The edge fault-diameter of Cartesian graph bundles ${ }^{\star}$

Iztok Banič ${ }^{\text {a }}{ }^{\text {b, }, 1}$, Rija Ervešc ${ }^{\text {c }}$, Janez Žerovnik ${ }^{\text {d,b,1 }}$
${ }^{\text {a }}$ FNM, University of Maribor, Koroška 160, Maribor 2000, Slovenia
${ }^{\mathrm{b}}$ Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana 1000, Slovenia
${ }^{\text {c }}$ FCE, University of Maribor, Smetanova 17, Maribor 2000, Slovenia
${ }^{\text {d }}$ FME, University of Ljubljana, Aškerčeva 6, Ljubljana 1000, Slovenia

ARTICLE INFO

Article history:

Available online 2 October 2008

Abstract

A Cartesian graph bundle is a generalization of a graph covering and a Cartesian graph product. Let G be a k_{G}-edge connected graph and $\overline{\mathscr{D}}_{c}(G)$ be the largest diameter of subgraphs of G obtained by deleting $c<k_{G}$ edges. We prove that $\overline{\mathscr{D}}_{a+b+1}(G) \leq \overline{\mathscr{D}}_{a}(F)+$ $\bar{D}_{b}(B)+1$ if G is a graph bundle with fibre F over base $B, a<k_{F}$, and $b<k_{B}$. As an auxiliary result we prove that the edge-connectivity of graph bundle G is at least $k_{F}+k_{B}$.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In the design of large interconnection networks several factors have to be taken into account. A usual constraint is that each processor can be connected to a limited number of other processors and the delays in communication must not be too long. Extensively studied network topologies in this context include graph products and bundles. For example the meshes, tori, hypercubes and some of their generalizations are Cartesian products. It is less known that some well known topologies are Cartesian graph bundles, i.e. some twisted hypercubes [5,8] and multiplicative circulant graphs [15]. Other graph products, sometimes under different names, have been studied as interesting communication network topologies $[4,12,15]$.

Furthermore, an interconnection network should be fault-tolerant. Since nodes or links of a network do not always work, if some nodes or links are faulty, some information may not be transmitted by some of these nodes, links. Therefore the (edge) fault-diameter has been determined

[^0]for many important networks recently [6,7,11,17]. The concept of the fault-diameter of Cartesian product graphs was first described in [10], but the upper bound was wrong, as shown by Xu, Xu and Hou who corrected the mistake [17]. An upper bound for the fault-diameter of Cartesian graph products and bundles was given in [1,2]. Also an upper bound for the edge fault-diameter of Cartesian graph products was given in [3].

In this paper we generalize the result of [3] to Cartesian graph bundles. As a k-edge connected graph remains connected if up to $k-1$ edges are missing, we study the diameter of a graph with any permitted number of edges deleted. We show that the edge-connectivity of Cartesian graph bundle G with fibre F over the base graph B, is at least $k_{F}+k_{B}$ and we give an upper bound for the edge faultdiameter of Cartesian graph bundles in terms of edge fault-diameters of the fibre and the base graph. We also show that the bounds are tight.

2. Preliminaries

Throughout the paper we will use the following definitions and notation.
Definition 2.1. A simple graph $G=(V, E)$ is determined by a vertex set $V=V(G)$ and a set $E=E(G)$ of (unordered) pairs of vertices, called the set of edges. As usual, we will use the shorthand notation $u v$ for edge $\{u, v\}$.

Two graphs are isomorphic if there is a bijection between the vertex sets that preserves adjacency and nonadjacency.

Definition 2.2. Let G_{1} and G_{2} be graphs. The Cartesian product of graphs G_{1} and $G_{2}, G=G_{1} \square G_{2}$, is defined on the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$. Vertices (u_{1}, v_{1}) and (u_{2}, v_{2}) are adjacent if either $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1}=v_{2}$ or $v_{1} v_{2} \in E\left(G_{2}\right)$ and $u_{1}=u_{2}$.

For further reading on graph products we recommend [9]. Graph bundles were first studied in [13].
Definition 2.3. Let B and F be graphs. A graph G is a Cartesian graph bundle with fibre F over the base graph B if there is a graph map $p: G \rightarrow B$ such that for each vertex $v \in V(B), p^{-1}(\{v\})$ is isomorphic to F, and for each edge $e=u v \in E(B), p^{-1}(\{e\})$ is isomorphic to $F \square K_{2}$.

