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With use of a coronary sinus catheter electrode, a right
ventricular catheter electrode and a chest wall patch elec
trode system, defibrillation threshold voltage, current and
energy were measured with four distinct transvenous de
fibrillation techniques delivered in random sequence in
each of 12 survivors of cardiac arrest immediately before
implantation of a standard epicardial patch defibrillation
system. The four transvenous defibrillation techniques were
1) single pathway monophasic pulsing, 2) single pathway
biphasic pulsing, 3) dUjll pathway sequential pulsing, and 4)
dual pathway simultaneous pulsing. Atransvenous defibril·
lation method was considered to be potentially useful only if
the defibrillation threshold was sSOO V (sIS J delivered
energy). The 500 V value would allow a 2:1 defibrillation
safety margin for a device with a maximal output of 30 J.

No single transvenous pulsing technique was uniformly
superior in efficacy. However, by choosing the best pulsing
technique for each patient, it was possible to obtain an

The need for thoracic surgery to insert an automatic defibril
lator to prevent sudden cardiac death limits the scope of
application for such devices. A consistently effective trans
venous defibrillation system with an acceptable defibrillation
margin of safety could significantly alter the role of these
devices. For example, an effective transvenous defibrillation
system could be implanted for prevention of sudden death in
high risk patients who have yet to manifest their first episode
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average defibrillation threshold of 410 ± 135 Vleading edge
voltage, 7.2 ± 2.5 Aleading edge current and 11.3 ± 7.4 J
delivered energy for the group of 12 patients. With the
ability to vary defibrillation technique, transvenous antia·
rrhythmic device implantation would have been possible in
10 (83%) of the 12 patients at or below a 15 J defibrillation
threshold cutoff point. In contrast, if only one transvenous
defibrillation method had been used, as few as 5and at most
8 of the 12 patients would have been candidates for a
transvenous defibrillation system given a 15 J defibrillation
threshold cutoff point for insertion. The ability to vary
defibrillation technique and current pathways not only
increased the number of patients suitable for transvenous
defibrillator implantation, but also improved the delivered
energy safety margin from approximately 2:1 to 3:1 in
comparison with that of anyone of the four methods
examined.

(J Am Coil CardioI1990;16:887-95)

of ventricular tachycardia or ventricular fibrillation as well
as in those patients who have had such episodes.

In the light of available data. it is unlikely, however, that
any particular transvenous pulsing method or electrode
position will result in uniformly acceptable defibrillation
capabilities for all patients who might need an implantable
automatic antiarrhythmic device, Although transvenous lead
systems have already been employed in humans for defibril
lation (1-9), the percent of patients for whom any particular
transvenous approach is suitable is still unknown. Earlier
work (9) has suggested that more patients might be candi
dates for a transvenous defibrillator if a right ventricular
catheter electrode was employed in conjunction with a
coronary sinus catheter electrode instead of a chest patch
electrode. However. even with this method, defibrillation
was successful in only 45% of patients with <500 V or 15 J,
a value presumed safe for employment of transvenous de
fibrillation systems because it provides at least a 2: 1 energy
defibrillation safety margin (10). The purpose of this inves-
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Table 1. Clinical Data for 12 Survivors of Cardiac Arrest

Patient No.

3
4
5
6
7
8
9

10
II
12

Mean ± SD

Antiarrhythmic Drugs
Underlying Heart Clinical Present During Therapeutic

Age (yr)/Gender Disease Arrhythmia LVEF Defibrillation Testing Procedure

nlF IDC VF x2 0.28 None AICD
45/F CAD. DMI. SIP MVR VF 0.49 None AICD
57/M CAD. AMI VF 0.18 None CABG. AICD
81!F PED VF 0.60 None AICD
52/M CAD. DMI VF 0.42 None CABG. AICD
46/F IDC VF 0..13 None AICD
54/F IDC VF 0.20 None AICD
47/F CAD. AMI VF 0.26 None AICD
67/M CAD. AMI. IDC VT 0.18 None CABG. AICD
301M HCM VF 0.85 Disopyramide AICD
49/F Apical HCM VF 0.49 None AICD
52/M PED VF 0.60 None AICD

