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We use separation-of-cones techniques and ideas from multivariable operator
theory to show that polynomial hyponormality does not imply subnormality for
Hilbert space operators. As an application, we obtain a new result in the theory of
power moments in two dimensions. € 1993 Academic Press, Inc.

1. INTRODUCTION

Several classes of Hilbert spaces operators are defined around the notion
of a normal operator; the corresponding theories, although often radically
distinct, invite us to make comparisons among them. Two typical examples
of such classes are those of subnormal and hyponormal operators. They
were introduced in 1950 by P. R. Halmos [Hal 1] in an attempt to extend
the basic facts of the spectral theory of normal operators. Soon it was dis-
covered that each of these classes has its own, surprisingly rich, collection
of phenomena. It is not the purpose of the present paper to discuss these
distinctions; as a by-product of the main result below, however, one can
assert that the gap between hyponormal and subnormal operators is even
larger than previously thought. We prove in the sequel that there are inter-
mediate classes of Hilbert space operators which deserve attention in the
future.

While a normal operator is modeled as multiplication by the inde-
pendent variable on a sum of L’spaces associated with positive Borel
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measures compactly supported in C, a subnormal operator (i.e., one which
is the restriction of a normal operator to a closed invariant subspace)
corresponds to the same multiplier acting on subspaces of L? generated by
analytic functions. These relations extend much further; for instance, the
basic results in the classical theory of moments of planar measures can be
derived from the spectral theorem for normal operators (see [Akh, Lan]).
On the other hand, the theory of subnormal operators has nontrivial
applications to one-variable complex function theory (see [Con]).

A bounded operator T on a Hilbert space # is said to be hyponormal if
T*T>TT* This inequality is satisfied by all subnormal operators (as a
straightforward matrix calculation shows), but the converse is not true. The
functional models, and consequently the refined structure theory of
hyponormal operators (in the spirit of the above mentioned two other
examples), were completed unexpectedly late (in the early eighties), thanks
to the contributions of many mathematicians (see the monographs
[Cla, MP, Xia). One such model is given by singular integral operators on
the real line with kernels of Cauchy type.

In the sequel, we confine our discussion to one aspect of the distinction
between subnormality and hyponormality, namely, it is immediate that
subnormality is preserved under polynomial calculus while hyponormality
is not (the latter statement takes a bit of proving). A hyponormal operator
which does remain hyponormal under such a functional calculus is called
polynomially hyponormal. A natural question, going back to the pioneering
ages of the two theories, is whether polynomial hyponormality coincides
with subnormality.

The aim of the present paper is to answer this question in the negative;
that is, we show that there exist polynomially hyponormal operators which
are not subnormal. (An announcement of our main result appears in
[CuP].) The idea of the proof is to extend the intrinsic connection between
subnormal operators and classical moment problems in the plane to classes
of nearly subnormal operators (as for instance polynomially hyponormal
ones) and moment problems for certain linear functionals not necessarily
represented by measures. This is possible due to a remarkably simple and
useful “dictionary” developed by J. Agler [Ag2]. Agler’s idea is to
associate with every cyclic contractive operator a linear functional acting
on C[z z] via a non-commutative functional calculus which translates
near subnormality notions into positivity on special cones of polynomials.
Working at the level of linear functionals on the space of polynomials in
two real variables, and adapting some refined techniques due to G. Cassier
[Cas] originating in moment problems in R”", we exhibit the desired
example.

Earlier results leading to our solution of the above mentioned question
are numerous in the literature, and we briefly recall some of them here. The
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question appears to have arisen early on in the study of subnormality and
hyponormality; it is generally believed that it circulated as an open
problem or as a conjecture in the early 1960’s, and perhaps even earlier.
However, the first occurrence in the literature seems to be in a paper of
A. Joshi [Jos2], published in 1975. The problem appears indirectly in a few
articles on hyponormality and subnormality written in the 1950’s and
1960’s, which generally point towards a negative answer to this question.
For instance, P. R. Halmos gave in [Hall] the first example of a hyponor-
mal operator T such that 72 is not hyponormal, and J. Stampfli exhibited
in [Sta] a non-subnormal hyponormal operator T such that 7" is subnor-
mal for every n = 2. Stampfli also proved that if « = {«,}7_, is a sequence
of positive numbers whose associated unilateral weighted shift W, is sub-
normal (here # =1*(Z,)), then « cannot have two equal weights without
being flat, i.e., a, =0, =..; thus, a plausible way to construct a polyno-
mially hyponormal shift which is not subnormal would be to have a
sequence of weights of the form oy < -+ <a,=a,,,= ---. By varying the
weights oy, ..., &, one might be able to produce a non-subnormal polyno-
mially hyponormal shift. A. Joshi [Josl] proved that if 2y=a, <a,=
ay= ---, then W  cannot be quadratically hyponormal, and P. Fan [Fan]
established that if xg=a,=1 and a,=o0y= --- =2, then W, +sW?Zis not
hyponormal for 0 < s < l/\/g. These last two results were later subsumed in
a more general fact, found in [Cul]: A quadratically hyponormal shift
with three equal weights must be flat, therefore subnormal (two equal
weights and quadratic hyponormality, however, do not force flatness). It
was also found that Stampfli’s result does not really require subnormality,
but merely 2-hyponormality [Cul, Corollary 5], a notion introduced in
[At] and [CMX], and intimately related to multivariable operator theory.
Precisely, a commuting k-tuple 7'= (T, ..., T,) of operators on J# is said
to be joinity hyponormal if the joint commutator

