,
72 | T, Ty 4 n, 1
o1 1 s s, 1 s 1
oT 1 Ty 1 3 1 i

By the one-to-one correspondence between ideals of 4, and A, we see
that rad(A4,)=A4,x,A,. But from the table one can check that Apx, =
x,A,, and so rad(A4,)=A,x,.

This example is interesting because the graphs of f; and f, are quite dif-
ferent and yet we know by the theory that 4, = A4, as R-algebras. The
other cocycles on G x G obtained from f (there are [D,: H, ] 71 '=4
in all) can be found by conjugating the graph of /5 by 7 and 12
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