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Abstract

This article is a contribution to the study of linear spaces admitting a line-transitive

automorphism group. We classify such linear spaces where PSLð2; qÞ; q43 acts line

transitively. We prove that the only cases which arise are projective planes, a Bose–Witt–

Shrikhande linear space and one more space admitting PSLð2; 26Þ as a line-transitive

automorphism group.

r 2003 Elsevier Inc. All rights reserved.

Keywords: Line-transitive; Linear space; Automorphism; Projective linear group

1. Introduction

A linear space S is a set P of points, together with a set L of distinguished subsets
called lines such that any two points lie on exactly one line. This paper will be
concerned with linear spaces with an automorphism group which is transitive on the
lines. This implies that every line has the same number of points and we shall call
such a linear space a regular linear space. Moreover, we shall also assume that P is
finite and that jLj41:

Let G be a line-transitive automorphism group of a linear space S ¼ ðP;LÞ: Let
the parameters of S be given by ðb; v; r; kÞ; where b is the number of lines, v is the
number of points, r is the number of lines through a point and k is the number of
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points on a line with k42: By Block [1], transitivity of G on lines implies transitivity
of G on points.

The groups of automorphisms of linear spaces which are line-transitive have
greatly been considered by Camina, Praeger, Neumann, Spiezia and others (see
[4–7,9,19]). Recently, Camina and Spiezia proved the following theorem (see [9]):

Theorem 1.1. Let G be a simple group acting line transitively, point primitively but

not flag transitively on a linear space. Then G is not PSLðn; qÞ with q odd and

nX13:

Therefore, it is necessary to consider the case where n is small. In this article, we
prove the following theorem:

Main Theorem. Let G ¼ PSLð2; qÞ with q43 acting line transitively on a finite linear

space S: Then S is one of the following cases:

(i) A projective plane.

(ii) A regular linear space with parameters ðb; v; r; kÞ ¼ ð32760; 2080; 189; 12Þ; in this

case, q ¼ 26:
(iii) A regular linear space with parameters ðb; v; r; kÞ ¼ ðq2 � 1; qðq � 1Þ=2; q þ 1;

q=2Þ; where q is a power of 2. It is called a Witt–Bose–Shrikhande space.

The second section introduces notation and contains preliminary results about the
group PSLð2; qÞ and regular linear spaces. In the third section, we shall prove the
main theorem.

We shall continue this work in the forthcoming paper which will deal with other
Lie-type simple group of rank one.

2. Some preliminary results

Our conventions for expressing the structure of groups are as follows. If X and Y

are arbitrary finite groups, then X � Y denotes an extension of X by Y :
The expressions X : Y and X � Y denote split and non-split extensions, respectively.
The expression X � Y denotes the direct product of X and Y : The symbol ½m

denotes an arbitrary group of order m while Zm or simply m denotes a cyclic group
of that order. The other notation for group structure is standard. In addition, we

use symbol pijjn to denote pijn but piþ1[n: Moreover, FixOðKÞ denotes the set of
fixed points in O of a subgroup K of SymðOÞ: The greatest common divisor of two
integers m and n is denoted as ðm; nÞ: For a finite transitive permutation group of
degree n; the lengths of the orbits of one of the point stabilizer are said to be
subdegrees.

We begin by recalling some fundamental properties of PSLð2; qÞ: Let G ¼
PSLð2; qÞ with q ¼ pf 43; where p is a prime and f is a positive integer.
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Lemma 2.1 (Theorem 8.2, Chapter II of [11]). Let P be a Sylow p-subgroup of G;
then

(i) P is isomorphic to the additive group of the finite field GFðqÞ;
(ii) G has precisely q þ 1 Sylow p-subgroups and jNGðPÞj ¼ qðq � 1Þ=d; where

d ¼ ð2; q � 1Þ;
(iii) P1-P2 ¼ f1g; where Pi; i ¼ 1; 2; is a Sylow p-subgroup and P1aP2:

Lemma 2.2 (Theorem 8.3, Chapter II of [11]).