(rx. 1 - [T¢. T1]
[T* T]:=
[T;k’ Tk] (T:’Tk]

1S a positive operator on H# @ --- @ H. An operator T is said to be
k-hyponormal if (T, .., T*) is jointly hyponormal. The well known
Bram-Halmos criterion for subnormality (see [Con, [1.1.9]) establishes
that an operator T is subnormal if and only if T is k-hyponormal for every
k=1 (cf [CMX, Cul,Cu2]). In particular, a subnormal operator is
always 2-hyponormal, while the converse is false [Cul, Proposition 7]. It
should be remarked that for every k > 1, the k-hyponormality of T does
imply that T is weakly k-hyponormal, ie., p(T) hyponormal for every
peC[z] of degree at most k (with converse false). Thus, we have two
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staircases of notions, one climbing from hyponormality to subnormality,
while the other spans from hyponormality to polynomial hyponormality
(or weak “cc-hyponormality”). Although, step by step, the former staircase
is higher than the latter, it was conceivable that in the limit they could both
reach the same height, namely subnormality. The results about weighted
shifts indicated, however, that the relation between polynomial hypo-
normality and 2-hyponormality deserved more attention. As we mentioned
before, we now know that “weakly co-hyponormal” does not imply
2-hyponormal.

In [McCP], the authors reduced the proof of the existence of a non-
subnormal polynomially hyponormal operator to the class of unilateral
shifts. This led to a rather detailed investigation of k-hyponormality
and quadratic hyponormality for unilateral weighted shifts [Cul, Cu2,
CF1, CF2], with an emphasis on characterizations and model theory. An
important consequence of the results in those works is the occurrence of a
large gap between quadratic hyponormality and 2-hyponormality, which
made it all the more plausible to try to build examples where polynomial
hyponormality and 2-hyponormality could be separated. The proof of our
main result follows this philosophy; however, it relies heavily on a detailed
investigation of certain polynomial cones (in the spirit of the classical
theory of moments) and, incidentally, it requires that certain linear
functionals do nor arise from weighted shifts. (The reader is alerted to the
fact that k-hyponormality is called strong k-hyponormality in [McCP].)

So far we have described how a problem in operator theory can be
studied using tools from the classical theory of moments. Our techniques,
however, will also allow us to obtain a simplification of the main result in
[Cas] for the power moment problem in two dimensions. The simplifica-
tion consists in imposing only a marginal positivity condition on the
moments of a measure ¢, in order to have supp(u) contained in a
prescribed subalgebraic compact set. Similar results were known only for
discs [Atz] and ellipsoids [McG]. For the general case, the operator
theoretic point of view developed in this paper seems to be essential.

2. PoLyNoMIAL HYPONORMAL OPERATORS ARE NOT SUBNORMAL

The main result of this section is the following.

THEOREM 2.1. There exists a polvnomially hyponormal operator which is
not 2-hyponormal.

Since every subnormal operator is 2-hyponormal (by the Bram-Halmos
criterion), Theorem 2.1 implies at once the following consequence.
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COROLLARY 2.2, There exists a polynomially hyponormal operator which
is not subnormal.

Our first aim is to recall the basic facts of Agler’s dictionary and then
to transform Theorem 2.1 into a positive statement concerning linear
functionals on the space of polynomials in two real variables.