More precisely, the mapping $p: G \rightarrow B$ maps graph elements of G to graph elements of B, i.e. $p: V(G) \cup E(G) \rightarrow V(B) \cup E(B)$. In particular, here we also assume that the vertices of G are mapped to vertices of B and the edges of G are mapped either to vertices or to edges of B. We say an edge $e \in E(G)$ is degenerate if $p(e)$ is a vertex. Otherwise we call it nondegenerate. The mapping p will also be called the projection (of the bundle G to its base B). Note that each edge $e=u v \in E(B)$ naturally induces an isomorphism $\varphi_{e}: p^{-1}(\{u\}) \rightarrow p^{-1}(\{v\})$ between two fibres. It may be of interest to note that while it is well known that a graph can have only one representation as a product (up to isomorphism and up to the order of factors) [9], there may be many different graph bundle representations of the same graph [22]. Here we assume that the bundle representation is given. We wish to note that in some cases finding a representation of G as a graph bundle can be done in polynomial time [18-23]. For example, one of the easy classes is that of the Cartesian graph bundles over a triangle-free base [18].

Let G be a Cartesian graph bundle with fibre F over the base graph B. The fibre of vertex $x \in V(G)$ is denoted by F_{x}, formally, $F_{x}=p^{-1}(\{p(x)\})$. We will also use the notation $F(u)$ for the fibre of the vertex $u \in V(B)$, i.e. $F(u)=p^{-1}(\{u\})$. Note that $F_{x}=F(p(x))$.

Remark 2.4. For a later reference note that a graph bundle over a tree T (as a base graph) with fibre F is isomorphic to the Cartesian product $T \square F$ (not difficult to see; appears already in [14]), i.e. we can assume that all isomorphisms φ_{e} are identities.

Example 2.5. Let $F=K_{2}$ and $B=C_{3}$. In Fig. 1 we see two nonisomorphic bundles with fibre F over the base graph B. Informally, one can say that bundles are "twisted products".

Fig. 1. Nonisomorphic bundles from Example 2.5.

Fig. 2. Twisted torus: Cartesian graph bundle with fibre C_{4} over base C_{4}.

Example 2.6. It is less known that graph bundles also appear as computer topologies. A well known example is the twisted torus in Fig. 2. The Cartesian graph bundle with fibre C_{4} over base C_{4} is the ILIAC IV architecture.

Definition 2.7. A walk between x and y is a sequence of vertices and edges $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}$, e_{k}, v_{k} where $x=v_{0}, y=v_{k}$, and $e_{i}=v_{i-1} v_{i}$ for each i. A walk with all vertices distinct is called a path, and the vertices v_{0} and v_{k} are called the endpoints of the path. The length of a path P, denoted by $\ell(P)$, is the number of edges in P. The distance between vertices x and y, denoted by $d_{G}(x, y)$, is the length of a shortest path between x and y in G. The diameter of a graph $G, d(G)$, is the maximum distance between any two vertices in G.

A path P in G, defined by a sequence $x=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=y$, can alternatively be seen as a subgraph of G with $V(P)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $E(P)=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$. Note that the reverse sequence gives rise to the same subgraph. Hence we use P for a path either from x to y or from y to x.

Definition 2.8. The edge-connectivity of a graph $G, \lambda(G)$, is the minimum cardinality over all edgeseparating sets in G. A graph G is said to be k-edge connected, if $\lambda(G) \geq k$.

One of Menger's theorems (see, for example, [16], page 229) reads:
Theorem 2.9 (Menger). Let G be a connected graph, and let s and t be vertices of G. Then the maximum number of edge-disjoint paths from s to t is equal to the minimum number of edges separating s from t.

The following well known corollary easily follows.
Corollary 2.10. Let G be a k-edge connected graph and δ_{G} be its minimum degree. Then $\delta_{G} \geq k$.
Let G be a graph, $x, y \in V(G)$ distinct vertices, P a path from x to y in G, and $z \in V(P) \backslash\{x, y\}$. We will use $x \xrightarrow{P} z$ to denote the subpath $\tilde{P} \subseteq P$ from x to z. If z is adjacent to x in P, we will simply use $x \rightarrow z$.

