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Keratitis–ichthyosis–deafness (KID) syndrome is an ectodermal dysplasia caused by dominant mutations of
connexin26 (Cx26). Loss of Cx26 function causes nonsyndromic sensorineural deafness, without consequence in
the epidermis. Functional analyses have revealed that a majority of KID-causing mutations confer a novel
expansion of hemichannel activity, mediated by connexin channels in a nonjunctional configuration. Inappropri-
ate Cx26 hemichannel opening is hypothesized to compromise keratinocyte integrity and epidermal homeostasis.
Pharmacological modulators of Cx26 are needed to assess the pathomechanistic involvement of hemichannels in
the development of hyperkeratosis in KID syndrome. We have used electrophysiological assays to evaluate small-
molecule analogs of quinine for suppressive effects on aberrant hemichannel currents elicited by KID mutations.
Here, we show that mefloquine (MFQ) inhibits several mutant hemichannel forms implicated in KID syndrome
when expressed in Xenopus laevis oocytes (IC50B16mM), using an extracellular divalent cation, zinc (Znþ þ ), as a
nonspecific positive control for comparison (IC50B3mM). Furthermore, we used freshly isolated transgenic
keratinocytes to show that micromolar concentrations of MFQ attenuated increased macroscopic membrane
currents in primary mouse keratinocytes expressing human Cx26-G45E, a mutation that causes a lethal form of
KID syndrome.
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INTRODUCTION
Connexin genes encode gap junctions, which establish a
direct signaling pathway between virtually all contacting cell
types (Goodenough and Paul, 2009). Gap junctions are
clusters of intercellular channels that enable exchange of
ions, second messengers, and small metabolites to mediate
coordinated functions within tissues (Bruzzone et al., 1996).
Connexins are tetraspan membrane proteins that form
oligomers, termed ‘‘hemichannels,’’ which dock in pairs to
couple adjacent cells. Several connexins are now appreciated
to produce functioning hemichannels in a nonjunctional
configuration with uncertain physiological relevance
(DeVries and Schwartz, 1992; Ebihara and Steiner, 1993;
Malchow et al., 1993).

Connexin mutations cause human hereditary diseases
(Pfenniger et al., 2011). Mutations in connexin26 (Cx26 or

GJB2) are the major cause of nonsyndromic deafness, as well

as syndromic hearing loss that presents in conjunction with
skin disorders such as keratitis–ichthyosis–deafness (KID)
syndrome (Scott and Kelsell, 2011). Cx26 gap-junction
channels were found to be either partially or completely
nonfunctional for a majority of autosomal recessive mutations
leading to nonsyndromic deafness (Zhao et al., 2006).
Conversely, clinical scenarios involving skin pathology are
transmitted through dominant Cx26 mutations that are
suspected to confer novel channel activities (Richard, 2005).

KID syndrome is characterized by profound hearing loss,
vascularizing keratitis, and extensive erythrokeratoderma

(Skinner et al., 1981; Richard et al., 2002). KID patients

suffer recurrent infections that can precipitate lethal

septicemia (Haruna et al., 2010; Sbidian et al., 2010).

Additional features include the follicular occlusion triad

(dissecting folliculitis, hidradenitis suppurativa, and cystic

acne) and malignant transformation of hyperkeratotic

plaques to squamous cell carcinoma (Montgomery et al.,

2004; Mazereeuw-Hautier et al., 2007). A total of 10

distinct Cx26 missense mutations are associated with KID

syndrome, and electrophysiological analysis has identified a

pattern of increased hemichannel behavior shared by many of

them. Specifically, Cx26-G45E, -D50N, -A40V, -N14K,

-G12R, -A88V, and -D50A induce significantly greater

hemichannel activity than wild-type (WT) channels under
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the same experimental conditions (Montgomery et al., 2004;
Stong et al., 2006; Gerido et al., 2007; Lee et al., 2009;
Sanchez et al., 2010; Donnelly et al., 2012; Mhaske et al.,
2013). Constitutively active or ‘‘leaky’’ hemichannels are
predicted to cause ionic imbalances and interrupt
differentiating keratinocytes with injurious consequences for
the epidermis.

