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Abstract

This article is a contribution to the study of linear spaces admitting a line-transitive
automorphism group. We classify such linear spaces where PSL(2,¢q), ¢>3 acts line
transitively. We prove that the only cases which arise are projective planes, a Bose—Witt—
Shrikhande linear space and one more space admitting PSL(2,2°) as a line-transitive
automorphism group.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A linear space & is a set 2 of points, together with a set . of distinguished subsets
called lines such that any two points lie on exactly one line. This paper will be
concerned with linear spaces with an automorphism group which is transitive on the
lines. This implies that every line has the same number of points and we shall call
such a linear space a regular linear space. Moreover, we shall also assume that 2 is
finite and that || > 1.

Let G be a line-transitive automorphism group of a linear space & = (2, &). Let
the parameters of % be given by (b, v, r, k), where b is the number of lines, v is the
number of points, r is the number of lines through a point and & is the number of
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points on a line with k> 2. By Block [1], transitivity of G on lines implies transitivity
of G on points.

The groups of automorphisms of linear spaces which are line-transitive have
greatly been considered by Camina, Praeger, Neumann, Spiezia and others (see
[4-7,9,19]). Recently, Camina and Spiezia proved the following theorem (see [9]):

Theorem 1.1. Let G be a simple group acting line transitively, point primitively but
not flag transitively on a linear space. Then G is not PSL(n,q) with q odd and
n=13.

Therefore, it is necessary to consider the case where » is small. In this article, we
prove the following theorem:

Main Theorem. Let G = PSL(2,q) with ¢>3 acting line transitively on a finite linear
space . Then & is one of the following cases:

(1) A projective plane.
(i) A regular linear space with parameters (b,v,r, k) = (32760,2080, 189, 12), in this
case, q = 2°.
(ii) A regular linear space with parameters (b,v,r,k) = (¢*> —1,q(q—1)/2,q+ 1,
q/2), where q is a power of 2. It is called a Witt—Bose—Shrikhande space.

The second section introduces notation and contains preliminary results about the
group PSL(2,¢) and regular linear spaces. In the third section, we shall prove the
main theorem.

We shall continue this work in the forthcoming paper which will deal with other
Lie-type simple group of rank one.

2. Some preliminary results

Our conventions for expressing the structure of groups are as follows. If X and Y
are arbitrary finite groups, then X -Y denotes an extension of X by Y.
The expressions X : Y and X - Y denote split and non-split extensions, respectively.
The expression X x Y denotes the direct product of X and Y. The symbol [m]
denotes an arbitrary group of order m while Z,, or simply m denotes a cyclic group
of that order. The other notation for group structure is standard. In addition, we
use symbol pf||n to denote p’|n but p'*!}n. Moreover, Fixo(K) denotes the set of
fixed points in Q of a subgroup K of Sym(€). The greatest common divisor of two
integers m and n is denoted as (m,n). For a finite transitive permutation group of
degree n, the lengths of the orbits of one of the point stabilizer are said to be
subdegrees.

We begin by recalling some fundamental properties of PSL(2,q). Let G =
PSL(2,q) with ¢ = p/ >3, where p is a prime and f is a positive integer.
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Lemma 2.1 (Theorem 8.2, Chapter II of [11]). Let P be a Sylow p-subgroup of G,
then

(i) P is isomorphic to the additive group of the finite field GF(q);
(il) G has precisely q+ 1 Sylow p-subgroups and |Ng(P)| = q(q—1)/d, where
d= (27 q— 1)7
(ili) Py Py = {1}, where P;, i = 1,2, is a Sylow p-subgroup and P, +# P;.

Lemma 2.2 (Theorem 8.3, Chapter II of [11]).

(1) G has a cyclic subgroup U of order (¢ — 1)/d, where d = (2,4 — 1);
(i) UnUY = {1}, where ge G but g¢ N(U);
(i) For any ue U, u#1, Ng({u)) is a dihedral group of order 2(q — 1)/d.