54 ± 14 0.41 :': 0.21

AICD = automatic implantable cardioverter-defibrillator: AMI = anterior myocardial infarction: CABG = coronary artery bypass grafting: CAD = coronary
artery disease: DMI = diaphragmatic myocardial infarction: EF = ejection fraction: F = female: HCM = hypertrophic cardiomyopathy: IDC = idiopathic dilated
cardiomyopathy: LV = left ventricular: M = male: MVR = mitral valve replacement: PED = primary electrical disease: SIP = status post: VF = ventricular
fibrillation: VT = ventricular tachycardia.

tigation. therefore. was to develop an adaptable and effective
transvenous defibrillation system that would increase the
safety margin of defibrillation as well as the percent of
patients suitable for transvenous antiarrhythmic devices.

Methods
Study patients and lead systems. After giving informed

consent. 12 survivors of cardiac arrest (Table I) underwent
defibrillation efficacy testing with a three lead transvenous
defibrillation system (Fig. I) immediately before receiving a
standard epicardial lead system and an automatic implant
able cardioverter-defibrillator. The three electrodes em
ployed were a 6F coronary sinus (CS) catheter electrode. a
10.5F right ventricular (RV) catheter electrode and an 8 cm
diameter chest patch (CP) electrode.

The right ventricular electrode (Medtronic model 10284)
(Fig. 2) was inserted through the right internal jugular vein
and positioned under fluoroscopic control in the right ven
tricular apex. An active fixation screw-in electrode ensured
right ventricular lead stability during defibrillation testing.
The screw-in electrode also was used as the cathode for
bipolar sensing and pacing in conjunction with a more
proximal anodal ring electrode. The defibrillation coil was
immediately proximal to the pacing and sensing electrodes
and extended 5 cm in length. typically to the tricuspid
anulus.

The coronary sinus electrode (Medtronic model 10285)
(Fig. 2) was 5 cm in length and positioned through the left
subclavian vein into the distal coronary sinus. The coronary
sinus electrode was always positioned such that the tip of the
defibrillation electrode was near the left atrial appendage.

The coronary sinus electrode also utilized two sensing
electrodes proximal to the defibrillation coil as an aid in
catheter positioning. Right and left anterior oblique fluoro
scopic X-ray views of the coronary sinus electrode and right
ventricular electrode were obtained in each patient to doc
ument lead location (Fig. 3).

The chest patch. all 8 em diameter disc. was centered
over the left lateral thorax in the anterior axillary line in the
fifth intercostal space and simulated a subcutaneous patch
electrode. Given the temporary nature of the transvenous
component of the study. actual insertion of a subcutaneous
patch could not be justified ethically. A cutaneous patch

Figure l. Positions of the transvenous and epicardial defibrillation
lead systems used in the study. For the transvenous system. the
right ventricular (RV) catheter electrode was positioned in the right
ventricular apex. The coronary sinus (CS) electrode was positioned
in the lateral coronary sinus. with the tip located near the left atrial
appendage. The chest patch (CP) electrode was placed at the
anterior axillary line in the fifth intercostal space. For the epicardial
system. two large patch electrodes were applied and positioned over
the anterior right ventricle (RV) as the cathode and over the
posterolateral left ventricle (LV) as the anode.
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Figure 2. Photograph of the transvenous leads.
The coronary sinus defibrillation electrode (bot
tom) is a 6F helical coil 5 cm in length. The right
ventricular defibrillation electrode (top) is a IO.5F
helical coil 5 cm in length. The right ventricular
catheter also has a ring electrode and an active
fixation screw-in electrode for pacing and sens
ing. The coronary sinus electrode has a pair of
sensing electrodes proximal to the defibrillation
coil. The coronary sinus electrogram provided by
this pair of electrodes aided lead positioning.

approximates a subcutaneous patch for defibrillation testing
purposes because the transdermal voltage decrease during
defibrillation is insignificant (II).