A pathogenic role for dysregulated hemichannels in KID
syndrome awaits definitive demonstration. Pharmacological
tools to modulate Cx26 are needed to assess the pathogenic
role for hemichannels in KID syndrome. Previous drug screens
have implemented dye transfer methods with automated
fluorescence microscopy imaging to identify candidate com-
pounds (Li et al., 2003; Picoli et al., 2012). However, these
studies could not discriminate between direct and indirect
inhibitor actions, and they failed to account for the possibility
of differential drug affinities for mutant channel forms that are
important in human disease. Using two different
electrophysiological assays, we show quantitative evaluation
of prospective small-molecule inhibitors of mutant Cx26
hemichannels present in KID syndrome, and include an
extracellular divalent cation, zinc (Znþ þ ), for comparison.
Mefloquine (MFQ) emerged as a leading candidate among five
tested compounds selected for affinity to connexin targets. Our
results indicate that micromolar doses of MFQ potently
attenuate Cx26 hemichannel currents associated with the
majority of KID mutations and show that it is particularly
well positioned for testing in a transgenic mouse model of the
lethal form of the disease.

RESULTS AND DISCUSSION
Increased hemichannel activity associated with KID-causing
Cx26 mutations

Previous reports have described increases in hemichannel
functionality as a common feature shared by Cx26 mutations
linked to KID syndrome (Montgomery et al., 2004; Stong
et al., 2006; Gerido et al., 2007; Lee et al., 2009; Sanchez
et al., 2010; Donnelly et al., 2012; Mhaske et al., 2013).
Before pursuing inhibitor studies, we quantified membrane
currents in single Xenopus oocytes expressing Cx26-G45E,
-D50N, -A40V, -N14K, -G12R, -D50A, and -A88V, with
Cx26-WT- and water-injected control cells. KID syndrome
mutations result from single amino-acid substitutions that
localize to the Cx26 N terminus and first extracellular loop,
with the exception of A88V, which appears in the second
transmembrane domain. To assay membrane current, cells
were voltage-clamped at � 40 mV and subjected to a series of
depolarizing transmembrane voltages (Figure 1a). Negligible
membrane current was recorded from oocytes injected with
H2O for voltages between � 30 and þ60 mV. WT Cx26
hemichannels favored a low open-probability resting state
with outward current induced by membrane depolarization
and an approximately linear current–voltage relationship, as
previously demonstrated (Ripps et al., 2004; Gonzalez et al.,
2006). The Cx26-G45E, -D50N, -A40V, -N14K, -G12R,
-D50A, and -A88V mutants displayed increased outward
currents relative to H2O or Cx26-WT-injected cells. At the
largest voltage tested, Cx26-WT hemichannels passed

maximal currents of 0.5–1.5mA, and the recorded conduc-
tance was 10.5-, 7.5-, 8-, 8-, 4.5-, 4-, and 8-fold higher in
Cx26-G45E, -D50N, -A40V, -N14K, -G12R, -D50A, and
-A88V, respectively. Western blotting of cell lysates for total
Cx26 content eliminated the possibility that the different
magnitudes of membrane current arose from unequal levels
of protein expression (Figure 1b). The Cx26 band intensity
was approximately equal across the seven mutant groups, and
within ±10% of the expression level of Cx26-WT when
normalized to b-actin.

In vitro screening of quinine analogs for inhibitory efficacy on
Cx26-G45E and Cx26-D50N hemichannels