Lemma 2.3 (Theorem 8.4, Chapter II of [11]). (i) G has a cyclic subgroup S of order
(g+1)/d, where d = (2,q — 1);

(i) SNS9 = {1}, where ge G but g¢ Ng(S);

(iii) For any se€ S, s#1, Ng(<s)) is a dihedral group of order 2(q + 1)/d.

Lemma 2.4 (Theorem 8.27, Chapter II of [11]). Every subgroup of G = PSL(2,p/) is
isomorphic to one of the following groups:

(1) An elementary abelian p-group of order at most p';

(2) A cyclic group of order z, where z divides (pf +1)/d and d = (2,q — 1);
(3) A dihedral group of order 2z, where z is as above,

(4) The alternating group Aa, in this case, p>2 or p =2 and 2| f;

(5) The symmetric group Sy, in this case, p¥ —1 =0 (mod 16);

(6) The alternating group As, in this case, p =5 or p¥ —1 =0 (mod 5);
(7) Z)' : Z,, where t divides (p" —1)/d and q — 1, and m<f’;

(8) PSL(2,p™), where m|f, and PGL(2,p"), where 2m| f .

Remarks. (i) When p is even, S4 cannot occur and so apart from the groups in (1)
and (7) every subgroup of G has precisely one conjugacy class of involutions. When p
is odd, every subgroup of G has precisely one conjugacy class of involutions except
those described in (3), with z even, and (5) and PGL(2, p™).

(ii) For a Sylow p-subgroup P, the normalizer Ng(P) is a group of type (7) with
t=(p/ —1)/d, where d = (2,q — 1). For U=Z,_y)/4, with d = (2,g — 1), a group
of type (2) as in Lemma 2.2, Ng(U) is a dihedral group of type (3). For S=Z,.)/4,
with d = (2,4 — 1), a group of type (2) as in Lemma 2.3, Ng(S) is a dihedral group
of type (3). Clearly, by Lemma 2.4, Ng(P), Ng(U) and Ng(S) are maximal in
PSL(2,q).

(iii) Let i be an involution of G. By Theorems 8.3 and 8.4, Chapter II of [11], we
have |[Ng(<i))|=q—¢, where ¢ = +1 and 4|(q —¢). When ¢ is even, we have
ING(<i>)| = g.
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Lemma 2.5 (See Praeger and Xu [18] and Faradzev and Ivanov [10]). Let G =
PSL(2, q) acting on the set of cosets of its subgroup H = Dy, where h = 2(q — ¢)/d and
e=+1andd = (2,q — 1). Then the subdegrees are as presented in Table 1, where a®
means that the subdegree a appears with multiplicity b.

From now on we suppose that G is a line-transitive automorphism group of a
linear space & = (2,%) with parameters (b,v,r, k) and k>2. Recall the basic
equalities and inequalities for linear spaces.

or = bk, (1)
v=rk—1)+1, (2)
bzv (Fisher’s inequality), (3)

with equality if and only if the linear space is a projective plane.
Note that (2) implies that v and r are coprime. Let

B = (b,v), b =(bv—1), kW =(k,v), and k" = (k,v—1).
Obviously,
k:k(“)k("), b:b(”>b(’), r:bmk(’), and v = bhWEW,

In terms of these parameters, Fisher’s inequality becomes b") > k() with equality if
and only if the linear space is a projective plane.

For a line L, let G be the setwise stabilizer of L in G.

The observation used often in this article is that if an involution in G does not fix a
point then G acts flag transitively, see [8]. In particular, if G = PSL(2,¢q) is flag-
transitive on .%, then by [2] or [3] & is a Witt—Bose—Shrikhande linear space. Hence,
we can ignore this possibility, and assume that every involution fixes a point.

We collect some results which are useful for the study of line-transitive linear spaces.