Current pathways and pulsing techniques. The trans
venous lead system just described enabled many current
pathways and waveforms to be tested. However. because of
the clinical limitations inherent in repetitive ventricular
fibrillation induction and termination in humans. we limited
our investigation to four alternative transvenous defibrilla
tion methods. In addition. the methods selected were in part
chosen to maintain continuity with previous work: the
coronary sinus electrode was used in each of the four
methods tested and its polarity was always negative (9.12).

The four methods are summarized in a visual format (Fig. 4)
and below in greater detail:

I. CS M - --? RV+ == monophasic waveform. single
pulse.

II. CSa- --? RV+ == biphasic waveform. single pulse.
1lI. CSM- --? RV+. Cp+ == monophasic waveform.

sequential pulse.
IV. CS M - --? RV+ and CP+ == monophasic waveform.

simultaneous pulse.

Met/wd I (CSM- --? RV+) utilized a 65% tilt monophasic
(M). truncated. exponentially decaying waveform delivered

Figure 3. Right anterior oblique (RAO) and left
anterior oblique (LAO) views of the right ventric
ular and coronary sinus electrodes in situ. The tip
of the coronary sinus electrode (upper electrode)
is positioned near the left atrial appendage. The
tip of the right ventricular electrode (lower elec
trode) is in the right ventricular apex. The
screw-in anchoring electrode of the right ventric
ular lead is visible in the left anterior oblique
projection.
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Figure 4. The four transvenous defibrillation methods used in the
study. A full explanation of each pulsing technique is found in the
Methods section. Abbreviations as in Figure I.

between the coronary sinus (CS) coil electrode as the
cathode and the right ventricular (RV) coil electrode as the
anode (9).

Method II (CSB - ~ RV+) utilized all aspects of method
I except that the waveform was biphasic (B). The nature of
this biphasic waveform. an asymmetric 65% tilt pulse capa
ble of being generated with a single capacitor. has been
described in earlier studies (13) on epicardial patch-patch
defibrillation. It was possible to generate such a waveform
with one capacitor by inverting the trailing edge voltage of
the first phase of the pulse and utilizing it as the leading edge
voltage of the second phase of the pulse.

Method III (CSM - ~ RV+. CP+) utilized two monopha
sic (M) 65% tilt waveforms in a sequential pulse technique in
which the coronary sinus (CS) electrode served as a common
cathode. The first pulse was delivered to the right ventricular
(RV) electrode as the first anode. and 0.2 ms later the second
pulse was delivered to the chest patch (CP) electrode as the
second anode.

Method IV (CSM - ~ RV+ and CP+) utilized the same
waveform. current pathways and electrode polarity used in
method III. However. in method IV. both anodes. the right
ventricular (RV) and chest patch (CP) electrodes. were
interconnected and a single shock was delivered simulta
neously between this electrode pair and the common cath
ode.

The pulse waveform used for all methods. including the
negative phase of the biphasic pulse. was a truncated expo
nentially decaying 120 ILF capacitor discharge with a tilt of
65%. This waveform tilt and capacitance were chosen to
keep the trial referable to the pulsing methods employed
with the standard automatic implantable cardioverter
defibrillator. Total capacitance and tilt were held constant at
120 ILF for each of the four methods examined in accord with
previous observations (14) suggesting that capacitance as
well as tilt affect defibrillation efficacy. In the case of the
sequential pulse technique of method III. capacitance was
maintained at 120 ILF by employing a 60 ILF capacitor for
each pulse. For methods I. II and IV. a single 120 ILF
capacitor was utilized.