Molecules that are therapeutically classified as antimalarial
agents have been recognized to suppress hemichannel cur-
rents by direct action on connexin subunits, and partial-
selectivity properties are conferred to these compounds by
differences in affinities for connexin subtypes (Srinivas et al.,
2001; Cruikshank et al., 2004; Rubinos et al., 2012). Inhibitor
studies involving MFQ have focused on connexin50 and
connexin36, in the context of their roles as gap-junction
proteins that couple lens epithelial cells and neurons,
respectively (Cruikshank et al., 2004). The ability of MFQ to
modulate Cx26 channel activity had received only cursory
examination and only with regard to WT junctional
communication. We screened MFQ and four related
derivatives (QU020, QU021, QU022, and QU026) for
inhibitory capacity against dysregulated hemichannels
resulting from two Cx26 mutations associated with the KID
syndrome. Cx26-G45E causes a lethal form of KID syndrome
(Janecke et al., 2005; Griffith et al., 2006; Jonard et al., 2008)
and is characterized by robust hemichannel activity that
represents the most significant deviation from WT channel
behavior (Gerido et al., 2007). Cx26-D50N is the most
commonly reported mutation in cases of KID syndrome.
Drug screening was performed by perfusion of candidate
inhibitors during voltage-clamp recording of Cx26-G45E
(Figure 2a) and Cx26-D50N (Figure 2b) hemichannel currents
in single Xenopus oocytes. Sequential depolarizing þ50-mV
pulses stimulated repeated channel opening and consistent
bursts of whole-cell membrane current. Inhibitor effects were
evaluated by exchange of the bathing medium for a segment
of each recording (Figure 2, left). At a drug concentration of
30mM, QU022 displayed unimpressive inhibition of mem-
brane currents (o20% reduction) for both Cx26-G45E and
Cx26-D50N. QU022 lacks the aliphatic piperidine ring pre-
sent in MFQ and also substitutes a –CCl3 group for the –CF3

found on the quinolone ring, representing the most dissimilar
molecule to MFQ tested. QU020 also failed to produce any
marked suppression of Cx26-G45E hemichannels (25±14%),
but it was twice as effective when tested on Cx26-D50N
hemichannels (49±7.3%). QU021 performed at a similar
level, approximately halving membrane currents passed by
both mutant channels (52±7.8% and 43±12% for Cx26-
G45E and -D50N, respectively). MFQ and QU026 elicited the
most striking diminution in membrane currents recorded from
single cells expressing either Cx26-G45E (70±17% for 30mM

MFQ and 59±13% for 30mM QU026; Figure 2a, right) or
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Cx26-D50N (69±15% for 30mM MFQ and 73±11% for
30mM QU026; Figure 2b, right). QU026 replaces the piper-
idine ring in MFQ with a third aromatic ring, but it includes no
other structural deviation, possibly accounting for the parallel
results. Two-CF3 groups appear on the quinolone backbone of
MFQ, QU020, QU021, and QU026—a feature that enhances
the lipophilicity of these molecules. For this reason, it is
possible that lipid-rich yolk granules that are abundant in stage
V–VI oocytes may sequester a portion of the drug, effectively
reducing the delivered dose and causing underreporting
of potency in this system. Lipophilicity is, however,
an appealing property of any drug considered for targeting
epidermal proteins via topical delivery strategies. Given the
status of MFQ as an FDA-approved drug with a history of
safety and pharmacokinetic data, it was selected for further
characterization.

MFQ attenuated hemichannel currents produced by five of seven
KID-causing Cx26 mutations with concentration dependence
and partial reversibility

We assessed the utility of MFQ for inhibiting the entire set of
Cx26 mutations linked to KID syndrome and displaying high
hemichannel activity. Three low micromolar concentrations
were evaluated to probe for differences in sensitivity that may
arise from unique biochemical or structural characteristics

imparted by amino-acid substitutions. MFQ showed concen-
tration-dependent reduction of Cx26-G45E hemichannel
activity, with maximal suppression nearing total ablation of
membrane currents (95.2% reduction at 100mM). Raw record-
ings from three single cells tested at 10, 30, and 100mM are
shown to illustrate the instantaneous response of Cx26-G45E
hemichannels to drug exposure and slow recovery of currents
upon drug washout (Figure 3a). The magnitude of inhibition
after 1.5 minutes of 10, 30, and 100mM MFQ was 43±8.0%
(N¼ 5), 71±7.9% (N¼ 5), and 89±2.0% (N¼5), respec-
tively (Figure 3b, extrapolated IC50B16mM). Recovery of
currents remained incomplete after 2.5 minutes of drug wash-
out, ranging from 54±5.0% (N¼ 5) to 84±3.5% (N¼ 10) of
initial current with an inverse correlation to concentration.
Equivalent experiments were completed for Cx26-D50N,
-A40V, -N14K, -G12R, -A88V, and -D50A, and summary
data are provided for the average residual current in the
presence of 10, 30, and 100mM MFQ as a percentage of the
pre-perfusion value (Figure 3c). None of the other mutants
showed sensitivity comparable to Cx26-G45E, although
Cx26-D50N, -A40V, -G12R, and -D50A hemichannel
currents were all suppressed by 50% or better at 30mM.
In particular, Cx26-D50N and Cx26-G12R channels
were 470% inactivated. Cx26-A88V and Cx26-N14K were
refractory to inhibition by MFQ.
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Figure 1. Cx26 mutations induced large hemichannel currents in Xenopus oocytes. (a) Cells were clamped at �40 mV and subjected to voltage pulses spanning