(i) G has a cyclic subgroup U of order ðq � 1Þ=d; where d ¼ ð2; q � 1Þ;
(ii) U-Ug ¼ f1g; where gAG but geNGðUÞ;
(iii) For any uAU ; ua1; NGð/uSÞ is a dihedral group of order 2ðq � 1Þ=d:

Lemma 2.3 (Theorem 8.4, Chapter II of [11]). (i) G has a cyclic subgroup S of order

ðq þ 1Þ=d; where d ¼ ð2; q � 1Þ;
(ii) S-Sg ¼ f1g; where gAG but geNGðSÞ;
(iii) For any sAS; sa1; NGð/sSÞ is a dihedral group of order 2ðq þ 1Þ=d:

Lemma 2.4 (Theorem 8.27, Chapter II of [11]). Every subgroup of G ¼ PSLð2; pf Þ is

isomorphic to one of the following groups:

(1) An elementary abelian p-group of order at most pf ;
(2) A cyclic group of order z; where z divides ðpf 71Þ=d and d ¼ ð2; q � 1Þ;
(3) A dihedral group of order 2z; where z is as above;
(4) The alternating group A4; in this case, p42 or p ¼ 2 and 2j f ;
(5) The symmetric group S4; in this case, p2f � 1 
 0 ðmod 16Þ;
(6) The alternating group A5; in this case, p ¼ 5 or p2f � 1 
 0 ðmod 5Þ;
(7) Zm

p : Zt; where t divides ðpm � 1Þ=d and q � 1; and mpf ;

(8) PSLð2; pmÞ; where mj f ; and PGLð2; pmÞ; where 2mj f :

Remarks. (i) When p is even, S4 cannot occur and so apart from the groups in (1)
and (7) every subgroup of G has precisely one conjugacy class of involutions. When p

is odd, every subgroup of G has precisely one conjugacy class of involutions except
those described in (3), with z even, and (5) and PGLð2; pmÞ:

(ii) For a Sylow p-subgroup P; the normalizer NGðPÞ is a group of type (7) with

t ¼ ðpf � 1Þ=d; where d ¼ ð2; q � 1Þ: For UDZðq�1Þ=d ; with d ¼ ð2; q � 1Þ; a group

of type (2) as in Lemma 2.2, NGðUÞ is a dihedral group of type (3). For SDZðqþ1Þ=d ;

with d ¼ ð2; q � 1Þ; a group of type (2) as in Lemma 2.3, NGðSÞ is a dihedral group
of type (3). Clearly, by Lemma 2.4, NGðPÞ; NGðUÞ and NGðSÞ are maximal in
PSLð2; qÞ:

(iii) Let i be an involution of G: By Theorems 8.3 and 8.4, Chapter II of [11], we
have jNGð/iSÞj ¼ q � e; where e ¼ 71 and 4 j ðq � eÞ: When q is even, we have
jNGð/iSÞj ¼ q:
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Lemma 2.5 (See Praeger and Xu [18] and Faradzev and Ivanov [10]). Let G ¼
PSLð2; qÞ acting on the set of cosets of its subgroup HDDh; where h ¼ 2ðq � eÞ=d and

e ¼ 71 and d ¼ ð2; q � 1Þ: Then the subdegrees are as presented in Table 1, where ab

means that the subdegree a appears with multiplicity b:

From now on we suppose that G is a line-transitive automorphism group of a
linear space S ¼ ðP;LÞ with parameters ðb; v; r; kÞ and k42: Recall the basic
equalities and inequalities for linear spaces.

vr ¼ bk; ð1Þ

v ¼ rðk � 1Þ þ 1; ð2Þ

bXv ðFisher’s inequalityÞ; ð3Þ

with equality if and only if the linear space is a projective plane.
Note that (2) implies that v and r are coprime. Let

bðvÞ ¼ ðb; vÞ; bðrÞ ¼ ðb; v � 1Þ; kðvÞ ¼ ðk; vÞ; and kðrÞ ¼ ðk; v � 1Þ:

Obviously,

k ¼ kðvÞkðrÞ; b ¼ bðvÞbðrÞ; r ¼ bðrÞkðrÞ; and v ¼ bðvÞkðvÞ:

In terms of these parameters, Fisher’s inequality becomes bðrÞ
XkðvÞ with equality if

and only if the linear space is a projective plane.
For a line L; let GL be the setwise stabilizer of L in G:
The observation used often in this article is that if an involution in G does not fix a

point then G acts flag transitively, see [8]. In particular, if G ¼ PSLð2; qÞ is flag-
transitive on S; then by [2] or [3] S is a Witt–Bose–Shrikhande linear space. Hence,
we can ignore this possibility, and assume that every involution fixes a point.

We collect some results which are useful for the study of line-transitive linear spaces.