Defibrillation methods. To begin defibrillation efficacy
testing. one of the four transvenous defibrillation methods
was randomly selected to be tested first. Alternating current
(60 Hz) was used to initiate ventricular fibrillation through
the right ventricular bipolar pacing electrodes and defibril
lation was attempted at 10 s after the onset of ventricular
fibrillation (9.15). Both the voltage and current waveforms
were recorded during pulsing using methods previously
reported (16). Briefly. two Tektronix AM502 differential
amplifiers and two Tektronix 2230 digitizing oscilloscopes in
combination with an IBM-AT computer enabled on-line
waveform storage and analysis for determination of resis
tance and integration of waveforms to measure delivered
energy. The external defibrillator used for the study was a
Medtronic model 2394. Because defibrillator voltage settings
did not necessarily correlate with actual measured voltage
values (secondary to variable voltage decreases across the
internal resistance of the external defibrillator). all defibril
lation threshold voltage values stated are derived from
measured variables rather than defibrillator settings.

Defibrillation efficacy trials were begun with a voltage
setting of 600 V. Between episodes of fibrillation and de
fibrillation. 2:3 min was allowed to elapse. The electrocar
diographic QRS and ST-T waves. arterial pressure and
pulmonary pressures were required to return to baseline
values before ventricular fibrillation was reinduced. If the
initial 600 V defibrillation pulse was successful. ventricular
fibrillation was reinduced and defibrillation was attempted
with a 500 V pulse. If the 500 V test was successful. a 400 V
pulse was attempted on refibrillation. If the 400 V test was
successful. subsequent decrements in leading edge voltage
were made in 50 Vsteps. This process was repeated until the
lowest amplitude pulse failed to terminate ventricular fibril
lation and the patient required defibrillation with a 200 J
transthoracic rescue pulse.

If defibrillation was unsuccessful at 600 V. a transtho
racic rescue pulse was immediately delivered. Subsequently.
on reinduction of ventricular fibrillation. defibrillation was
attempted at 700 V. If this test was unsuccessful. a voltage
setting of 800 V was chosen for the next episode of ventric-



JACC Vol. 16, No.4
October 1990:887-95

Table 2. Electrical Variables at the Defibrillation Threshold Determinations

BARDY ET AL.
TRANSVENOUS DEFIBRILLATION

891

Voltage Current Resistance Delivered Energy
Defibrillation Method (Y) IA) 1(1) IJ 1

I) CSM ---.RY+ 502 ± 130 (p = 0.00171 9.1 ± 3.0 (p = 0.00961 57 ± 6 (p = 0.6610) \6.\ ± 8.2 (p = 0.0063)
ll) CS u"---.RY+ 504 ± 155 Ip = 0.00891 9.1 ± 3.6 (p = 0.(295) 57 ± 6 Ip = 0.6464) 18.6 ± 11.6 (p = 0.(188)

III) CSM----.RV+, CP+ 469 ± 180 (p = 0.(352) 7.2 ± 3.3 Ip = 0.9760l 68 ± 12 (p = 0.0060) 14.8 ± 10.9 Ip = 0.0428)
IV) CSM---->RY+ and CP+ 515 ± 178 (p = 0.00251 11.0 ± 4.6 (p = 0.(012) 48 ± 7 (p = 0.00(9) 18.0 ± 10.8 (p = 0.0(67)
Best transvenous 410 ± 135 7.2 ± 2.5 57 ± 5 II.3±7.4
Epicardial 272 ± 93 (p = 0.(013) 6.8 ± 3.1 (p = 0.64731 43 ± 12 Ip = 0.00381 4.9 ± 3.0 Ip = 0.(047)

All p values are in reference to the "best transvenous" defibrillation method. B = biphasic: CP = chest patch: CS = coronary sinus: M = monophasic:
RY = right ventricle.

ular fibrillation, The value of 800 V was the maximal
transvenous voltage employed, A value of 800 V was chosen
as our maximal voltage setting because higher voltages may
have promoted tissue injury, Thus. if defibrillation was not
possible at 800 V. the defibrillation threshold was arbitrarily
and conservatively designated to be 900 V.