Definition 2.11. Let G be a graph and $X \subseteq E(G)$. A path P from a vertex x to a vertex y avoids X in G if $E(P) \cap X=\emptyset$.

Definition 2.12. Let G be a Cartesian graph bundle with fibre F over a base graph $B, u, v \in V(B)$ be distinct vertices, P be a path from u to v in B, and $x \in F(u)$. Then $\tilde{P}(x)$ is the path from $x \in F(u)$ to a vertex in $F(v)$ such that $p(\tilde{P}(x))=P$ and $\ell(\tilde{P}(x))=\ell(P)$. We call $\tilde{P}(x)$ a lift of the path P to the vertex $x \in V(G)$.

Remark 2.13. Let G be a Cartesian graph bundle with fibre F over a base graph $B, u, v \in V(B)$ be distinct vertices, and P be a path from u to v in B. Then it is easy to see that (1) and (2) below hold.
(1) If P_{1} and P_{2} are lifts of P to the same vertex $x \in V(G)$, then $P_{1}=P_{2}$.
(2) Let $x, x^{\prime} \in F(u)$. Then $\tilde{P}(x)$ and $\tilde{P}\left(x^{\prime}\right)$ have different endpoints in $F(v)$ and are edge-disjoint if and only if $x \neq x^{\prime}$.

3. Edge-connectivity of Cartesian graph bundles

Theorem 3.1. Let F and B be k_{F}-edge connected and k_{B}-edge connected graphs respectively, and $G a$ Cartesian graph bundle with fibre F over the base graph B. Let $\lambda(G)$ be the edge-connectivity of G. Then $\lambda(G) \geq k_{F}+k_{B}$.

Proof. Let $p: G \rightarrow B$ be the projection such that for each vertex $v \in V(B), p^{-1}(\{v\})$ is isomorphic to F, and for each edge $e=u v \in E(B), p^{-1}(\{e\})$ induces an isomorphism $\varphi_{e}: F(u) \rightarrow F(v)$. Let x and y be two distinct vertices in G. By Theorem 2.9 it is enough to construct $k_{F}+k_{B}$ edge-disjoint paths from x to y in G. We will distinguish two cases.
Case 1. Suppose $p(x) \neq p(y)$. As B is k_{B}-edge connected, there are k_{B} pairwise edge-disjoint paths $P_{1}, P_{2}, \ldots, P_{k_{B}}$ from $p(x)$ to $p(y)$ in B, and let P_{1} be one of the shortest paths among $P_{1}, P_{2}, \ldots, P_{k_{B}}$.
(1) First we shall construct $k_{F}+1$ edge-disjoint paths from x to y in G with degenerate edges in $F_{x} \cup F_{y}$ and nondegenerate edges in $p^{-1}\left(P_{1}\right)$.

Note that $\varphi_{e_{k}} \circ \varphi_{e_{k-1}} \circ \cdots \circ \varphi_{e_{1}}$, where $e_{1}, e_{2}, \ldots, e_{k}$ is the sequence of all edges of the path P_{1} from $p(x)$ to $p(y)$, is an isomorphism from F_{x} to F_{y}. Denote this isomorphism by $\varphi_{P_{1}}$.

Now let $x^{\prime} \in F_{y}$ be the endpoint of the path $\tilde{P}_{1}(x)$ in F_{y}.
(a) If $x^{\prime}=y$, then $\tilde{P}_{1}(x)$ is the path from x to y in G. As F_{x} is k_{F}-edge connected, there are at least k_{F} neighbors of x in F_{x}. Denote these neighbors by $u_{i}, i=1,2, \ldots, k_{F}$. The endpoints u_{i}^{\prime} in F_{y} of the paths $\tilde{P}_{1}\left(u_{i}\right)$ are mutually distinct vertices; all of them are neighbors of y in F_{y}. Therefore there are k_{F} edge-disjoint paths

$$
x \rightarrow u_{i} \xrightarrow{\tilde{P}_{1}\left(u_{i}\right)} u_{i}^{\prime} \rightarrow y
$$