�30 to þ60 mV in 10-mV steps (Vm). H2O-injected cells displayed negligible whole-cell membrane currents (Im). Cx26-expressing oocytes all exhibited

hemichannel currents; however, keratitis–ichthyosis–deafness syndrome mutations showed much larger currents than wild type (WT). (b) WT and mutant

connexins are equivalently translated in Xenopus oocytes. Membrane extracts were probed with an antibody against Cx26. H2O-injected controls did not express

Cx26, whereas WT, Cx26-G45E, -D50N, -A40V, -A88V, -D50A, -N14K, and -G12R were detected. Blots were also probed with an antibody against b-actin; the

normalized ratio of Cx26 to b-actin expression was quantified and found to be within ±10% of WT Cx26 for all mutations.
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Prior studies have examined the biophysical effects of
connexin inhibitors with sufficient resolution to visualize
single-channel gating events (Bukauskas and Peracchia,
1997; Weingart and Bukauskas, 1998; Srinivas and Spray,
2003). A consensus finding suggests that quinine analogs and
MFQ affect channel activity by stimulating slow closure
transitions called loop gating (Srinivas et al., 2001; Rubinos
et al., 2012; Verselis and Srinivas, 2013). Structural
components of the loop gating machinery include domains
within the connexin N terminus and the first extracellular loop
that form the hemichannel pore (Verselis et al., 1994;
Kronengold et al., 2003; Maeda et al., 2009; Tang et al.,
2009; Verselis et al., 2009; Kronengold et al., 2012). There is a
clustering of most identified KID-causing Cx26 mutations to
the protein N terminus and the first extracellular loop,
suggesting that mutations that increase hemichannel activity
may alter the intrinsic voltage-sensitive activation of slow
gating, or impede conformational changes associated with the
movement of the loops. MFQ may restore loop gating and
thereby prevent leaking of unapposed hemichannels. The
inability of MFQ to inhibit currents associated with Cx26-
N14K could suggest a binding site in the vicinity of this
residue in the cytoplasmic end of the channel pore. Although
we present no direct evidence for this hypothesis, it is in

agreement with previous mechanistic descriptions of
connexin50 inhibition by a quaternary derivative of quinine,
N-benzylquininium (Rubinos et al., 2012). The absence of
MFQ activity on Cx26-A88V, taken together with its atypical
position in the second transmembrane domain, implies that
divergent triggers of aberrant hemichannel behavior exist. In
the case of Cx26-A88V and -N14K, an alternate inhibitor that
is capable of pore block may be necessary to reduce open-
channel dwell times. Owing to the size of the hemichannel
pore (15–40 Å) (Maeda et al., 2009), this strategy would
require a larger molecule.

Extracellular Znþ þ suppressed hemichannel activities for seven
KID-causing Cx26 mutants

A limitation of quinine-family connexin inhibitors is their
failure to distinguish between junctional and nonjunctional
channel configurations. Divalent cations inhibit connexin
channels and have been shown to act at the extracellular
aspect of the pore to promote loop gating (Verselis and
Srinivas, 2008). Robust gap-junctional conductances are
routinely measured from cell pairs in the presence of
extracellular Caþ þ , indicating that binding of ions likely
occurs at sites that are only accessible in undocked
hemichannels. We recorded hemichannel currents from
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single Xenopus oocytes expressing Cx26-G45E in the presence
and absence of 1, 10, and 100mM extracellular Znþ þ .
Oocytes injected with H2O passed negligible current, again
providing a negative control. Those expressing Cx26-G45E
showed large fluxes, as previously documented. Addition of
Znþ þ to the extracellular milieu caused membrane currents
to diminish in a dose-dependent manner (Figure 4a). Mean
currents were plotted as a function of membrane potential for
each recording condition to facilitate comparison of current–
voltage relationships (Figure 4b). Massive outward currents
associated with Cx26-G45E were progressively reduced with
1, 10, and 100mM Znþ þ at all tested voltages. The degree of
inhibition was quantified by perfusion of single cells during a
paradigm of serial þ100-mV pulses. For cells expressing
Cx26-G45E, 73±2.6% (N¼ 5), 29±2.1% (N¼ 5), and
12±3.9% (N¼5) of the initial current persisted after 1.5 min-
utes of 1, 10, and 100mM Znþ þ , respectively (Figure 4c,
extrapolated IC50B3mM).