Lemma 2.6 (Lemma 2 of [8]). Let G act as a line-transitive automorphism group of a
linear space . Let L be a line and H a subgroup of Gr. Assume that H satisfies the
following two conditions:

(i) |Fixe(H)NL|=2 and
(i) if K< G and |Fixp(K)NL| =2 and K is conjugate to H in G then H is conjugate

to K in Gp.
Table 1
H q Subdegrees
DZ((]—]) Even l, ((1 - l)q/27172(q l)
Dygi1y Even L (g+ 1)“/2"1
Dig) 9= +3(mod$) 1 (2 (5 02, (g ) 2o
Digsy) g=F1(mod8) L ()7, () 072, (g ) e
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Then either (a) Fixp(H)<S L or (b) the induced structure on Fixp(H) is also a
regular linear space with parameters (bg,vo,ro, ko), where vy = |Fixy(H)|, ko =
|Fixp(H) N L|. Further, Ng(H) acts as a line-transitive group on this linear space.

Lemma 2.7 (Lemma 2.6 of [16]). Let G act as a line-transitive automorphism group of
a linear space . Let L be a line and v even. Assume that there exists a 2-subgroup P
of order 2 of Gr. such that Fixz(P)< L. Then k divides v and G is flag-transitive.

Lemma 2.8 (Lemma 2.7 of [16]). Let G act as a line-transitive automorphism group of
a linear space & . Let L be a line and let i be an involution of Gy. Assume that Gy has a
unique conjugacy class of involutions. If

[Fixs (<)) A L|>2

and v is even, then G is flag-transitive or the induced structure on Fixy({i)) is a
regular linear space with parameters (by,vy,ro, ko), where vy = |Fixs({i))|, ko =
|Fix»({iY)nL|. Further, No(<i)) acts as a line-transitive group on this linear space.

Lemma 2.9 (Lemma 9 of [21]). Let G act line transitively on a linear space . Let K
be a subgroup of G. If K< Gy, for any line Le ¥, and K < G, for some point w.€ P, then
Ng(K) <G,.

Lemma 2.10 (Lemma 2.8 of [16]). Let G act line transitively on a linear space & . If
there exists a prime number p such that p|b but ptv, then for some o.€ 2, Ng(P)< G,,
where P is a Sylow p-subgroup of G.

Lemma 2.11 (Lemma 3.8 of [15]). Let G act line transitively on a linear space .
Assume that P is a Sylow p-subgroup of G, for some o€?. If P is not a Sylow
p-subgroup of G, then there exists a line L through o such that P< Gy,

The following result of Manning (see Theorem XIV of [17]) will prove useful in
calculating the number of fixed points of an element.

Lemma 2.12 (Lemma 2.1 of [18]). Let G be a transitive group on Q, let H = G,, for
some o€, and let K< H. If the set of G-conjugates of K which are contained in H
form t conjugacy classes Cy, Cy, ..., C; with respect to conjugation in H, then K fixes

14

" ING(K:) : Nig(K)|

i=1

points of Q, where K;e C; for 1<i<t. In particular, if t =1, that is, if every G-
conjugate of K in H is conjugate to K in H, then K fixes |Ng(K) : Ny (K)| points of Q.

Note that |[Ng(K;)| is constant (equal to |Ng(K)|) since G is transitive on the set of
G-conjugates of K.
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Lemma 2.13. Let G act line transitively on a linear space & = (P, ). Let i be an
involution of Gr, where L is a line of . Assume that i has at least two fixed points.
Then

v— |Fix;a;>(<i>)|.

> kg (<]

(4)

Proof. Consider the cycle decomposition of i acting on 2. We know that i has
(v — |Fix»({i))])/2 cycles of length 2. Write |Fix¢ (i) )| = e. Then i fixes e lines of
&, say L;, where 1 <j<e. Let m; denote the number of 2-cycles of i which lie in L,
where 1 <j<e. Then

23 my = v~ [Fixp({))].
=

Since i has at least two fixed points, we have

ek>2 XL: m;.
J=1

Thus,

v — [Fix»(¢i))]
" TFxoi)] O

The following lemma is useful for the proof of the main theorem.