$i=1,2, \ldots, k_{F}$. This way we constructed $k_{F}+1$ edge-disjoint paths from x to y.
(b) If $x^{\prime} \neq y$, then let $y^{\prime} \in F_{x}$ be the endpoint of the path $\tilde{P}_{1}(y)$ lying in F_{x}. As F_{x} is k_{F}-edge connected, there are k_{F} edge-disjoint paths $Q_{1}, Q_{2}, \ldots, Q_{k_{F}}$ from x to y^{\prime} in F_{x}. Without loss of generality, let Q_{1} be one of the shortest paths among them. Let $Q_{i}^{\prime}=\varphi_{P_{1}}\left(Q_{i}\right)$ for each $i=1,2, \ldots, k_{F}$. First we construct two edge-disjoint paths between x and y in G as

$$
y \xrightarrow{\tilde{P}_{1}(y)} y^{\prime} \xrightarrow{Q_{1}} x,
$$

and

$$
x \xrightarrow{\tilde{P}_{1}(x)} x^{\prime} \xrightarrow{Q_{1}^{\prime}} y
$$

Now let $q_{2}, q_{3}, \ldots, q_{k_{F}}$ be the neighbors of x in F_{x} such that $q_{i} \in Q_{i}$ for each $i=2,3, \ldots, k_{F}$. Note that for each $i, q_{i} \neq y^{\prime}$. We construct additional $k_{F}-1$ edge-disjoint paths as

$$
x \rightarrow q_{i} \xrightarrow{\tilde{P}_{1}\left(q_{i}\right)} \varphi_{P_{1}}\left(q_{i}\right) \xrightarrow{Q_{i}^{\prime}} y,
$$

$i=2,3, \ldots, k_{F}$.
This way we constructed $k_{F}+1$ edge-disjoint paths from x to y.
(2) Additional $k_{B}-1$ paths can be constructed by taking $k_{B}-1$ neighbors $r_{2}, r_{3}, \ldots, r_{k_{B}}$ of $p(y)$ in B such that $r_{i} \in P_{i}$ for each $i=2,3, \ldots, k_{B}$. As P_{1} is one of the shortest paths between $p(x)$ and $p(y)$, therefore $r_{i} \neq p(x)$ for each $i=2,3, \ldots, k_{B}$, and the fibres $F\left(r_{i}\right)$ are disjoint with fibres F_{x} and F_{y}. Let $r_{i}^{\prime} \in F\left(r_{i}\right) \cap \tilde{P}_{i}(x)$. There is a path R_{i} from r_{i}^{\prime} to $\varphi_{\left\{p(y), r_{i}\right\}}(y)$ within fibre $F\left(r_{i}\right)$ for each $i=2,3, \ldots, k_{B}$. Then the paths

$$
x \xrightarrow{\tilde{P}_{i}(x)} r_{i}^{\prime} \xrightarrow{R_{i}} \varphi_{\left\{p(y), r_{i}\right\}}(y) \rightarrow y
$$

are pairwise edge-disjoint, and are edge-disjoint with the $k_{F}+1$ paths constructed before.
This way we constructed $k_{F}+k_{B}$ edge-disjoint paths from x to y in G.
Case 2. If $p(x)=p(y)$ then there are k_{F} edge-disjoint paths from x to y within the fibre F_{x}. Additional k_{B} paths can be constructed by taking $k_{B} \leq \delta_{B}$ neighbors of $p(x)$ in B, say $r_{1}, r_{2}, \ldots, r_{k_{B}}$, and observing that the paths

$$
x \rightarrow \varphi_{\left\{p(x), r_{i}\right\}}(x) \xrightarrow{R_{i}} \varphi_{\left\{p(x), r_{i}\right\}}(y) \rightarrow y
$$

where R_{i} is a path from $\varphi_{\left\{p(x), r_{i}\right\}}(x)$ to $\varphi_{\left\{p(x), r_{i}\right\}}(y)$ in $F\left(r_{i}\right)$, and $i=1,2, \ldots, k_{B}$, are pairwise edgedisjoint and are edge-disjoint with all paths in F_{x}. This way we constructed $k_{F}+k_{B}$ edge-disjoint paths from x to y in G.