Znþ þ inhibitory testing was repeated at 10 and 100mM for
Cx26-D50N, -A40V, -N14K, -G12R, -A88V, and -D50A

(Figure 4c). Hemichannel activity was largely preserved in
the presence of 10mM Znþ þ ; only Cx26-G12R channels were
450% inhibited. Conversely, all mutant forms displayed
450% mean suppression at 10-fold higher Znþ þ concentra-
tion. Notably, as with Cx26-G45E, 100mM Znþ þ abolished
the membrane current associated with Cx26-A40V, -G12R,
and -N14K by 480%. Together, these data support the use of
Znþ þ as another possible inhibitor to appraise the patho-
genicity of hemichannels in KID syndrome.

In vitro expression of KID-associated mutant hemichannels
causes cellular dysfunction and accelerated death that can be
rescued by high extracellular calcium (Stong et al., 2006; Lee
et al., 2009; Mhaske et al., 2013). Constitutively active or
‘‘leaky’’ hemichannels may deplete the cells of important
metabolites, such as ATP and cAMP, with deleterious conse-
quences. In addition, changes in hemichannel calcium perme-
ability have been clearly demonstrated for two mutations,
Cx26-A40V and -G45E, suggesting that dysregulated
hemichannels may provide a route for excessive entry of
calcium (Sanchez et al., 2010). Resulting imbalances in
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intracellular–extracellular ionic gradients may disrupt para-
crine signaling pathways or cause injurious osmotic pressures.
Exogenous extracellular supply of a divalent cation, such as
Znþ þ , may reinforce an important mode of endogenous
hemichannel regulation to prevent loss of cellular viability and
tissue integrity.

MFQ inhibited elevated Cx26-G45E hemichannel currents in
primary murine keratinocytes

A mouse model of KID syndrome has previously been
developed by inducible epidermal expression of the human
Cx26-G45E coding sequence (Mese et al., 2011). Animals
harboring Cx26-G45E experience epidermal pathology
consistent with clinical reports describing human KID
syndrome patients (Sbidian et al., 2010; Koppelhus et al.,
2011; Mese et al., 2011). Specifically, the phenotype
manifests as diffuse erythrokeratoderma with profound
epidermal thickening and scaling (Figure 5a). The design
strategy featured bicistronic inclusion of the excitatory green
fluorescent protein in the founder construct and backcrossing
into a hairless strain (Figure 5b) to allow for visualization of