At the end (~f the randomiz.ed protocolfor emll/atinl? each
of the four transvenOl/S defihrillation systems. the patient
underwent a sternotomy for implantation of a standard
automatic internal cardioverter-defibrillator. In each patient.
a uniform defibrillation lead system was applied using two
large patch electrodes (CPI model 0041). one over the
anterior right ventricle (cathode) and one over the postero
lateral left ventricle (anode) (12). Defibrillation thresholds
for the epicardial lead system were then determined with use
of a 65% tilt. monophasic, 120 p,F single pulse waveform,
Epicardial defibrillation was then compared with the best
transvenous defibrillation technique possible for each patient
from the four systems examined. In addition. percent ef
ficacy curves were constructed for delivered energy for the
best method in each patient and for the epicardial defibrilla
tion method. The BMDP program. version 2. was employed
for analysis of variance and covariance. including repeated

measures, followed by paired two-tailed t tests between the
best transvenous system and each of the alternative defibril
lation methods for determination of statistical significance.

Results
Clinical characteristics. The clinical data for the 12 pa

tients studied are summarized in Table I; the group included
5 men and 7 women (mean age 54 ± 14 years). Five patients
had coronary artery disease, five had a cardiomyopathy and
two had primary electrical disease. The average ejection
fraction was 0.41 ± 0.21. One patient (Case 10) was receiv
ing disopyramide at the time of defibrillation testing. No
complications were observed in any patient during the study.

Defibrillation threshold data. The mean defibrillation
threshold data for leading edge voltage, leading edge current.
resistance and delivered energy are detailed in Table 2 for
each transvenous defibrillation method studied. for the best
transvenous defibrillation method and for the standard epi
cardial defibrillation method, Individual defibrillation thresh
old values for each patient and for each method can be found
in Table 3 for delivered energy.

The I11ean defihrillation threshold leadinR edRe voltaRe

Table 3. Defibrillation Threshold Delivered Energy Uoules) for Each Method in 12 Patients

Patient Method I Method II Method III Method IV Best
No. CS M ---.RY+ CSu--->RY+ CSM"---.RV+, CP+ CSM----.RY+ and CP+ Transvenous Epicardial

26.1 46.7 13.1 26.1 13.1 5.1
2 8.2 15.8 8.5 18.8 8.2 10.3
3 18.7 21.0 19.2 29.6 18.7 7.2
4 14.0 9.3 13.9 7.9 7.9 3.9
5 13.7 21.9 27.8 18.6 13.7 7.7
6 13.3 15.0 6.6 12.8 6.6 1.8
7 6.8 3.8 ' , 4.6 ' , 3.7
8 30.7 29.5 40.2 33.7 29.5 8.0
9 26.5 20.9 13.8 18.3 13.8 6.2

10 6.9 7.7 3.3 3J 3.3 2.0
II 8.7 22.4 8.9 8.8 8.8 0.9
12 19.8 9.5 20.5 33.4 9.5 2.0

Mean ± SO 16.\ ± 8.2 18.6 ± 11.6 14.8 ± 10.9 18.0 ± 10.8 11.3±7.4 4.9 ± 3.0

Abbreviations as in Table 3.
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Safety of lead systems. As in earlier studies (9). no cardiac
injuries were evident as a result of the transvenous defibril
lation methods employed. In particular. there was no evi
dence of coronary sinus thrombosis. coronary sinus perfo
ration or injury on visual inspection of the coronary sinus
and atrioventricular groove structures after performance of
the sternotomy.

Figure 5. Delivered energy defibrillation threshold values for epi
cardial patch-patch. best transvenous (TV) and worst transvenous
methods in the 12 patients.