Lemma 2.6 (Lemma 2 of [8]). Let G act as a line-transitive automorphism group of a

linear space S: Let L be a line and H a subgroup of GL: Assume that H satisfies the

following two conditions:

(i) jFixPðHÞ-LjX2 and

(ii) if KpGL and jFixPðKÞ-LjX2 and K is conjugate to H in G then H is conjugate

to K in GL:
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Table 1

H q Subdegrees

D2ðq�1Þ Even 1; ðq � 1Þq=2�1; 2ðq � 1Þ
D2ðqþ1Þ Even 1; ðq þ 1Þq=2�1

Dðq71Þ q 
 73 ðmod 8Þ 1; ðq71
4
Þ2; ðq71

2
Þðq71Þ=2�2; ðq71Þðqþ285Þ=4

Dðq71Þ q 
 81 ðmod 8Þ 1; ðq71
4
Þ2; ðq71

2
Þðq71Þ=2�2; ðq71Þðqþ285Þ=4
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Then either (a) FixPðHÞDL or (b) the induced structure on FixPðHÞ is also a

regular linear space with parameters ðb0; v0; r0; k0Þ; where v0 ¼ jFixPðHÞj; k0 ¼
jFixPðHÞ-Lj: Further, NGðHÞ acts as a line-transitive group on this linear space.

Lemma 2.7 (Lemma 2.6 of [16]). Let G act as a line-transitive automorphism group of

a linear space S: Let L be a line and v even. Assume that there exists a 2-subgroup P

of order 2 of GL such that FixPðPÞDL: Then k divides v and G is flag-transitive.

Lemma 2.8 (Lemma 2.7 of [16]). Let G act as a line-transitive automorphism group of

a linear space S: Let L be a line and let i be an involution of GL: Assume that GL has a

unique conjugacy class of involutions. If

jFixPð/iSÞ-LjX2

and v is even, then G is flag-transitive or the induced structure on FixPð/iSÞ is a

regular linear space with parameters ðb0; v0; r0; k0Þ; where v0 ¼ jFixPð/iSÞj; k0 ¼
jFixPð/iSÞ-Lj: Further, NGð/iSÞ acts as a line-transitive group on this linear space.

Lemma 2.9 (Lemma 9 of [21]). Let G act line transitively on a linear space S: Let K

be a subgroup of G: If K4/ GL for any line LAL; and KpGa for some point aAP; then

NGðKÞpGa:

Lemma 2.10 (Lemma 2.8 of [16]). Let G act line transitively on a linear space S: If

there exists a prime number p such that pjb but p[v; then for some aAP; NGðPÞpGa;
where P is a Sylow p-subgroup of G:

Lemma 2.11 (Lemma 3.8 of [15]). Let G act line transitively on a linear space S:
Assume that P is a Sylow p-subgroup of Ga for some aAP: If P is not a Sylow

p-subgroup of G; then there exists a line L through a such that PDGL:

The following result of Manning (see Theorem XIV of [17]) will prove useful in
calculating the number of fixed points of an element.

Lemma 2.12 (Lemma 2.1 of [18]). Let G be a transitive group on O; let H ¼ Ga for

some aAO; and let KpH: If the set of G-conjugates of K which are contained in H

form t conjugacy classes C1;C2;y;Ct with respect to conjugation in H; then K fixes

Xt

i¼1

jNGðKiÞ : NHðKiÞj

points of O; where KiACi for 1pipt: In particular, if t ¼ 1; that is, if every G-
conjugate of K in H is conjugate to K in H; then K fixes jNGðKÞ : NHðKÞj points of O:

Note that jNGðKiÞj is constant (equal to jNGðKÞj) since G is transitive on the set of
G-conjugates of K :
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Lemma 2.13. Let G act line transitively on a linear space S ¼ ðP;LÞ: Let i be an

involution of GL; where L is a line of S: Assume that i has at least two fixed points.

Then

k4
v � jFixPð/iSÞj
jFixLð/iSÞj : ð4Þ

Proof. Consider the cycle decomposition of i acting on P: We know that i has
ðv � jFixPð/iSÞjÞ=2 cycles of length 2: Write jFixLð/iSÞj ¼ e: Then i fixes e lines of
S; say Lj; where 1pjpe: Let mj denote the number of 2-cycles of i which lie in Lj ;

where 1pjpe: Then

2
Xe

j¼1

mj ¼ v � jFixPð/iSÞj:

Since i has at least two fixed points, we have

ek42
Xe

j¼1

mj:

Thus,

k4
v � jFixPð/iSÞj
jFixLð/iSÞj : &

The following lemma is useful for the proof of the main theorem.

Lemma 2.14 (Le [13]). The diophantine equation x2 ¼ 4qm þ 4qn þ 1; where q is a

prime and mXn; has exactly the following solutions: ðm; n; x; qÞ ¼ ð2n; n; 2qn þ 1; qÞ;
ð1; 1; 5; 3Þ; ð3; 1; 11; 3Þ; ð1; 2; 5; 2Þ; ð3; 2; 7; 2Þ or ð7; 2; 23; 2Þ:

3. The proof of the main theorem

Firstly, we shall prove the following proposition.