affected tissue by in vivo fluorescence imaging (Figure 5c).
Keratinocytes isolated from excised lesions retained transgene
expression, as evidenced by excitatory green fluorescent
protein signal, for several hours ex vivo (Figure 5d). We
sought to substantiate the effectiveness of MFQ at suppressing
Cx26-G45E membrane currents by whole-cell patch-clamp
analysis of freshly isolated transgenic keratinocytes. G45E-
Cx26 keratinocytes, identified by excitatory green fluorescent
protein signature, showed high macroscopic membrane cur-
rents that were suppressed by 100mM MFQ at all tested
membrane potentials. Keratinocytes isolated from control
littermates lacking Cx26-G45E were used to gauge the basal
membrane current contributed by other voltage-activated
channels present in the primary cells (Figure 5e). Cx26-G45E
keratinocytes were previously shown to have significantly
increased cell size by histological examination (Mese et al.,
2011). To account for this, cell membrane capacitance was
measured to estimate cell surface area and used to compute
current density before plotting the aggregate data as a function
of membrane potential (Figure 5f). Control keratinocytes
possessed modest membrane currents for potentials ranging
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from � 110 to þ110 mV. Cx26-G45E keratinocytes passed
substantially higher currents, particularly at depolarizing vol-
tages. Rerecording in the presence of 100mM MFQ reduced
membrane currents to levels at or below control. The data
indicate that 100mM MFQ is adequate to eliminate Cx26-G45E
hemichannel activity in a mammalian system of higher com-
plexity and physiological relevance. MFQ has been observed
to additionally block voltage-gated L-type calcium channels,
Kir6.2 and KvLQT1 potassium channels, volume-regulated and
calcium activated chloride channels, and pannexins (Gribble
et al., 2000; Maertens et al., 2000; Kang et al., 2001; Traebert
et al., 2004; Suadicani et al., 2006; Verselis and Srinivas,
2013). Optimization of the molecular structure to enrich
sensitivity for Cx26 and/or decrease affinity for other targets
may be possible through medicinal chemistry techniques
(Wermuth, 2004). Nevertheless, MFQ can potently inhibit
Cx26-G45E hemichannels. Minimally, this provides an agent
to further structure–function analyses to elucidate the molecu-
lar bases of errors in gating and permeation that accompany
mutations. Importantly, MFQ and related hemichannel inhibi-
tors may have therapeutic utility in KID syndrome.

In summary, we show two in vitro functional assays
supporting the use of MFQ and extracellular Znþ þ as

hemichannel inhibitors to study Cx26 mutants linked to KID
syndrome. Extracellular Znþ þ demonstrated marginally
higher potency, as well as fuller coverage of the Cx26
hemichannel mutant forms considered. Furthermore, Znþ þ

may represent a gap junction–sparing inhibitor that is useful
for isolating the explicit functions of hemichannels that relate
to homeostatic maintenance. Unfortunately, the pervasive
involvement of divalent cations in cellular processes would
likely invite a plethora of off-target secondary effects that may
preclude fruitful testing in animal models.

MFQ may provide a viable small-molecule inhibitor for
certain Cx26 mutants, including the lethal Cx26-G45E, parti-
cularly given the paucity of reagents with higher specificity/
selectivity. MFQ has been reported to inhibit only one
connexin isoform colocalizing with Cx26 in the epidermis,
Cx43 (Cruikshank et al., 2004). Loss of cellular coupling by
Cx43 causes the developmental ectodermal disorder
oculodentodigital dysplasia, which involves little disturbance
of epidermal proliferation/differentiation (Jamsheer et al.,
2014). Moreover, a distinct set of Cx26 mutations causing
palmoplantar keratoderma are thought to operate through
transdominant inhibition of WT Cx43 (Rouan et al., 2001).
These mutations cause hyperkeratosis that is confined to
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palmar/plantar skin, indicating that other connexin and
nonconnexin membrane channels may be capable of
compensating for deficiencies in Cx43 function elsewhere
(Richard et al., 1998). An overlap in gap-junction and
hemichannel blocking activity remains the primary
drawback associated with MFQ. However, defects in Cx26
gap-junctional communication do not appear to be causative
of epidermal pathologies. Cx26 mutations causing KID
syndrome have proven to be capricious with regard to their
retention or deficiency of gap-junction functionality. For
example, expression of Cx26-G45E and -N14K in cell pairs
leaves gap-junctional conductance unaffected relative to WT
(gating is altered, however), whereas active coupling is not
detected for Cx26-G12R and -D50N (Gerido et al., 2007; Lee
et al., 2009). The clearest indication that the native function of
Cx26 is not essential in the epidermis stems from
the absence of cutaneous abnormalities in patients with
autosomal recessive nonsyndromic hearing loss, which is
predominantly due to loss of Cx26 function (White, 2000;
Zhao et al., 2006). The apparent apathy of the epidermis to
Cx26 gap-junction functional status favors the use of MFQ in
exploring the pathological implications of excessive
hemichannel currents.