Discussion
Defibrillation safety margins. In this study. we demon

strated the utility of an adaptable. variable waveform three
electrode coronary sinus. right ventricular. chest patch
transvenous defibrillation system. Flexibility in the use of
waveform and current pathway had two distinct advantages:
I) more patients could have utilized transvenous antiarrhyth
mia devices if these devices were in fact available at the time
of the study. and 2) the safety margin between the defibril
lation threshold and the maximal possible output of the
device improved.

We based our investigation on the assumption that effec
tive and safe application of transvenous defibrillation sys
tems requires the defibrillation threshold to be siS J (or 500
V) given a 30 J maximal output antiarrhythmia device.

Figure 6. Percent successful defibrillation at delivered energy val
ues for the best transvenous (TV) method and the standard epicar
dial large patch-large patch (P-P) method of defibrillation.

dl/tafor methods I throliRh IV. respectively. were 502 ± 130.
504 ± 155. 469 ± 180 and 515 ± 178 V. For delivered energy
the mean defibrillation threshold data for transvenous meth
ods I through IV. respectively. were 16.1 ± 8.2.18.6 ± 11.6.
14.8 ± 10.9 and 18.0 ± 10.8 1. There was no statistical
difference for defibrillation threshold data among any two of
the four transvenous methods when compared with each
other with respect to voltage or delivered energy. However.
the best transvenous method in each patient yielded mean
defibrillation threshold values for both voltage and energy
significantly less than any individual pulsing method (p s
0.05 for any comparison between transvenous methods) (see
Table 2 for more precise statistical comparison data). The
best transvenous defibrillation threshold voltage was 410 ±
135 V and the best transvenous defibrillation threshold
delivered energy was 11.3 ± 7.4 J. Epicardial defibrillation
threshold values of 272 ± 93 V and 4.7 ± 3.0 J were. not
surprisingly. substantially less than those in any of the
transvenous methods. including the best transvenous
method (p = 0.0013 and p = (1.0047. respectively).

Among the 12 patients. the best transvenous method was
method I. the single pulse monophasic technique. in 3
patients: method II. the single pulse biphasic technique. in 2
patients: method III. the sequential pulse technique. in 4
patients; and method IV. the simultaneous pulse technique.
in 3 patients. Thus. with respect to providing the optimal
means of inducing defibrillation in the most patients. no
method proved significantly more effective than any other.

Defibrillation safety margin and percent efficacy. The abil
ity to choose the best of the four possible defibrillation
methods provided a 240C improvement in defibrillation de
livered energy requirements (11.3 ± 7.4 J) when compared
with the overall most effective method examined (method
III. 14.8 ± 10.9 J) and a 39!,7r improvement in defibrillation
delivered energy when compared with the overall worst
method examined (method II. 18.6 ± 11.6 J). In addition.
this system flexibility allowed the average safety margin for
defibrillation to improve to 2.7: I from 2.0: I (for the single
most effective method. method III) and from 1.6: I (for the
single least effective method. method II) with respect to
delivered energy values. assuming a 30 J output device. In
individual patients. the flexibility in defibrillation techniques
could account for as much as a 33.6 J difference in efficacy
(Fig. 5. Table 3).

The percent efficacy for delirered enerRY of epicardial
patch defibrillation is sholl'n with reference to the best
tranS\'enOliS method in FiRlire 6. At 15 J. defibrillation was
successful in 100% of patients with epicardial patch elec
trodes and in 83% with the best transvenous system avail
able. This 83% efficacy for defibrillation at siS J with the
adaptable system compared favorably with the 42% to 670C
defibrillation efficacy possible with any of the four individual
methods (Fig. 7).
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• CSM- RV. CP 8/12

• CSM- RV+& CP+ 5/12

• Best transvenous 10/12

• Epicardial P-P 12/ 12

Figure 7. Percent of the 12 patients for whom defibrillation was
possible at:S 15 Jfor each of the transvenous and epicardial methods
tested. Abbreviations as in Figures I and 6.