Lemma 2.14 (Le [13]). The diophantine equation x*> = 4q™ +4q" + 1, where q is a
prime and m=n, has exactly the following solutions: (m,n, x,q) = 2n,n,2q" + 1,q),
(1’ l’ 5’ 3)’ (37 1’ 11’ 3)7 (1727 572)7 (3727 77 2) or (7’ 2’ 23’2)'

3. The proof of the main theorem
Firstly, we shall prove the following proposition.

Proposition 3.1. Let G be a group of automorphisms of a linear space & = (?,%).
Suppose that & is not a projective plane and G = PSL(2,p/) with g =p/ >3. If G is
line-transitive, then G is point-primitive. Further, for a point o. of P, the stabilizer G,
is isomorphic to one of the following groups: NG(P), Zy—1)ja : 2 01 Z(4+1yja * 2, where P
is a Sylow p-subgroup of G and d = (2,q — 1).

Proof. Since G is line-transitive and % is not a projective plane, we know that there
exists a prime ¢ such that ¢[b but ¢} v. In fact, every prime divisor of »") satisfies the
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above condition. Thus, by Lemma 2.10 we have Ng(T)< G,, where T is a Sylow -
subgroup of G and ae. It is clear that b divides |G| = q(¢* — 1)/d, where d =
(2,4 — 1). Hence, ¢ divides ¢(¢*> — 1)/d. Now we divide the proof into three cases:

(i) If t]q, then t = p and Ng(T) is a maximal subgroup of G by Remark (ii). Hence
G is point-primitive.
(it) If >2 and ¢ divides (¢ — ¢)/d, where ¢ = +1, then by Lemmas 2.2 and 2.3 and
Remark (ii), Ng(T) is a maximal group of G. It means that G is point-primitive.
(i) If r = 2 and ¢ divides (¢ — ¢)/d, where ¢ = + 1 and ¢ is odd, then let 27||(¢ — &),
where a>2 and ¢ = +1. Then 2¢|||G| and a 2-Sylow subgroup is the dihedral
group T = Z.1 : 2 by Theorem 8.10 of [11]. Since

char

Zyt S Zg-9p2Zg-q)p2+ 2,

we have Z(,_s 2 : 2< Ng(Zpot ). If Z5i1 £ G, for any line Le &, then by Lemma 2.9,
G, is maximal in G (recall that Z,.. <T<Ng(T)<G,). Hence G is point-primitive.
Therefore, we can assume that Z,.1 <Gy, for some line L. The assumptions ¢|/b and
t}v imply 2||b = 5")b®) and hence 2||p"). If there is an odd divisor of o), then this
case returns to the above case (ii). Hence, we can assume that 5") = 2. Since . is not
a projective plane, Fisher’s inequality implies k") = 1. Since bk = vr, we have

|G G

KO — p )
|GL‘ |Goz‘

that is
|Gy ® = bD|Gy|.

Hence |G,| = 2|GL|. Note that every Sylow 2-subgroup of G is a cyclic group and
p#2. Therefore, by Lemma 2.4 we get G, = Z;, and G, = Z;, : 2, where h divides
(¢ — €)/2 and 297! |h. In this case, Gy, has exactly one involution i. Since / is even, the
dihedral group G, = Z, : 2 has three conjugacy classes of involutions. If we choose
generators ¢, T with (o> = Zj, and {¢,7> = G,, then i = ¢"/? is a central involution
of G,, whereas 7 and o7 lie in two different G,-conjugacy classes of size i/2 each.
Thus, by Lemma 2.12 we get