Let T be a contraction acting on a Hilbert space #, and let pe C[z, Z]
be a polynomial in z and Z, p(z,2)=3,., 272" Set p(T, T*):=
Don @y I ¥"T™. The assignment p — p(T, T*) defines an ordered func-
tional calculus, frequently referred to as the hereditary functional calculus
[Ag2]. Given ye#, we now define A,:C[z,Z]->C by A, (p):=
(p(T, T*)y,y), peC[z, z]. The functional A, satisfies the following two
properties (i) A,(pp) =0, and (ii) 4 -((1 —zZ) pp) =20, for every pe C[z].
Conversely, if A:C[z,2Z] — C is a linear functional satisfying (i) and (ii),
and if 4" :={peC[z]: A(pp)=0}, then multiplication by z on C[z]
induces a contraction 7 with cyclic vector 1 + 4" on the Hilbert space com-
pletion of the quotient C[z]/A4" under the inner product {p, g5 := A(pq),
p, qe C[z]; that is, 4 = A,. This construction transfers notions associated
with operator positivity to positivity for linear functionals on spaces of
polynomials. For instance, the subnormality of 7 on the cyclic subspace
generated by 7y is detected by the positivity of 4, on {|p(z, 2)|*: p(z, Z) e
Clz z]}, while k-hyponormality and polynomial hyponormallty require
that A, be positive on other cones. Specifically, one can show that the map
(T, y)— A, establishes a one-to-one correspondence between the unitary
equivalence classes of k-hyponormal contractions with fixed cyclic vector y
and the linear functionals on C[z, Z] which are positive on the cone

2

F*=co {(1—|z| |p|* +

2P Gos s qkeC[d}

(cf. [McCP]). For instance, we know that T is 2-hyponormal if and only
if

I T* T*
MZ(T):=(T T*T TT |>0
\T2 T*T? T*72

(relative to the usual identification of operators on # @ # @ # with 3x 3
matrices of operators on #), and this is equivalent to the condition

T B T*? polTY\ [/ Po(T)y

T T*T T*T p(TYy |, p(T)y | |20,
T2 T*T? T*77 paAT)y pAT)y
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which in turn is equivalent to
(1po+p 2+ pa 2212 (T, T*)y,7) 20

or
Ar(|po+p 2+ p22°17) 20

(o, P> P2 €C[2]). Similarly, T is polynomially hyponormal if and only if

( I KT >>0
nT) r(T)*n(T))”

~((ary nrren) (f,; ()20

< (lp+grl* (T, T*)y,7)=
< Ar(lp+gF*) =0

(p, g, re C[z]), which shows at once that the polynomial hyponormality of
T may be expressed as the positivity of the functional 4, on the associated
cone

W =co{(1—|z|?) |p|*+|s+gFl*:p,q, r,s€eC[z]}.

Our ploy is the following: We first construct a polynomial p{z, 7)e &?
and a linear functional 4 on C[z, Z] such that properties (i) and (ii) above
hold, and which satisfies in addition the conditions A(p) <0 and A]|,-=0.
Using [McCP, Theorem 2.4], we then know that 4 = A, for some contrac-
tion 7. Finally, by the previous considerations, such a T is polynomially
hyponormal and not 2-hyponormal.

To begin, we must introduce some notation. For m >0, let C[z, Z],,
denote the set of polynomials in z and 7 of total degree at most m, let
C[z, z]" denote the set of homogeneous polynomials, let C[z, 71" denote
the set of homogeneous polynomials of degree m, and let R[x, v],, (resp.,
R[x, y1") denote the real polynomials (resp., homogeneous polynomials)
of degree at most m (resp., equal tom). Observe that {p(z,Z)e
Cl[z,z)" :p=p}=R[x,y]%, via the usual identification (z+7)/2=x,
(z — 2)/2i = y. In addition, we introduce the auxiliary cone

I':=cof{|p(z)+q(z) r(z)]* : p, g, reCLz]} = ¥,

and for a cone K=C[z Z] and m>0, we let K,,:=KnC[z Z],, and
Kt =KnC[z,z]".
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Although I is simpler to work with than #°, the functional to be con-
structed must separate #  from a polynomial in %2; however, as we see
below, both cones contain the same homogeneous polynomials of degree 4,
and this fact will be crucial in our technique. The functional A is first
defined on R[x, y]5 so that it separates /™! from a polynomial in 2, and
is then extended to all of R[x, y], one step at a time, by keeping it positive
along #.

Lemma 23. (i) For m=0, RLx, y),.=%,,— ¥ ,,, so in particular
int.¥w, #o.
(1) For m=20 even, RLx, y],, =1, — =W ,.,— W% ..
(iil) For m=0 even, R[x, y]h =I'" —I'" (and thus int.T"" # ¢).