However, there are no data. animal or human. to guide us in
selecting a safe value for the defibrillation threshold implant
criterion for transvenous systems despite implant guidelines
for epicardial systems (10.17). In epicardial defibrillation. the
concept of a defibrillation threshold safety margin is usually
not a clinical concern because defibrillation thresholds are in
the 5 to 10 J range (250 to 300 V) for monophasic waveform
65% tilt truncated pulses delivered across two large patch
electrodes (9,12,13.15,16.18.19). Few patients with an epi
cardial electrode system appear to undergo sudden death
from failure to defibrillate during long-term follow-up. This
finding may relate to the large defibrillation safety margins
provided by an epicardial lead system for most patients.
Nevertheless. sudden death has been reported (20) in pa
tients with an implantable defibrillator. but it remains un
clear whether these patients had similarly large safety mar
gins. In our experience. sudden death after hospital
discharge as a result of failure to defibrillate occurred in one
patient whose defibrillation threshold at the time of implan
tation was >500 V or 15 J. Thus. we extrapolated from
personal experience and from the limited data available on
defibrillation threshold safety margins for epicardial elec
trode systems to suggest an implant criterion for transvenous
systems of 500 V or 15 J.

Factors that may reduce defibrillation threshold. Al
though we expect the 500 V or 15 J limit to be safe for
transvenous systems, the long-term implant situation may be
sufficiently unpredictable to warrant every effort to reduce
the defibrillation threshold further if possible. Multiple fac
tors are known to alter defibrillation efficacy. especially
antiarrhythmic drug administration (21-23). In addition. the
transvenous electrode-tissue interface may evolve with time
and alter long-term defibrillation efficacy. Furthermore. the
defibrillation threshold value used in clinical decision making
is not a firm number. On any given occasion. the pulse
strength necessary to defibrillate may be more as well as less
than the "defibrillation threshold" determined at implanta-

tion. Therefore. a screening defibrillation threshold limit of
15 J or 500 V might be considered a reasonable "go-no go"
dividing line for implantation of a transvenous system. Given
the relatively low mortality experienced in most patients
undergoing an open surgical procedure for defibrillator im
plantation. we recommend the use of an epicardial system if
the transvenous defibrillation threshold is > 15 J.

Different groups ofpatients may require different implan
tation criteria. The patients selected for this study were
generally healthier than most patients previously reported.
One reason is that most were survivors of out of hospital
ventricular fibrillation rather than patients with ventricular
tachycardia. Patients with ventricular fibrillation have better
cardiac function than do patients with ventricular tachycar
dia (24). The second reason is that we skewed our patient
selection to those able to tolerate the rigors of the protocol.
Thus. our data are likely to be better than what might be
anticipated for the population at large.

Role of coronary sinus lead. To achieve adequate defibril
lation thresholds with a transvenous system. we believe the
use of a coronary sinus electrode facilitates success. An
earlier study (9) using monophasic single pulses demon
strated a 32% improvement in defibrillation efficacy if a
transvenous right ventricular catheter electrode was com
bined with a coronary sinus catheter electrode rather than
with a chest wall electrode (17.5 :±: 7.9 versus 25.6 :±: 1104 J.
respectively: p = 0.0016). Thus. we attempted to build on
the apparent utility of a coronary sinus electrode by using it
as the cornerstone of the more adaptable system described in
this study.

The selection of the coronary sinus electrode as the
cathode in this study H'as made for tll'O reasons: I) to
maintain continuity with our earlier monophasic study (9)
where the coronary sinus was selected as the cathode. and
2) to utilize the concept that the dual pathway sequential and
simultaneous pulsing methods (methods III and IV) would
yield higher current densities to the posterior. basilar and
lateral regions of the left ventricle if the common cathode
was the coronary sinus rather than the right ventricular or
chest patch electrode. It is our hypothesis (Fig. 8) that if the
right ventricular or chest patch electrode was the common
cathode instead of the coronary sinus electrode. the pulsing
vectors would influence less myocardial tissue.