. —¢ —¢& —¢&)h+1
Finp ()| = 40 48 02 L)
By Lemma 2.6, we know that either Fix»(<i)»)<=L or the induced structure on
Fix»({i)) is a regular linear space with parameters (b, vo,ro,ko), where vy =
|Fix»({i))| and ko = |Fixe({i>)nL| and Ng(<{i)) acts line transitively on this
linear space. Thus, if the latter holds, then vy divides |Ng(<i) )|, that is # + 1 divides
2h. This forces that # = 1, which contradicts #1>2. Hence Fix»(<{i))< L. In order to
prove that our proposition is true, we use reduction to absurdity. Assume that G is
point-imprimitive. Namely, G, is not maximal in G (it is the case where
Gy <Z4—y))2 + 2). Then there exists an imprimitive block C of G, such that ae C
and G¢ = Z ;)2 : 2. Note that we can assume that the involution / lies in the center
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of G¢. Thus C=Fix»(<i)). In fact, for any e C, there is an element ge G¢ such
that f = a¢. Thus,

pl=a =0 =0f =p, thatis, feFixs({i)).

Therefore, C=Fix»({i)) and so C < L. This means that every line of & is uniquely
determined by some imprimitive block, which leads to »<wv, contradicting the fact
that b>wv. This completes the proof of our proposition. [

Now we can prove our main theorem stated in the introduction.

Proof of the Main Theorem. Suppose that % is not a projective plane. Then b > 1
and so for any prime divisor ¢ of b"), Ng(T) < G,, where T is a Sylow ¢-subgroup of
G and ae?. By Proposition 3.1, G, is a group Ng(P), Zy—1)ja:2 or Zy_1ya: 2,
where d = (2, — 1). By [12], G, % Ng(P). Now we divide the proof into subcases
according to the parity of ¢, the type of a stabilizer of a point, and the number of
conjugacy classes of involutions in a line-stabilizer.

(i) ¢ is even. In this case, G, is isomorphic to Z(,1): 2 or Zy,_y : 2.

If G,=Z41): 2, thenv =¢g(qg—1)/2and v — 1 = (¢ + 1)(¢ — 2)/2. Since |G,| and
v are all even, we have G, contains an involution i which fixes at least one more point
of &. Let L be the line containing « and this point. Then ie G,n Gy and
|Fix»(H)nL|>2, where H = {i). According to Remark (iii) after Lemma 2.4,
|INg(H)| = q. Note that G, = Z(,,) : Z> has a unique conjugacy class of involutions
(since ¢ is even), and |Ng,(H)| = 2, and so by Lemma 2.12,

[Fixy(H)| = [N6(H) : Ng,(H)| = q/2. (5)

Suppose that G has a unique conjugacy class of involutions. By Lemma 2.8, either
G is flag-transitive or there exists a regular linear space with parameters
(bo, vo, ro, ko), where vy = |Fixp(H)|, ko = |Fixs(H)NL|, and Ng(H) acts line
transitively on this regular linear space. If the latter holds, then boko(ko — 1) =
Uo(l)() — 1) But Vg = (]/2 and b() = vy Or 21)()7 and so boko(ko — l)#vo(vo — 1), a
contradiction. Therefore G is flag-transitive. By [3], ¥ must be a Witt—Bose—
Shrikhande linear space with b = ¢*> — 1. Thus |G.| = |G|/b = ¢, and so G is an
elementary abelian 2-group of order ¢ >4. This contradicts our hypothesis. Suppose
that G, has at least two conjugacy classes of involutions. Checking the groups in
Lemma 2.4, we find that G is isomorphic to (Z;)" : Z; (note that here ¢ is even),
where / divides 2" — 1 and /<2™ — 1. Since / is odd, the involutions of Gy, all lie in
ZJ'. Clearly, the centralizer of an involution of G is Z7', so the length of the
conjugacy class of an involution of Gy is /, and hence G, has exactly e := (2" — 1)//
conjugacy classes of involutions. Let i}, 1, ...,i, be representatives of these classes.
Since Z’;SNG(O']-}), Lemma 2.4 implies that Ng(<{i;)) = Zg. By Lemma 2.12,
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H = (i) fixes exactly
S Lo_2m=1 2l alman—)
; [Ng(ij) : Ng, (ij)| = 7 S  —¢
lines, say Ly, Ly, ..., L.. By (5),
[Fix»(H)| = q/2,