Proof. Note that
{Re(z"*/z%), Im(z"*/2*) 1 j, k20, j+ k< n}
spans R[x, y],,. Now observe that
Jz" + az/2%|? — |2" — az/2%)? = 4 Re(dz" **27) (alli, j,keZ,,aeC)

By taking a =1, i, it follows at once that Re(z"**z/), Im(z"**z/ye I',, —
I, s % ,,—W#,, whenever j+ k <n. Assume that m is even, say m = 2n.
By taking j+k =n, we see that R[x, y]5, =75 ~ TS c#,,— #,,, since
the dimension of R[x,y]% is 2n+1 and the polynomials Re(z"Z"),
Re(z"*'z"° '), Im(z"*'z" '), ..., Re(z?"), Im(z?") are linearly independent.
When m is odd (say m=2n—1) the analogous argument fails, since the
degree of |z" 4+ az’z*|? is 2n. However, we can use the polynomial (1 — |z|?)
to “lower the degree” of |z" 4+ az/z*|? as follows. Observe that

(127 +az/2 2 4 (1= J212) 12177 2] = 17" = 22242+ (1= 1) |2 )]
=4Re(az" /)
(all 4, j,keZ,, aeC), from which we obtain that R[x, y],=%",,— ¥ ..
also in this case (although the homogeneity property may be lost). §

LemMa 2.4. I, is generated by polynomials of the form

[Co+ Crz+aZ+ 0322+ 0qz2 + 05222

b
where ¢, =0 or ¢5=0.

Proof. First, observe that I, is generated by polynomials of the form
|p + gF|%, where p, g, r are polynomials in z of degree at most 2. Write
P(3)=p0+P13+l’232, ‘](Z)=Q<)+‘I13+QZ22, and "(—7)=r0+r15’+"222- A



NEARLY SUBNORMAL OPERATORS 487

calculation now shows that we must necessarily have q,7, =¢,F, = ¢,7, =0,
and that ¢, =¢q,F, and ¢ = g,F,. The result now follows easily. ||

LEMMA 2.5. Let p(z, Z) = I—ﬁ 212+ 22+ 2%|2 € P2 Then there exists a
(real) linear functional A% on R[x, y1§ such that A4(p) <0, and A3, +>0.
Proof. Consider the linear functional A% on C[z 71" given (on
generators) by ALz*)=A%:)=0, A5(z%|z|?)=A%Z?|z)*)=b, and
A%(1z|*)=1, where be R. For c;, ¢4, cs€C, we then have
A¥(e3z? + cqzz + ¢52°]7)
=AMy 832282 4 €38, 2°F + ¢3852% + 483257 + 048,272

40485222+ €502+ 058427° + 05G52727)

1 b 0\/c, Cy

b 1 bilecs),| ey
0 b 1/\cs Cs

Thus, the positivity of A5 on #? is controlled by the matrix

1 50
A:=b 1 b,
0 b 1

whose eigenvalues are 1, | + \/E b, and 1 — \/5 b. By taking b> 1/\/5, we
obtain a negative eigenvalue, with eigenvector (1, —\/5, 1), so that
AX(p)<0. On the other hand, the compression of 4 to the subspaces
{(c5,0,¢5): ¢3,¢5€C} and {(c3, ¢4, 0):c5,c,€C} is positive definite,
provided b < 1. Looking at the restriction of A} to R[x, y]% and using
Lemma 2.4, we complete the proof. |

LEMMA 2.6. %< T, that is, the (1—|z|*) X, |s,(2)|* component of an
homogeneous polynomial of total degree 4 can be eliminated.

Proof. Let f=%,|p,+q.F*+(1—[z]?)-T,I5;|?e #" nC[z, 2]} (recall
that p,, g;, r;, s;,€ C[z]). Of course we can always arrange for r, to vanish
at the origin (all i), so that

f=Z |Pi+f‘1i';'i|2+(1 - |2|2)Z ‘S.ilz’
i J

where 7,e C[ z]. Since f is homogeneous of degree 4, its constant term must
be zero; i.e.,

X 12,0+ 15;(0)* =0.
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It follows that each p, and each s; must vanish at the origin, and therefore
f=z lzﬁf‘*":qu|2+ |Z|2 (1- lzlz) Z !§;l2s
i J

where p,, 5,eC[z]. We now look at the coefficient of |z|%, which must
again be zero. We have