Proposition 3.1. Let G be a group of automorphisms of a linear space S ¼ ðP;LÞ:
Suppose that S is not a projective plane and G ¼ PSLð2; pf Þ with q ¼ pf 43: If G is

line-transitive, then G is point-primitive. Further, for a point a of P; the stabilizer Ga

is isomorphic to one of the following groups: NGðPÞ;Zðq�1Þ=d : 2 or Zðqþ1Þ=d : 2; where P

is a Sylow p-subgroup of G and d ¼ ð2; q � 1Þ:

Proof. Since G is line-transitive and S is not a projective plane, we know that there

exists a prime t such that tjb but t[v: In fact, every prime divisor of bðrÞ satisfies the
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above condition. Thus, by Lemma 2.10 we have NGðTÞpGa; where T is a Sylow t-

subgroup of G and aAP: It is clear that b divides jGj ¼ qðq2 � 1Þ=d; where d ¼
ð2; q � 1Þ: Hence, t divides qðq2 � 1Þ=d: Now we divide the proof into three cases:

(i) If tjq; then t ¼ p and NGðTÞ is a maximal subgroup of G by Remark (ii). Hence
G is point-primitive.

(ii) If t42 and t divides ðq � eÞ=d; where e ¼ 71; then by Lemmas 2.2 and 2.3 and
Remark (ii), NGðTÞ is a maximal group of G: It means that G is point-primitive.

(iii) If t ¼ 2 and t divides ðq � eÞ=d; where e ¼ 71 and q is odd, then let 2ajjðq � eÞ;
where aX2 and e ¼ 71: Then 2ajjjGj and a 2-Sylow subgroup is the dihedral
group T ¼ Z2a�1 : 2 by Theorem 8.10 of [11]. Since

Z2a�1 p
char

Zðq�eÞ=2IZðq�eÞ=2 : 2;

we have Zðq�eÞ=2 : 2pNGðZ2a�1Þ: If Z2a�14/ GL for any line LAL; then by Lemma 2.9,

Ga is maximal in G (recall that Z2a�1pTpNGðTÞpGa). Hence G is point-primitive.
Therefore, we can assume that Z2a�1pGL for some line L: The assumptions tjb and

t[v imply 2jjb ¼ bðrÞbðvÞ and hence 2jjbðrÞ: If there is an odd divisor of bðrÞ; then this

case returns to the above case (ii). Hence, we can assume that bðrÞ ¼ 2: Since S is not

a projective plane, Fisher’s inequality implies kðvÞ ¼ 1: Since bk ¼ vr; we have

jGj
jGLj

kðvÞkðrÞ ¼ jGj
jGaj

bðrÞkðrÞ;

that is

jGajkðvÞ ¼ bðrÞjGLj:
Hence jGaj ¼ 2jGLj: Note that every Sylow 2-subgroup of GL is a cyclic group and
pa2: Therefore, by Lemma 2.4 we get GL ¼ Zh and Ga ¼ Zh : 2; where h divides

ðq � eÞ=2 and 2a�1jjh: In this case, GL has exactly one involution i: Since h is even, the
dihedral group Ga ¼ Zh : 2 has three conjugacy classes of involutions. If we choose

generators s; t with /sS ¼ Zh and /s; tS ¼ Ga; then i ¼ sh=2 is a central involution
of Ga; whereas t and st lie in two different Ga-conjugacy classes of size h=2 each.
Thus, by Lemma 2.12 we get

jFixPð/iSÞj ¼ q � e
2h

þ 2 � q � e
4

¼ ðq � eÞðh þ 1Þ
2h

:

By Lemma 2.6, we know that either FixPð/iSÞDL or the induced structure on
FixPð/iSÞ is a regular linear space with parameters ðb0; v0; r0; k0Þ; where v0 ¼
jFixPð/iSÞj and k0 ¼ jFixPð/iSÞ-Lj and NGð/iSÞ acts line transitively on this
linear space. Thus, if the latter holds, then v0 divides jNGð/iSÞj; that is h þ 1 divides
2h: This forces that h ¼ 1; which contradicts hX2: Hence FixPð/iSÞDL: In order to
prove that our proposition is true, we use reduction to absurdity. Assume that G is
point-imprimitive. Namely, Ga is not maximal in G (it is the case where
GaoZðq�eÞ=2 : 2). Then there exists an imprimitive block C of G; such that aAC

and GC ¼ Zðq�eÞ=2 : 2: Note that we can assume that the involution i lies in the center
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of GC : Thus CDFixPð/iSÞ: In fact, for any bAC; there is an element gAGC such
that b ¼ ag: Thus,

bi ¼ agi ¼ aig ¼ ag ¼ b; that is; bAFixPð/iSÞ:

Therefore, CDFixPð/iSÞ and so CDL: This means that every line of S is uniquely
determined by some imprimitive block, which leads to bov; contradicting the fact
that bXv: This completes the proof of our proposition. &

Now we can prove our main theorem stated in the introduction.