217

and so we know that i has (v — ¢/2)/2 cycles of length 2 on 2. Let m; denote the

number of 2-cycles of i which lie in L;, where 1<j<c. Then

C
2 Z m;=v—gq/2
=

and so
ck=v—q/2,
that is
s 00D _(ala=1/2-q/21 2"/ 1)
2/=m(2m — 1) 2/=m(2m — 1) 2m —1
Since
k(k —=1) = v(v = 1)/b = [GL|(v = 1)/|Gal,
we have
k(k—1)=2""12/"" - 1)L
Therefore,
2m/= D 2m/T - 1)1
2=t/ > (2m — ) ( (2m — )" 1).
Hence,
0 W
and so
; 22m 2m-l <.

<2m+1(2f—l _ 1)<2f—1 -1

This forces that / = 1. By (8) we get f = m. Again by (7) we get

K —k-=2/712/"-1)=0.

©)

Thus k = ¢/2 and so k|v. This means that G is flag-transitive. By [3], % must be a
Witt-Bose-Shrikhande linear space. If G,=~Zy ;) :2, then v=g(q¢+1)/2 and
v—1=(q—1)(¢g+2)/2. Suppose that G, has a unique conjugacy class of
involutions. Let i be an involution of Gy and H = {i). Then by Lemma 2.8 we
know that either G is flag-transitive or there exists a regular linear space with
parameters (b, vg, ro, ko), where vy = |Fixp(H)|, ko = |Fixp(H)NL|, and Ng(H)
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acts line transitively on this regular linear space. By [2] or [3], G is not flag-transitive.
Hence the latter occur. As in the case G, =Z ) : 2, we get vg = |Fix»(H)| = q/2.
Since by divides |Ng(H)| = g and by =>wvy, we have by = vy or 2vy, which contradicts
boko(ko — 1) = vo(vo — 1) (note that here vy is even). Suppose that G, has at least two
conjugacy classes of involutions. Then Gp = Z}' : Z;. It is analogous to the case

where G, =Z ;1) : 2 to get
2 f+m=1]
Zoom _1°
By (6), we have
k(k—1)=2""12/~"+ 1)L

Therefore,
_ 2f+m_ll 2f+m—11
m—1/~ f—1 > o
2M(2 +1)l/2m1<2m1 1).
Namely,
(2m — 1)(2f*l — 1)>2f+’”*11 1
2/ Zom '
Therefore,
2f+mfll (2/'71 + 1)(2/71 _ 1)
T < 57 + 1.
It follows that
, -1y 2/ 41
f+m—1 (2 + )( m __
2 I< 37 2 1< 37

Thus, we have
277141 1 27141 1
T T TS _+ + =
2f m—1 2f 1 2f 1 2f 1
This forces that / = 1. Hence,
k(k—1)=2""12/""4+1)

I<

and so the discriminant of (11)
A :2f+m_|_2m+l +1 :x2

for some positive integer x. By Lemma 2.14, we get

(m,f,x) = (m,m,2" +1), (3,0,5), (3,2,7) or (3,6,23).

Remember that f>m and k is a positive integer. Thus, the equation (11)
has solutions k = 2”~! +1 or 12. When k =2""! + 1, k — 1 does not divide v — 1
(since k>2), a contradiction. Hence k=12 and f=6. We get a regular
linear space with parameters (b,v,r k) = (32760,2080,189,12). In this case,

G = PSL(2,2°).
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(ii) ¢ is odd: Again, G, is a group Ng(P) or Z(,_)> : 2, where ¢ = + 1. By Kantor’s
result [12], G,% Ng(P) and hence G, is isomorphic to Z,_/» :2, and v =
(g+¢€)q/2 and v—1=(q—¢&)(q+2¢)/2, where ¢ = +1. We divide this case
into two subcases:

(a) Gp contains a unique conjugacy class of involutions: Since ¢ is odd, by [3], G
is not flag-transitive. Thus by [8], every involution of G fixes at least a point
of &. Let i be an involution of G,. Clearly, i fixes at least a line of &, say L.
Hence ie GL N G,. If 4|(¢+¢), then G, has a unique conjugacy class of
involutions, and so by Lemma 2.12, we have

[Fix»({i))l = [N6(<i>) : N, (<i))| = (¢ +¢)/2.