Z {[5:(0)* +4:(0) 7:(0)1} + 3 5;(0)* =0,

J

which implies that p,=2zp,, §,=2z§; and that for each i, g,=z§, or 7, =zF,.
Split the collection of i indices into two sub-collections, those indices & for
which g, = z§,, and the rest, denoted /. We see that

F=Y 2P + 224, P2+ Y 1225, + 22q,7, 12 + 121 (1= )2)%) - Y 15512
k ! J

If we now recall again that f is homogeneous of degree 4, we see that the
contribution —|z|®-3, |5,/ must be offset by a similar expression coming
out of the first summations, and that

fzz |ak22+bsz’2+z IC/22+d152|2+Z |ejlz |Zl4,
k ! J

Where~ a, = p(0), by =G, (0)7(0), c¢,:=p,(0), d;:=¢q,(0)7(0), and
e;:=5,(0). It is now clear that the (1 — |z|?) component has disappeared,
sofel. |

In the next lemma we use the separation theorem for convex sets in finite
dimensional spaces (as stated, for instance, in [CoC, 1.3.1.3]), by following
the idea in [Cas, Théoréme 4].

LeMMA 2.7. The linear functional constructed in Lemma?2.5 can be
extended to a linear functional A on Clz, Z1, maintaining the positivity
onw.

Proof. According to Lemmas 2.3, 2.5, and 2.6, and by the separation
theorem alluded to before, there exists an extension A, to R[x, y], satis-
fying A4l 4,) > 0. Next, we proceed one step at a time, first extending A4,
to R[x, y]s (and maintaining the strict positivity on int.(#"5)), then to
R[x, ¥]s, etc.; this allows us to obtain a linear functional 4 on R[x, y]
which is non-negative on %', and preserving A(p)<0. To complete the
proof, we complexify A, which then acts on C[z,z]. §
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The functional A of Lemma 2.7 separates the polynomial p € #? from the
cone # . This completes the proof of Theorem 2.1.

By combining [McCP, Theorem 3.4] and Corollary 2.2, we can obtain
the following result.

COROLLARY 2.8. There exists a unilateral weighted shift that is polyno-
mially hyponormal but not subnormal.

Remark 29. The proof of Theorem 3.4 in [McCP] does not allow us
to keep track of the cone %2 and therefore we do not know if the
unilateral shift associated to our example is necessarily not 2-hyponormal.
It is therefore still an open question whether the implication “polynomially
hyponormal = 2-hyponormal” can be disproved with a weighted shift.

Since the spectrum of a weighted shift is polynomially convex, it also
follows that there exists an analytically hyponormal operator (i.e., with
respect to the analytic functional calculus) which is not subnormal.

We end this section with a result on approximation of polynomials.

CoroLLARY 2.10. The polynomial I—ﬁ (2124224 7%? is not the
uniform limit (on D) of polynomials of the form ¥ ,|p;+q.F:|> +
(1 - IZIZ)'zj ‘sjlz’ Pis 4i> > S,-E‘C[Z].

3. CoNNECTIONS WITH THE CLASSICAL THEORY OF MOMENTS

Ever since it was discovered at the beginning of this century that exten-
sions of positive linear functionals on cones of real polynomials can solve
the classical problems of moments, both topics have been increasingly and
fruitfully studied. One of the last achievements in this direction, the modern
dilation and extension theory of Hilbert space operators, is much reminis-
cent of its function-theoretic origins, especially of moment problems.
Conversely, much progress in function theory of one or several variables
has been recently made by using essentially the geometry of Hilbert spaces,
e.g., the application of the subnormality criteria of Bram—Halmos and of
Agler to moment problems; cf. [Atz, AP, McG]. In this section we discuss
an interplay between two-parameter power moment problems and some
classes of Hilbert space operators which are nearly normal, in the spirit of
the preceding sections.

When compared with the classical theories on the line, the multi-
parameter power moment problems are much less known. For instance,
even on R? it is still an open question whether the usual power moment
problem is equivalent to (possibly many) positive definiteness conditions.
However, the difference between moment problems on R’ and on compact

580/115:2-17
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subsets of R? is sensible. A series of positive results have been recently
obtained by a variety of methods, cf. [Atz, AP, BeM, Cas, McG, Sch].
Below we focus on the results due to Cassier, by restricting ourselves to a
class of subalgebraic compact subsets of R2. Quite specifically, by taking
advantage of the complex coordinate on R, and by using Agler’s dilation
theorem, we simplify the main result in [Cas, Théoréme 57. Then we prove
that this new result is optimal in some sense, and on the other hand we
derive from it a boundedness criterion for formally subnormal, closed
operators.