The following statement easily follows:
Corollary 3.2. Let G_{1} and G_{2} be k_{1}-edge connected and k_{2}-edge connected graphs, respectively. Then the Cartesian product $G_{1} \square G_{2}$ is at least ($k_{1}+k_{2}$)-edge connected.

Proof. $B=G_{2}$ and $F=G_{1}$.

4. The edge fault-diameter of Cartesian graph bundles

Our main result is an upper bound for the edge fault-diameter of Cartesian graph bundles in terms of edge fault-diameters of the fibre and the base graph.

Definition 4.1. Let G be a k-edge connected graph and $0 \leq a<k$. Then we define the a-edge faultdiameter of G as

$$
\overline{\mathcal{D}}_{a}(G)=\max \{d(G \backslash X)|X \subseteq E(G),|X|=a\} .
$$

Note that $\overline{\mathscr{D}}_{a}(G)$ is the largest diameter among subgraphs of G with a edges deleted; hence $\overline{\mathscr{D}}_{0}(G)$ is just the diameter of $G, d(G)$. For $a \geq \lambda(G)$, the a-edge fault-diameter of G does not exist. In other words, $\overline{\mathcal{D}}_{a}(G)=\infty$ as some of the graphs are not edge connected.

We will use the following technical lemma in the proof of Theorem 4.3. The lemma follows from the upper bound for the Cartesian product of graphs [3]. As the proof is short we decided to write it out for completeness.

Lemma 4.2. Let $G=Q \square F$ be the Cartesian product of a path Q with vertices $V(Q)=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ and a graph F with $\overline{\mathscr{D}}_{a}(F)<\infty$. Let s and t be vertices of G with coordinates $s=\left(s_{1}=v_{0}, s_{2}\right)$ and $t=\left(t_{1}=v_{k}, t_{2}\right)$ and let $X \subseteq E(G)$ be a set of edges with $|X| \leq a+1$. Then $d_{G \backslash X}(s, t) \leq \bar{D}_{a}(F)+\ell(Q)+1$.
Proof. Let Q be a path, $V(Q)=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}, G=Q \square F, k_{F} \geq a+1$. Let $s \in F\left(v_{0}\right)$ and $t \in F\left(v_{k}\right)$ be vertices of G, and let $X \subseteq E(G)$ be a set of edges with $|X| \leq a+1$.

We distinguish two cases.
First, if $\left|F\left(v_{k}\right) \cap X\right|=a+1$ then $\left|F\left(v_{0}\right) \cap X\right|=0$ and $\tilde{Q}(t)$ avoids X. Therefore there is a path R from s to the endpoint of the path $\tilde{Q}(t)$ within fibre $F\left(v_{0}\right)$ of length $\ell(R) \leq \overline{\mathscr{D}}_{0}(F) \leq \overline{\mathscr{D}}_{a}(F)$, and $\ell(\tilde{Q}(t))=\ell(Q)$. Therefore $d_{G \backslash X}(s, t) \leq \bar{D}_{a}(F)+\ell(Q)+1$.

Second, let $\left|F\left(v_{k}\right) \cap X\right| \leq a$. As F is at least ($a+1$)-edge connected, there are at least $a+1$ neighbors of s in $F\left(v_{0}\right)$. Denote the neighbors by $u_{i}, i=1,2, \ldots, a+1$. Among the $a+2$ edge-disjoint paths from s to vertices $u_{i}^{\prime}(i=1,2, \ldots, a+2)$ in $F\left(v_{k}\right)$, constructed as

$$
s \rightarrow u_{i} \xrightarrow{\tilde{Q}\left(u_{i}\right)} u_{i}^{\prime}
$$

of length $1+\ell(Q)$, and the path

$$
s \xrightarrow{\tilde{Q}(s)} s^{\prime}=u_{a+2}^{\prime}
$$

of length $\ell(Q)$, at least one avoids X. Without loss of generality, say

$$
P_{1}: s \rightarrow u_{1} \xrightarrow{\tilde{Q}\left(u_{1}\right)} u_{1}^{\prime}
$$