Let H = (i), then by Lemma 2.8, either G is flag-transitive or there exists a
regular linear space with parameters (by, vo, ro, ko), where vy = |Fix»(H)|,
ko = |Fixp(H) N L|, and Ng(H) acts line transitively on this regular linear
space. By [3], G is not flag-transitive. Thus, the latter case must hold. Since
H fixes every point of Fix»(H), we have by divides |[Ng(H)|/|H|. This leads
to by = vg = (q + €)/2, i.e., the parameters of a projective plane, and hence
vo = ko(ko — 1) + 1. But vy is even, a contradiction. If 4/(¢ — ¢), then G, has
three conjugacy classes of involutions. Thus, by Lemma 2.12 we get

[Fix,s(C))| =2+ (q—)/4+1=(g—8)/2+1. (12)

Let H = (i), then by Lemma 2.6, either Fix»(H)<L or there exists a
regular linear space with parameters (by, vo, ro, ko), where vy = |Fixy(H)|,
ko = |Fixp(H) N L|, and Ng(H) acts line transitively on this regular linear
space. Since (¢ —¢)/2+ 1 does not divide ¢ — &= |Ng(H)|, we have
Fix»(H) < L. This implies that apart from L, every line fixed by (i) either
does not contain any point fixed by (i) or contains exactly one point fixed
by <i)>. Suppose that the lines fixed by <{i), except for L, do not contain
any point fixed by (i), then <{i) fixes exactly (v —k)/k + 1 lines of %,
which leads to k|v. Therefore, G is flag-transitive. By [3], this cannot occur.
Hence, except for L, every line fixed by {i) contains precisely one point
fixed by (i). It follows that i fixes exactly (v—k)/(k—1)+1=(v—
1)/(k —1) = rlines of &, that is, |Fix¢({i))| = (v—1)/(k —1). Since G,
has a unique conjugacy class of involutions, we have, by Theorem 3.5 of
[20], that Ng({i)) acts transitively on the set of lines fixed by <{i). This
leads to |Fixg({i))|=(v—1)/(k—1) divides |Ng({i))|. Note that
here

v—1 _(g—¢)(qg+2e)

k—1  2(k-1)
and |Ng(H)| = ¢ — ¢, and ¢ is odd, and so ¢ + 2¢ divides k — 1. Since b>v,
it follows that r>k and so r>=k + 1, that is

v—1

- >k+1.

Hence v>k>. This conflicts with (¢ + 2¢)|(k — 1) (since ¢=5).
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(b) Gp has at least two conjugacy classes of involutions: According to
Remark (i) after Lemma 2.4, G, is isomorphic to a group Sy,
PGL(2,p™), where 2m divides f, or Z,:2, where h is even and
divided (¢+1)/2. If G, =Sy, then b = |G|/|GL| = q(¢*> — 1)/48 and b
(v—1,b) = ((g —¢)(q+2¢)/2,q(¢* —1)/48). Hence if 2||(¢g—¢), then
b =(q—¢)/2 or (¢—¢)/6; if 2||(q+¢), then b = (q—¢)/8 or (q—
¢)/24. By Corollary 3.2(ii) of [14], b") divides the lengths of every orbit of
G, acting on 2 — {«}. Thus, by Lemma 2.5 ") # (¢ — ¢)/2 and (q — ¢)/6.
Hence we must have 2||(¢ +¢) and 4|(q¢ —¢). Consider the numbers of
points and lines fixed by i, respectively. Since 4|(¢ — ¢), we have, by (12),

|Fix»({i))| = (¢ —¢&)/2 + 1.