Let K< C be a compact set. The K-problem of moments consists of find-
ing necessary and sufficient conditions on a double sequence of complex
numbers a = (a,,,): to be represented as

mn=0
Q= | 7 du(z)  (mneZ), (1)

where p is a (finite) positive Borel measure on K.

For K a disc or a region bounded by a curve like Ax”+ ByY—1=0,
A, B> 0, there are simple and not unexpected solutions to this problem;
cf. [Atz, McG. More generally, Cassier has extended these results to a
broad class of subalgebraic compact subsets of C, and more recently K.
Schmiidgen has completely solved that problem [Sch]. In order to state
the main results, we need first some terminology and notation.

A compact set K< C is called admissible if there exists a real polynomial
PeR[x,y] with the leading homogeneous part strictly negative on
R?\{0} and such that K= P~ '(R,); in other words, K is a subalgebraic
subset of C given by a single inequality condition.

For QeC[z 2], O(z,2)=Y,,¢,;z'Z/, we let Qa denote the double
sequence given (Qa),,, =Y, ;C;a, 4+, +,;- For an admissible compact set
K=P YR,), Cassier proved in [Cas, Théoréme 5] that problem (1) is
solvable if and only if the following two kernels are positive definite:

(am+¢/,"+p)1m.nl,|p.qleii 20 El[ld ((Pa)m*%"*IJ)(”I.H).(p,qieZi 20 (2)
As shown by Atzmon [Atz], in the particular case of a disc, ie,
P(x7 ,V) = Cz - (.Y - h)Z - (}, - k)27

the second positivity condition in (2) can be reduced from Z% to the
marginal subsemigroup Z , x {0} =Z7 :

(am+ll»”+17)(m.nl41pwq)elz‘20 and ((Pa)m.p)m.pel+>o' (3)
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Our next aim is to prove that this phenomenon holds for any admissible
compact set. First, the equivalent formulation in terms of linear functionals
is needed.

As we saw in Section 2, a sequence of complex numbers @ = (a,.,) e 2,
can be identified with a linear functional 4 = 4, on the space of polynomials
Cl[z, z] by

A"y =a,,,. mnet,.

The basic observation is that (@, 1) n).pgyezt 18 @ positive kernel if
and only if i(|r|?)=0 for any reC[z, ]. Moreover, a is a K-moment
sequence as in (1) if and only if A(p)=0 for any pe R[x, y] with p|,=0
(see, for instance, [Cas]).

Thus, for an admissible compact set K= P '(R,), one distinguishes
several convex cones of polynomials which are significant for the
K-problem of moments:

P.(K):={peRx,y]: Ply>0},
S(K):=cof{l|rl>+ Plql*:r,qeC[z 2]},

and
T(K):=co{|ri’+ Plq|*:reC[z, 2}, qeC[=]}.

The double sequence a satisfies (1), (2), or (3)ifand only if A,|,_ 4,20,
Ll sy 20, or 4] 7k, =0, respectively.

THEOREM 3.1. Let K=P YR ,) be an admissible compact subset of C
and let a=(a,,,),, .z, be a double sequence of complex numbers. Then the
K-problem of moments with data a is solvable if and only if condition (3) is
satisfied.

Proof. We have to prove that a linear functional 4 on C[z, Z] which is
non-negative on the cone 7(K) has the same property on P (K). By
adapting “Lemme Fondamental” and “Lemme 5” of [Cas] to the cone
T(K), one observes that there exists a positive constant M such that
M —|z|?e T(K). Then (M — |z|?) |g|* € T(K) for every ge C[z], so that the
functional Z is non-negative on the cone

T(K) :=co{|r|>+ (M —|z|?) |¢|*: reC[z, 2], qe C[=]}.

In view of Agler’s theorem, there exists then a subnormal operator S with
cyclic vector y and |[S|| < M2, which represents this functional:

Ar(z, 2)) = {r(S, S*)y, v, reClzz].
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By assumption, one knows in addition that A(P|q|?)>0 for geC[z],
which corresponds to the operator inequality P(S, $*)>0. According to
[McG, Proposition 1], the minimal normal extension of S has the spec-
trum contained in K, whence there exists a positive Borel measure ¢ on K
which represents the linear functional A:

A(r):_[rdu, reClzz] 1

At this moment we know that a functional that is non-negative on the
cone T(K) is automatically continuous in the uniform norm on X, and it
is non-negative on the larger cone P_(K). In particular, it follows that
T(K) is dense in P, (K) in the uniform norm on K.