Proof of the Main Theorem. Suppose that S is not a projective plane. Then bðrÞ41

and so for any prime divisor t of bðrÞ; NGðTÞpGa; where T is a Sylow t-subgroup of
G and aAP: By Proposition 3.1, Ga is a group NGðPÞ; Zðq�1Þ=d : 2 or Zðq�1Þ=d : 2;

where d ¼ ð2; q � 1Þ: By [12], GaD/ NGðPÞ: Now we divide the proof into subcases
according to the parity of q; the type of a stabilizer of a point, and the number of
conjugacy classes of involutions in a line-stabilizer.

(i) q is even. In this case, Ga is isomorphic to Zðqþ1Þ : 2 or Zðq�1Þ : 2:

If GaDZðqþ1Þ : 2; then v ¼ qðq � 1Þ=2 and v � 1 ¼ ðq þ 1Þðq � 2Þ=2: Since jGaj and
v are all even, we have Ga contains an involution i which fixes at least one more point
of S: Let L be the line containing a and this point. Then iAGa-GL and
jFixPðHÞ-LjX2; where H ¼ /iS: According to Remark (iii) after Lemma 2.4,
jNGðHÞj ¼ q: Note that GaDZðqþ1Þ : Z2 has a unique conjugacy class of involutions

(since q is even), and jNGaðHÞj ¼ 2; and so by Lemma 2.12,

jFixPðHÞj ¼ jNGðHÞ : NGaðHÞj ¼ q=2: ð5Þ

Suppose that GL has a unique conjugacy class of involutions. By Lemma 2.8, either
G is flag-transitive or there exists a regular linear space with parameters
ðb0; v0; r0; k0Þ; where v0 ¼ jFixPðHÞj; k0 ¼ jFixPðHÞ-Lj; and NGðHÞ acts line
transitively on this regular linear space. If the latter holds, then b0k0ðk0 � 1Þ ¼
v0ðv0 � 1Þ: But v0 ¼ q=2 and b0 ¼ v0 or 2v0; and so b0k0ðk0 � 1Þav0ðv0 � 1Þ; a
contradiction. Therefore G is flag-transitive. By [3], S must be a Witt–Bose–

Shrikhande linear space with b ¼ q2 � 1: Thus jGLj ¼ jGj=b ¼ q; and so GL is an
elementary abelian 2-group of order qX4: This contradicts our hypothesis. Suppose
that GL has at least two conjugacy classes of involutions. Checking the groups in

Lemma 2.4, we find that GL is isomorphic to ðZ2Þm : Zl (note that here q is even),
where l divides 2m � 1 and lo2m � 1: Since l is odd, the involutions of GL all lie in
Zm

2 : Clearly, the centralizer of an involution of GL is Zm
2 ; so the length of the

conjugacy class of an involution of GL is l; and hence GL has exactly e :¼ ð2m � 1Þ=l

conjugacy classes of involutions. Let i1; i2;y; ie be representatives of these classes.

Since Z
f
2pNGð/ijSÞ; Lemma 2.4 implies that NGð/ijSÞ ¼ Z

f
2 : By Lemma 2.12,
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H ¼ /iS fixes exactly

Xe

j¼1

jNGðijÞ : NGL
ðijÞj ¼

2m � 1

l
� 2 f

2m
¼ 2 f�mð2m � 1Þ

l
¼: c

lines, say L1;L2;y;Lc: By (5),

jFixPðHÞj ¼ q=2;

and so we know that i has ðv � q=2Þ=2 cycles of length 2 on P: Let mj denote the

number of 2-cycles of i which lie in Lj; where 1pjpc: Then

2
Xc

j¼1

mj ¼ v � q=2

and so

ckXv � q=2;

that is

kX
ðv � q=2Þl

2 f�mð2m � 1Þ ¼
ðqðq � 1Þ=2� q=2Þl

2 f�mð2m � 1Þ ¼ 2mð2 f�1 � 1Þl
2m � 1

:

Since

kðk � 1Þ ¼ vðv � 1Þ=b ¼ jGLjðv � 1Þ=jGaj; ð6Þ
we have

kðk � 1Þ ¼ 2m�1ð2 f�1 � 1Þl: ð7Þ
Therefore,

2m�1ð2 f�1 � 1ÞlX2mð2 f�1 � 1Þl
2m � 1

2mð2 f�1 � 1Þl
2m � 1

� 1

� �
:

Hence,

2mþ1ð2 f�1 � 1Þl
2m � 1

p2m þ 1 ð8Þ

and so

lp
22m � 1

2mþ1ð2 f�1 � 1Þo
2m�1

2 f�1 � 1
p2:

This forces that l ¼ 1: By (8) we get f ¼ m: Again by (7) we get

k2 � k � 2 f�1ð2 f�1 � 1Þ ¼ 0: ð9Þ
Thus k ¼ q=2 and so kjv: This means that G is flag-transitive. By [3], S must be a
Witt–Bose–Shrikhande linear space. If GaDZðq�1Þ : 2; then v ¼ qðq þ 1Þ=2 and

v � 1 ¼ ðq � 1Þðq þ 2Þ=2: Suppose that GL has a unique conjugacy class of
involutions. Let i be an involution of GL and H ¼ /iS: Then by Lemma 2.8 we
know that either G is flag-transitive or there exists a regular linear space with
parameters ðb0; v0; r0; k0Þ; where v0 ¼ jFixPðHÞj; k0 ¼ jFixPðHÞ-Lj; and NGðHÞ
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acts line transitively on this regular linear space. By [2] or [3], G is not flag-transitive.
Hence the latter occur. As in the case GaDZðqþ1Þ : 2; we get v0 ¼ jFixPðHÞj ¼ q=2:

Since b0 divides jNGðHÞj ¼ q and b0Xv0; we have b0 ¼ v0 or 2v0; which contradicts
b0k0ðk0 � 1Þ ¼ v0ðv0 � 1Þ (note that here v0 is even). Suppose that GL has at least two
conjugacy classes of involutions. Then GL ¼ Zm

2 : Zl : It is analogous to the case

where GaDZðqþ1Þ : 2 to get

kX
2 fþm�1l

2m � 1
:

By (6), we have

kðk � 1Þ ¼ 2m�1ð2 f�1 þ 1Þl: ð10Þ

Therefore,

2m�1ð2 f�1 þ 1ÞlX2 fþm�1l

2m � 1

2 fþm�1l

2m � 1
� 1

� �
:

Namely,

ð2m � 1Þð2 f�1 � 1Þ
2 f

X
2 fþm�1l

2m � 1
� 1:

Therefore,

2 fþm�1l

2m � 1
p
ð2 f�1 þ 1Þð2m � 1Þ

2 f
þ 1:

It follows that

2 fþm�1lp
ð2 f�1 þ 1Þð2m � 1Þ2

2 f
þ 2m � 1o

2 f�1 þ 1

2 f�2m
þ 2m:

Thus, we have

lo
2 f�1 þ 1

22f�m�1
þ 1

2 f�1
p

2 f�1 þ 1

2 f�1
þ 1

2 f�1
p2:

This forces that l ¼ 1: Hence,

kðk � 1Þ ¼ 2m�1ð2 f�1 þ 1Þ ð11Þ

and so the discriminant of (11)

D ¼ 2 fþm þ 2mþ1 þ 1 ¼ x2

for some positive integer x: By Lemma 2.14, we get

ðm; f ; xÞ ¼ ðm;m; 2m þ 1Þ; ð3; 0; 5Þ; ð3; 2; 7Þ or ð3; 6; 23Þ:

Remember that fXm and k is a positive integer. Thus, the equation (11)

has solutions k ¼ 2m�1 þ 1 or 12. When k ¼ 2m�1 þ 1; k � 1 does not divide v � 1
(since k42), a contradiction. Hence k ¼ 12 and f ¼ 6: We get a regular
linear space with parameters ðb; v; r; kÞ ¼ ð32760; 2080; 189; 12Þ: In this case,

G ¼ PSLð2; 26Þ:
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(ii) q is odd: Again, Ga is a group NGðPÞ or Zðq�eÞ=2 : 2; where e ¼ 71: By Kantor’s

result [12], GaD/ NGðPÞ and hence Ga is isomorphic to Zðq�eÞ=2 : 2; and v ¼
ðq þ eÞq=2 and v � 1 ¼ ðq � eÞðq þ 2eÞ=2; where e ¼ 71: We divide this case
into two subcases:
(a) GL contains a unique conjugacy class of involutions: Since q is odd, by [3], G

is not flag-transitive. Thus by [8], every involution of G fixes at least a point
of S: Let i be an involution of Ga: Clearly, i fixes at least a line of S; say L:
Hence iAGL-Ga: If 4jðq þ eÞ; then Ga has a unique conjugacy class of
involutions, and so by Lemma 2.12, we have