Since S4 contains two conjugacy classes of involutions, by Lemma 2.12 and Remark
(ii1) after Lemma 2.4, we have

[Fixs (<i)] = (¢ — 8)/8+ (¢ — 6)/4 = 3(g — )/8.
Consequently, by Lemma 2.13 we get

k>v—(q—8)/2—l

3g—e)/8
_(g—¢)(g+26)/2 - (g —¢)/2
3g—e)/8
=4(q+¢e2-1)/3.
Thus
k(k—1)=4(qg+2c—1)/3(4(¢g+2e—1)/3-1). (13)
By (6), we have
k(k—1) = [GL|(v = 1)/|Gy| = 12(q + 22). (14)

Therefore, by (13) and (14), when ¢ = +1, we get

4q* —22q — 53<0
and when ¢ = —1, we get

4q* — 549 + 99 <0.
Recall that ¢>3 and ¢ odd and 2||(¢+¢). We get (q,¢) = (5,+1),(7,—1) and
(11,—1). But in these cases, Eq. (14) has no integer solutions. If G, ~PGL(2,p™),
where 2m| f, then b = |G|/|GL| = 21)‘11(‘;7;11 and b") = (v —1,b) = (g — 1)/(p* — 1)
or (¢ +1)/2 according to ¢ is +1 or —1 (note that here p*" — 1 divides ¢ — 1). By
Lemma 2.5 and Corollary 3.2(ii) of [14], b") = (¢ —1)/(p*" —1). In this case,
k®) = p™_ and so by (6) we have

k(l) (Pmk(r) (p2m _ (P/ + 2
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Write k) = 4 and g = p/ = p*™ = 0**, where Q = p”" > 1. Then

2QA2 _ 2A + Q2I’l _ 2Q2 +2 — Q2”+2-
Write A = BO + 1. We get

2B°Q° +4BQ+2-2B+ Q' —20= Q"""
Write B= CQ + 1. Then we get

2C°Q° +4CQ* +20+4CQ +2-2C+ Q"2 = 0™
Write C = DQ + 1. Then we get

2D*Q* +4DQ° +20° +40Q +4DQ* + 6 +4DQ

_ 2D—|— Q2n73 _ Q2n71.

We continue this process and eventually find positive integers L and M such that

2L20° 2L 4+ M = Q2.
Clearly, when n>1 and O>1, 2L>Q*"*! —2L 4+ M >(Q?, and hence we get a
contradiction. If Gp~Z, : 2, where h|(g+1)/2 and h even, then b =|G|/|GL| =
q(¢> —1)/(2h) and b") = (v—1,b)=(q—¢)/2 or (q—e¢)/(2h) according to
2||(qg —¢) or 2||(q + ¢). By Corollary 3.2(ii) of [14] and Lemma 2.5, we know that
b") = (g —¢)/(2h) and so 4|(q — ¢), k") = 1. This leads to

k(k—1) = h(q+ 2e). (15)
On the other hand, we consider the number of lines fixed by {i). By Lemma 2.12,
we get

[Fixo ({i)] = 2(q —)/4+ (g —¢)/(2h).
Since 4/(¢ — &), we have, by (12),

[Fix(<i)] = (g —)/2+ 1.
Thus, by Lemma 2.13
(g—¢)(g+26)/2-(g—2)/2 h(g+2&—1)

> a2t (=) h) v
and so
k(k_1)>h2(q+2e—1)2 h(g+2e—1)

(1+h>  1+h
By (15) we get
h(q + 26— 1)* = (h 4+ 1)*(q + 2¢&) — (1 + h)(q + 2& — 1) <0.
It follows that
h(g +2¢)(q +2e—3—h) —1<0.
Therefore, g + 2¢ — h — 3<0. Note that / divides (¢ —¢)/2 and & is even. We get

(q,¢) = (7,—1). By Lemma 15, (q,k,e) = (7,5,—1). In this case, b") =1, a
contradiction. This completes the proof of the main theorem. [
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