Theorem 2.1 above shows that the positivity of a functional is not
necessarily transferred from the cone

To(K):=cof|p+qrfl*+ Pls|*:p,q, r,seC[z]}

to T(K), and a fortiori to P, (K), for any disc K. Next we prove the same
fact for an arbitrary admissible compact subset K with nonempty interior.

PROPOSITION 3.2. Let K be an admissible compact subset of C. If
int K+ ¢, then there exists a homogeneous polynomial of degree 4 in T(K)
that can be separated from Ty(K) by a real hyperplane.

Proof. By using a suitable translation, we may assume that Oeint X,
and that P(0)>0. Let Q :=P— P(0Q). The proof of Theorem 2.1 can be
repeated for P(0)+ Q instead of 1—|z|>. More exactly, the polynomial
golz, 2) = I—\}i zz + 2% + 7%|? does not belong to T,(K)". By repeating the
extension construction, one finds a functional 4 on R[x, y] with A{g,) <O
and Al k>0, as desired. ||

This shows that we should not expect the K-problem of moments to be
resolved by a condition simpler than (3).

Let T be the unit circle and let 4:C[z,Z] - C[p] be the average
operator

1 _.d
A(r)(p) :=57EL" r(iz, tz")—; (reC[z z]),

where p :=|z]%; that is, A(z"z")=0if m#n and A()z|*")=p". In the case
of K =D, the closed unit disc, Proposition 3.2 above and Proposition 3.2 in
[McCPT] show that the images of the cones To(K) and 7(K) through A can
be separated by a hyperplane in R[p]. Since every non-negative linear
functional on A7T(K) is automatically continuous in the uniform norm on
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[0,1], and by computing the generic element in ATy(K), one can thus
establish the following corollary (see [McCP] for details).

CoOROLLARY 3.3. The convex cone

2

2
+Y p

izl

Z ajci+jpj

>0

co {Z Pi)bi*’ Y a0

iz0 i=0

+(1-p)- z p |di|2s a;, b;, c;, d,-eC}
i=0
is not uniformly dense in the set of all non-negative polynomials on [0, 1].
(The sums under the convex hull symbol are all taken to be finite.)

We notice that every non-negative polynomial on [0,1] is a finite
convex combination of elements of the form p? + pg®+ (1 —p) r?, where
p,q, reR[p] (cf. [Akh].)

By reversing Agler’s dictionary, Theorem 3.1 above provides a nontrivial
boundedness criterion for formally subnormal, a priori unbounded
operators. There are a number of subnormality notions for unbounded
closed operators (cf. [StSz]). For us, a formally subnormal operator with
cyclic vectory is a densely defined closed operator S on 4, such that
(i) y e Dom(S") for every n>0; (ii) the vectors 7, Sy, S%y, ..., span ; and
(iii} the Bram—Halmos condition on these vectors is satisfied; that is,

<Si)’j, Sj)’i)i,jel+

is a positive definite kernel for any y,€ 2 := C(y, Sy, $%, ... Examples of
such operators can easily be constructed from positive measures on C
which have all moments finite.

For any polynomial r(z, Z) =Y ¢, z'z/ we write

<r(S, S*)éaé>:=zcij<sié’ S,E>a éeg

Because & is dense in J#, one may speak unambiguously of positivity for
an operator like r(S, S*).

PROPOSITION 3.4. Let S be a formally subnormal operator with cyclic
vector y and let 2 :=C{S"y:n=0)>. If K= P~ ([0, + o¢)) is an admissible
compact subset of C and P(S, S*)=0, then the operator S is bounded
subnormal and its minimal normal extension has spectrum contaqined in K.

Proof. The functional A(r):=<{r(S, S*)y,y), reClz z], is non-
negative on the cone T(K) by assumption. We now simply repeat the proof
of Theorem 3.1. |
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We stated the last proposition separately because it seems to be difficult
(and so even more interesting) to find an operator-theoretic proof of it. For
instance, if P(z, Z) := —|z|*" + Q(z, Z), with degree of Q less than 2n, the
inequality P(S, $*) >0 is equivalent to

IS"E1P< 3 ;{8 8% (Ee),

i+j<2n

for certain coefficients ¢;eC. Even in this apparently simple case the
boundedness of S is not at hand, but in turn it follows from Cassier’s
techniques.