Whether alterations in Cx26 hemichannel patency and/or
permeability are sufficient to upset epidermal homeostasis in
KID syndrome remains to be definitively shown. Hemichan-
nels are speculated to participate in delicate paracrine signal-
ing, which may involve the extracellular release of ATP
(Cotrina et al., 1998; Kang et al., 2008), glutamate (Ye et al.,
2003), NADþ (Bruzzone et al., 2001), and prostaglandins
(Jiang and Cherian, 2003). Connexin-specific inhibitors, with
subtype-selectivity and high affinity for mutant forms causing
human genetic diseases, are needed to evaluate hypotheses
formulated from in vitro functional studies. The use of
currently available inhibitors in animal models will help
clarify a physiological niche for unapposed hemichannels in
numerous tissue systems and may offer novel therapeutic
strategies for gain-of-function genetic disorders.

MATERIALS AND METHODS
Molecular cloning

Human WT and mutant Cx26 were cloned into the BamHI restriction

site of the pCS2þ expression vector (Turner and Weintraub, 1994)

for functional assays in Xenopus laevis oocytes. Cx26-G45E, -D50N,

-G12R, -N14K, -A88V, and -D50A were prepared from the WT

template by site-directed mutagenesis using overlap extension PCR

(Horton et al., 1990), as previously described (Gerido et al., 2007; Lee

et al., 2009; Mhaske et al., 2013). Cx26-A40V was directly amplified

from patient genomic DNA, as previously described (Montgomery

et al., 2004).

In vitro transcription and oocyte microinjection

Plasmids were linearized by NotI digestion and transcribed using the

SP6 mMessage mMachine (Ambion, Austin, TX) to yield cRNAs. The

Stony Brook University IACUC approved oocyte removal from

Xenopus. Adult females were anesthetized with ethyl 3-aminobenzo-

ate methanesulfonate, and ovarian lobes were surgically excised.

Oocyte lobes were digested in 7.5 mg ml� 1 collagenase B and

5.0 mg ml� 1 hyaluronidase in modified Barth’s medium without

Caþ þ for 15 minutes at 37 1C with constant shaking. Stage V–VI

oocytes were separated and injected with 10 ng of an antisense

morpholino oligonucleotide to Cx38 (Barrio et al., 1991; Bruzzone

et al., 1993), to eliminate endogenous connexin. Oocytes

were injected with WT Cx26, Cx26-G45E, -D50N, -A40V, -A88V,

-G12R, -D50A, and -N14K cRNA transcripts, or H2O as a negative

control and cultured in modified Barth’s medium supplemented with

4 mM CaCl2 for 15–18 hours before electrophysiological assay.

Western blotting

Oocytes were homogenized in 1 ml of buffer containing 5 mM Tris,

pH 8.0, 5 mM EDTA, and protease inhibitors (Roche diagnostics,

Indianapolis, IN) by mechanical passage through a series of needles

of diminishing size (White et al., 1992). Membranes were pelleted by

centrifugation at 100,000 g for 30 minutes, resuspended in SDS

sample buffer (2ml per oocyte), separated on 12% SDS gels, and

transferred to nitrocellulose membranes. Blots were blocked with 5%

milk in 1x tris-buffered saline/0.1% tween20 for 1 hour at

room temperature and probed with a polyclonal rabbit anti-Cx26

antibody (Invitrogen, Carlsbad, CA) at a 1:1,000 dilution and

subsequently incubated with a horseradish peroxidase–conjugated

anti-rabbit secondary antibody (Jackson ImmunoResearch, West

Grove, PA) at 1:5,000 dilution. For loading control, blots

were washed, reprobed with a monoclonal mouse b-actin antibody

(Abcam, Cambridge, MA), and incubated with a horseradish

peroxidase–conjugated anti-mouse secondary antibody (GE Health-

care Biosciences, Pittsburgh, PA). Band densities were quantified

using the ImageJ software.

Drugs

Quinine-family small molecules included MFQ (([R*,S*]-[2,8-Bis-

trifluoromethyl-quinolin-4-yl]-piperidin-2-yl-methanol hydrochloride),

QU020 ([2,8-Bis-trifluoromethyl-quinolin-4-yl]-pyridin-2-yl-metha-

none), QU021 (2,8-Bis[trifluoromethyl]-4-quinolyl[1-oxypyrid-2-yl]

methane), QU022 (4-Chloro-2-trichloromethyl-quinoline), and QU026

([2,8-Bis-trifluoromethyl-quinolin-4-yl]-pyridin-2-yl-methanol)), and were

acquired from Bioblocks (San Diego, CA). Drugs were solubilized in

DMSO at a stock concentration of 100mM and stored at � 20 1C.