jFixPð/iSÞj ¼ jNGð/iSÞ : NGað/iSÞj ¼ ðq þ eÞ=2:
Let H ¼ /iS; then by Lemma 2.8, either G is flag-transitive or there exists a
regular linear space with parameters ðb0; v0; r0; k0Þ; where v0 ¼ jFixPðHÞj;
k0 ¼ jFixPðHÞ-Lj; and NGðHÞ acts line transitively on this regular linear
space. By [3], G is not flag-transitive. Thus, the latter case must hold. Since
H fixes every point of FixPðHÞ; we have b0 divides jNGðHÞj=jHj: This leads
to b0 ¼ v0 ¼ ðq þ eÞ=2; i.e., the parameters of a projective plane, and hence
v0 ¼ k0ðk0 � 1Þ þ 1: But v0 is even, a contradiction. If 4jðq � eÞ; then Ga has
three conjugacy classes of involutions. Thus, by Lemma 2.12 we get

jFixPð/iSÞj ¼ 2 � ðq � eÞ=4þ 1 ¼ ðq � eÞ=2þ 1: ð12Þ
Let H ¼ /iS; then by Lemma 2.6, either FixPðHÞDL or there exists a
regular linear space with parameters ðb0; v0; r0; k0Þ; where v0 ¼ jFixPðHÞj;
k0 ¼ jFixPðHÞ-Lj; and NGðHÞ acts line transitively on this regular linear
space. Since ðq � eÞ=2þ 1 does not divide q � e ¼ jNGðHÞj; we have
FixPðHÞDL: This implies that apart from L; every line fixed by /iS either
does not contain any point fixed by /iS or contains exactly one point fixed
by /iS: Suppose that the lines fixed by /iS; except for L; do not contain
any point fixed by /iS; then /iS fixes exactly ðv � kÞ=k þ 1 lines of S;
which leads to kjv: Therefore, G is flag-transitive. By [3], this cannot occur.
Hence, except for L; every line fixed by /iS contains precisely one point
fixed by /iS: It follows that i fixes exactly ðv � kÞ=ðk � 1Þ þ 1 ¼ ðv �
1Þ=ðk � 1Þ ¼ r lines of S; that is, jFixLð/iSÞj ¼ ðv � 1Þ=ðk � 1Þ: Since GL

has a unique conjugacy class of involutions, we have, by Theorem 3.5 of
[20], that NGð/iSÞ acts transitively on the set of lines fixed by /iS: This
leads to jFixLð/iSÞj ¼ ðv � 1Þ=ðk � 1Þ divides jNGð/iSÞj: Note that
here

v � 1

k � 1
¼ ðq � eÞðq þ 2eÞ

2ðk � 1Þ
and jNGðHÞj ¼ q � e; and q is odd, and so q þ 2e divides k � 1: Since b4v;
it follows that r4k and so rXk þ 1; that is

v � 1

k � 1
Xk þ 1:

Hence vXk2: This conflicts with ðq þ 2eÞjðk � 1Þ (since qX5).
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(b) GL has at least two conjugacy classes of involutions: According to
Remark (i) after Lemma 2.4, GL is isomorphic to a group S4;
PGLð2; pmÞ; where 2m divides f ; or Zh : 2; where h is even and

divided ðq71Þ=2: If GLDS4; then b ¼ jGj=jGLj ¼ qðq2 � 1Þ=48 and bðrÞ ¼
ðv � 1; bÞ ¼ ððq � eÞðq þ 2eÞ=2; qðq2 � 1Þ=48Þ: Hence if 2jjðq � eÞ; then

bðrÞ ¼ ðq � eÞ=2 or ðq � eÞ=6; if 2jjðq þ eÞ; then bðrÞ ¼ ðq � eÞ=8 or ðq �
eÞ=24: By Corollary 3.2(ii) of [14], bðrÞ divides the lengths of every orbit of

Ga acting on P� fag: Thus, by Lemma 2.5 bðrÞaðq � eÞ=2 and ðq � eÞ=6:
Hence we must have 2jjðq þ eÞ and 4jðq � eÞ: Consider the numbers of
points and lines fixed by i; respectively. Since 4jðq � eÞ; we have, by (12),

jFixPð/iSÞj ¼ ðq � eÞ=2þ 1:

Since S4 contains two conjugacy classes of involutions, by Lemma 2.12 and Remark
(iii) after Lemma 2.4, we have

jFixLð/iSÞj ¼ ðq � eÞ=8þ ðq � eÞ=4 ¼ 3ðq � eÞ=8:
Consequently, by Lemma 2.13 we get

kX
v � ðq � eÞ=2� 1

3ðq � eÞ=8

¼ðq � eÞðq þ 2eÞ=2� ðq � eÞ=2
3ðq � eÞ=8

¼ 4ðq þ e2� 1Þ=3:
Thus

kðk � 1ÞX4ðq þ 2e� 1Þ=3ð4ðq þ 2e� 1Þ=3� 1Þ: ð13Þ
By (6), we have

kðk � 1Þ ¼ jGLjðv � 1Þ=jGaj ¼ 12ðq þ 2eÞ: ð14Þ
Therefore, by (13) and (14), when e ¼ þ1; we get