Theorem 3.1 can easily be generalized to C”, by using again “Lemme
Fondamental” and “Lemme 5” in [Cas] in conjunction with the multi-
dimensional analogue of the Bram-Halmos criterion for subnormality (see
for instance [AP, Proposition 0]). Specifically, let z=(z,, ..., z,,) denote the
complex coordinates in C” and let P(z) be an admissible polynomial, that is

P(_’_’): ‘al(Re:l)zp_bl(Imzl)zp— e “an(Re zn)zp‘bn(Im zn)zp

+ Q(z) + lower degree terms,

where Q is an homogeneous sum of degree 2p of squares of absolute values
of elements in C[z,Z], ¢,>0, b,>0, 1 <i<gn

If we now define the cones S(K) and T(K) as before, with
K:= P ([0, +0c)), an argument identical to the one used in the proof of
Theorem 3.1 shows that a functional 4 on C[z, Z] is represented by a
positive measure supported on K if and only if 4|, = 0.

This observation extends the results of [AP] and [McG]. However, we
do not know whether a similar reduction (ie., Alg., 20 A4, 20) is
valid on an arbitrary sub-algebraic subset of C”.

4. CONCLUDING REMARKS AND OPEN PROBLEMS

As a consequence of the main result of Section 2, we know that the
class of polynomially hyponormal operators is distinct from the class
of subnormal operators. A natural question now is how much this
distinction is reflected by the properties of polynomially hyponormal
operators. In this section we pose some problems which may help answer
this question.

Problem 4.1. Are polynomially hyponormal operators reflexive? Do
they at least have nontrivial invariant subspaces?
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It is known that subnormal operators are reflexive, and that a large part
of hyponormal operators have invariant subspaces (see [Con, MP, Tho]).
An answer to Problem 4.1 would necessarily shed light on the dilation
theory (and implicitly on the desired functional models) for polynomially
hyponormal operators. We mention that rationally hyponormal operators
do have nontrivial subspaces: If R(6(T))= C(o(T)), T is a von Neumann
operator, so the main result in [Ag 1] applies; if R(c(T))# C(a(T)), then
[Br] can be used.

Problem 4.2. Are the classes of polynomially hyponormal, rationally
{(with # distinct poles) hyponormal, and analytically hyponormal operators
all different?

The method of proving Theorem 2.1 above was essentially based on the
analysis of linear functionals on convex cones of polynomials. A possible
approach to Problem 4.2 would consist of extending this analysis to cones
of Laurent series or analytic functions defined on more complicated
domains.

An important invariant for operators with trace-class self-commutator is
the principal function introduced by J. D. Pincus (see [Cla, MP, Xia]). It
is known that this function is integer-valued for subnormal operators

([LCP]).

Problem 4.3. Let T be a polynomially hyponormal operator with trace-
class self-commutator. Is the principal function of 7 integer-valued?

The rather involved proof in [CP] relies, in an essential way, on the
properties of the minimal normal extension of a subnormal operator. A
solution to Problem 4.3 would automatically lead to a better understanding
of R. Carey and J. D. Pincus’ result.

Problem 4.4. Classify the polynomially hyponormal operators with finite-
rank self-commutator.

The subnormal operators with finite-rank self-commutator have recently
been classified by R. Olin et a/. [OOT], and independently by D. Xia
[Xia2]. This classification is remarkably rigid; a positive answer to
Problem 4.3 would probably suggest that the same will be true of polyno-
mially hyponormal operators.

Problem 4.5. What is the dilation and extension theory for polyno-
mially hyponormal operators?

Problem 4.5 asks for specific functional models for polynomially
hyponormal operators, and for the identification of function-theoretic
phenomena which pertain exclusively to that class. Along the same line of
thought, and dealing with a well-investigated collection of operators, we
can formulate the next problem. Recall first that, according to a theorem
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of C. Berger, a weighted shift W, is subnormal if and only if the Hankel
forms (v, ;)70 and (7,1,,1)5_, are positive semi-definite, where {y,} is
the sequence of moments of & (cf. [Cu2, Remark after Corollary 5.4]).

Problem 4.6. Is there an analogue of Berger’s Theorem for polyno-
mially hyponormal weighted shifts? Alternatively, is there a matricial
characterization of polynomial hyponormality for weighted shifts which
parallels the above mentioned one for subnormal shifts?

Even when it could be argued that the class of polynomially hyponormal
operators remains a bit artificial (mainly due to the lack of concrete non-
trivial examples), its relevance in the study of both hyponormal and
subnormal operators is now apparent; this gives at least one reason for
pursuing a detailed investigation of polynomial hyponormality.
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