Reasons for methods chosen. The transvenous defibrilla
tion methods chosen for testing in this study also derived
from an attempt to employ useful pulsing methods and
waveforms examined in earlier studies (7-10.12.13,16.19.25
28). The four defibrillation methods chosen for study were
representative techniques from the many defibrillation meth
ods available. Given considerations of polarity. current
pathway. pulsing technique and pulse waveform. it became
necessary to constrain the number of defibrillation methods
examined. Clinical limitations imposed on repetitive induc
tion and termination of ventricular fibrillation led us to select
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Figure 8. A stylized horizontal cross section through the chest
illustrates expected differences in current vectors with a three
electrode system for dual pathway techniques if either the right
ventricular (RV) or chest patch ((P) electrode is the cathode instead
of the coronary sinus (es) electrode, In panel A. the coronary sinus
electrode is the cathode: in panel B, the chest patch electrode is the
cathode: in panel C. the right ventricular electrode is the cathode.
The cross-hatched areas represent hypothetic current pathways.
When the coronary sinus electrode is the cathode. more ventricular
muscle may be subjected to high current densities than with either
the chest patch or right ventricular electrodes as the cathode. Also.
when the coronary sinus electrode is the cathode. more ventricular
mass may be subjected to double the current in the sequential pulse
defibrillation technique.

one pulsing method from each of the typical techniques
examined in humans in the past: standard single pathway
monophasic waveform pulsing (method 0. single pathway
biphasic waveform pulsing (method 11). dual pathway
monophasic waveform sequential pulsing (method III) and
dual pathway monophasic waveform simultaneous pulsing
(method IV).

Alternative transvenous lead systems. In an effort to dem
onstrate the feasibility of transvenous defibrillation systems.
other clinical investigators have explored pulsing methods
considerably different from ours. The Endotak lead system
by Cardiac Pacemakers has been implanted in patients by
several investigators (29-31). The pulsing techniques in
these studies utilized a three electrode system: a right
ventricular (RV) electrode. a chest patch (CP) electrode and
a superior vena cava (SVC) electrode. Monophasic wave
form 65% tilt pulses were delivered in one of four con
figurations: RV- ~ CP+; RV- ~ SVC+; SVc- ~ cp+;
RV- ~ SVC+ and CP+ simultaneously. The only method of
these to yield an acceptable defibrillation threshold was the
simultaneous pulsing technique of RV- ~ SVC+ and CP+.
with which defibrillation at <15 J was reported (31) in the
majority of patients. Therefore. this approach apparently
provides another useful alternative transvenous defibrilla
tion method.

Yee et al. (32) also endeavored to improve the efficacy of
transvenous defibrillation with yet another alternative puls
ing method. In their study. sequential pulse defibrillation

with monophasic pulses of 3 ms duration was conducted
between a right ventricular catheter electrode as the com
mon cathode and a superior vena cava electrode as the first
anode and a coronary sinus catheter electrode as the second
anode. This sequential pulse method was effective in termi
nating 13 of 18 ventricular fibrillation episodes with voltages
of 500 to 700 V. making it a potentially suitable method for
use with a transvenous antiarrhythmia device. Thus. the
method of Yee et al. (32) may represent still another alter
native approach to the problem.

Conclusions. Our results and those of other investigators
support the need for adaptability in defibrillation technique.
Our data demonstrate that no single method examined is
sufficiently superior to another to warrant uniform applica
tion in all patients. It appears that patient to patient diversity
in disease process. cardiothoracic anatomy and arrhyth
mogenic substrate makes a universally superior defibrillation
method unlikely. Thus. we find that a variable waveform
pulsing system that incorporates a coronary sinus electrode
should improve the likelihood that a transvenous defibrilla
tion system can be utilized in any individual patient as well
as provide for a significantly lower defibrillation threshold
and a wider defibrillation safety margin.

We thank Carol Fahrenbruch for aid in the statistical analysis and Joan
McDaniel.
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