4q2 � 22q � 53o0

and when e ¼ �1; we get

4q2 � 54q þ 99o0:

Recall that q43 and q odd and 2jjðq þ eÞ: We get ðq; eÞ ¼ ð5;þ1Þ; ð7;�1Þ and
ð11;�1Þ: But in these cases, Eq. (14) has no integer solutions. If GLDPGLð2; pmÞ;
where 2mj f ; then b ¼ jGj=jGLj ¼ qðq2�1Þ

2pmðp2m�1Þ and bðrÞ ¼ ðv � 1; bÞ ¼ ðq � 1Þ=ðp2m � 1Þ
or ðq þ 1Þ=2 according to e is þ1 or �1 (note that here p2m � 1 divides q � 1). By

Lemma 2.5 and Corollary 3.2(ii) of [14], bðrÞ ¼ ðq � 1Þ=ðp2m � 1Þ: In this case,

kðvÞ ¼ pm; and so by (6) we have

kðrÞðpmkðrÞ � 1Þ ¼ ðp2m � 1Þðpf þ 2Þ=2:

ARTICLE IN PRESS
W. Liu / Journal of Combinatorial Theory, Series A 103 (2003) 209–222220



Write kðrÞ ¼ A and q ¼ pf ¼ p2mn ¼ Q2n; where Q ¼ pm41: Then

2QA2 � 2A þ Q2n � 2Q2 þ 2 ¼ Q2nþ2:

Write A ¼ BQ þ 1: We get

2B2Q2 þ 4BQ þ 2� 2B þ Q2n�1 � 2Q ¼ Q2nþ1:

Write B ¼ CQ þ 1: Then we get

2C2Q3 þ 4CQ2 þ 2Q þ 4CQ þ 2� 2C þ Q2n�2 ¼ Q2n:

Write C ¼ DQ þ 1: Then we get

2D2Q4 þ 4DQ3 þ 2Q2 þ 4Q þ 4DQ2 þ 6þ 4DQ

� 2D þ Q2n�3 ¼ Q2n�1:

We continue this process and eventually find positive integers L and M such that

2L2Q2nþ1 � 2L þ M ¼ Q2:

Clearly, when nX1 and Q41; 2L2Q2nþ1 � 2L þ M4Q2; and hence we get a

contradiction. If GLDZh : 2; where hjðq71Þ=2 and h even, then b ¼ jGj=jGLj ¼
qðq2 � 1Þ=ð2hÞ and bðrÞ ¼ ðv � 1; bÞ ¼ ðq � eÞ=2 or ðq � eÞ=ð2hÞ according to
2jjðq � eÞ or 2jjðq þ eÞ: By Corollary 3.2(ii) of [14] and Lemma 2.5, we know that

bðrÞ ¼ ðq � eÞ=ð2hÞ and so 4jðq � eÞ; kðvÞ ¼ 1: This leads to

kðk � 1Þ ¼ hðq þ 2eÞ: ð15Þ
On the other hand, we consider the number of lines fixed by /iS: By Lemma 2.12,
we get

jFixLð/iSÞj ¼ 2ðq � eÞ=4þ ðq � eÞ=ð2hÞ:
Since 4jðq � eÞ; we have, by (12),

jFixPð/iSÞj ¼ ðq � eÞ=2þ 1:

Thus, by Lemma 2.13

k4
ðq � eÞðq þ 2eÞ=2� ðq � eÞ=2

ðq � eÞ=2þ ðq � eÞ=ð2hÞ ¼ hðq þ 2e� 1Þ
1þ h

;

and so

kðk � 1Þ4h2ðq þ 2e� 1Þ2

ð1þ hÞ2
� hðq þ 2e� 1Þ

1þ h
:

By (15) we get

hðq þ 2e� 1Þ2 � ðh þ 1Þ2ðq þ 2eÞ � ð1þ hÞðq þ 2e� 1Þo0:

It follows that

hðq þ 2eÞðq þ 2e� 3� hÞ � 1o0:

Therefore, q þ 2e� h � 3p0: Note that h divides ðq � eÞ=2 and h is even. We get

ðq; eÞ ¼ ð7;�1Þ: By Lemma 15, ðq; k; eÞ ¼ ð7; 5;�1Þ: In this case, bðrÞ ¼ 1; a
contradiction. This completes the proof of the main theorem. &
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