Recording of hemichannel currents

Recordings of hemichannel currents were acquired from single

oocytes using a GeneClamp 500 amplifier controlled by a PC-

compatible computer through a Digidata 1440A interface (Axon

instruments, Foster City, CA). Stimulus and data collection paradigms

were programmed with pClamp 10.2 (Axon Instruments). Current and

voltage electrodes (1.5 mm diameter glass, World Precision Instru-

ments, Sarasota, FL) were pulled to a resistance of 1-2 MO on a

vertical puller (Narishige, Tokyo, Japan) and filled with a conducting

solution containing 3 M KCl, 10 mM EGTA, and 10 mM HEPES, pH 7.4.

Whole-cell current traces were obtained by initial clamping at

� 40 mV and subsequent 5- to 8-second depolarizing pulses span-

ning � 30 to þ 60 mV in 10-mV increments (Lee et al., 2009).

Pharmacologic inhibitor compounds were tested during a 50-sweep

series of 5-second 100-mV depolarizations from the � 40 mV holding

potential over a 5-minute experimental duration. Recordings were

initiated by perfusion with modified Barth’s medium lacking Caþ þ

for a 10-pulse period to ensure minimal clamp leakage and stability of
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the steady-state membrane current. Small-molecule inhibitors or ionic

salts (ZnSO4) were then introduced using a three-way valve to rapidly

exchange bathing solutions in a custom 0.5-ml chamber for 15

voltage pulses. During the final 25-pulse period, the inhibitor solution

was flushed out with modified Barth’s medium lacking Caþ þ to

assess reversibility. Whole-cell membrane current corresponding to

each voltage pulse was extracted from raw data and normalized to

the starting current for examination of the fractional change upon

perfusion.

Isolation of transgenic Cx26-G45E keratinocytes

Murine keratinocytes with transgenic expression of human Cx26-

G45E were isolated from epidermal tissue, as previously described

(Mese et al., 2011). KID lesions were induced in animals by 2 weeks

of doxycycline-supplemented diet (200 mg kg� 1). Lesion severity was

assessed by in vivo detection of excitatory green fluorescent protein in

a Maestro small-animal imaging system (Cri, Woburn, MA). After

euthanasia, 3–5 mm skin lesions comprising the epidermis and dermis

were resected and cells were isolated for short-term culture (Lichti

et al., 2008). Samples were floated in 0.25% trypsin at 37 1C for

45 minutes, mechanically minced, passed through a 100-mm cell

strainer, and plated on 12-mm glass coverslips coated with 40mM

poly-D-lysine hydrobromide to facilitate rapid attachment. Primary

cells were cultured in regular medium supplemented with 0.2 mM

CaCl2 for 2 hours at 37 1C and 5% CO2 before using for

immunocytochemistry or patch-clamp electrophysiology. The Stony

Brook University IACUC approved all mouse procedures.

Keratinocytes were fixed with 1% paraformaldehyde in phosphate-

buffered saline for 1 hour, and then blocked and permeabilized with

5% bovine serum albumin in phosphate-buffered saline plus 0.1%

Triton X-100 for 30 minutes. Coverslips were mounted on slides using

Vectashield with DAPI (Vector Laboratories, Burlingame, CA). Slides

were viewed on a BX51 microscope and photographed with a DP72

digital camera (Olympus, Lake Success, NY).

Patch-clamp electrophysiology

Primary murine epidermal keratinocytes were used for whole-cell

patch-clamp at room temperature, as previously described (Mese

et al., 2011). To begin each experiment, cells were clamped at 0 mV

and subsequently stepped from � 110 to þ 110 mV in 20-mV

increments. After the initial set of hemichannel current recordings,

inhibitor effects were tested by perfusing dishes with small molecules

(MFQ/QU0) diluted in Tyrode’s solution, and rerecording within

30–90 seconds of medium exchange.
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