avoids X. As $\left|F\left(v_{k}\right) \cap X\right| \leq a$, there is a path R in $F\left(v_{k}\right)$ avoiding X from u_{1}^{\prime} to t of length $\ell(R) \leq \overline{\mathscr{D}}_{a}(F)$. Therefore there is a path

$$
P: s \xrightarrow{P_{1}} u_{1}^{\prime} \xrightarrow{R} t
$$

from s to t of length $\ell(P) \leq 1+\ell(Q)+\overline{\mathscr{D}}_{a}(F)$, and hence $d_{G \backslash X}(s, t) \leq \overline{\mathscr{D}}_{a}(F)+\ell(Q)+1$.
Now we give the main result of this paper.
Theorem 4.3. Let F and B be k_{F}-edge connected and k_{B}-edge connected graphs respectively, $0 \leq a<k_{F}$, $0 \leq b<k_{B}$, and G a Cartesian bundle with fibre F over the base graph B. Then

$$
\overline{\mathscr{D}}_{a+b+1}(G) \leq \overline{\mathscr{D}}_{a}(F)+\overline{\mathscr{D}}_{b}(B)+1 .
$$

Proof. Let $k=a+b+2$. By Theorem 3.1, $\lambda(G) \geq k$; hence $\bar{D}_{k-1}(G)$ is well defined. Let δ_{F} be the minimum degree of F and δ_{B} be the minimum degree of B. Recall that $\delta_{F} \geq \lambda(F)>a$ and $\delta_{B} \geq \lambda(B)>b$. Let $X \subseteq E(G)$ be such that $|X|=k-1=a+b+1$, and $x, y \in V(G)$ be two distinct vertices. We shall construct a path P from x to y in $G \backslash X$, with length $\ell(P) \leq \bar{D}_{a}(F)+\bar{D}_{b}(B)+1$.

As before, let $p: G \rightarrow B$ be the projection from G to its base B, so $p(X) \subseteq V(B) \cup E(B)$. Denote the set of degenerate edges in X by X_{D}, and the set of nondegenerate edges by $X_{N}, X=X_{D} \cup X_{N}, p\left(X_{D}\right) \subseteq V(B)$ and $p\left(X_{N}\right) \subseteq E(B)$. Let $\left|X_{D}\right|=a_{0}$ and $\left|X_{N}\right|=b_{0}$. Then $a_{0}+b_{0}=a+b+1$.
(1) We first assume that x and y are in distinct fibres, i.e. $p(x) \neq p(y)$. We now distinguish two cases.

Case 1. If $b_{0}<b$, then there is a path Q between $p(x)$ and $p(y)$ in B that avoids $p\left(X_{N}\right)$ of length $\ell(Q) \leq \overline{\mathscr{D}}_{b_{0}}(B) \leq \overline{\mathscr{D}}_{b}(B)$. Let $y^{\prime} \in F_{x}$ be the endpoint of the path $\tilde{Q}(y)$.

If $\left|\bar{F}_{x} \cap X_{D}\right| \leq a$, then there is a path R from x to y^{\prime} within fibre F_{x} that avoids X_{D} of length $\ell(R) \leq \bar{D}_{a}(F)$. Therefore there is a path P from x to y in $G \backslash X$

$$
P: y \xrightarrow{\tilde{Q}(y)} y^{\prime} \xrightarrow{R} x
$$

of length $\ell(P) \leq \overline{\mathscr{D}}_{b}(B)+\bar{D}_{a}(F)$.
If $\left|F_{X} \cap X_{D}\right| \geq a+1$, then $\left|\left(G \backslash F_{x}\right) \cap X_{D}\right| \leq a_{0}-(a+1)=b-b_{0}$, so outside F_{x} we have at most $b-b_{0}$ degenerate edges of X. As B is $(b+1)$-edge connected, and $b_{0}<b$, there are at least $b+1-b_{0}$ neighbors of $p(x)$ such that the edges from $p(x)$ to these neighbors avoid $p\left(X_{N}\right)$. As there are more such neighbors than degenerate edges of X outside $F_{x}\left(b+1-b_{0}>b-b_{0}\right)$, there is a neighbor u of $p(x)$ in B such that $\left|F(u) \cap X_{D}\right|=0$ and $e=\{p(x), u\} \notin p\left(X_{N}\right)$. As $b_{0}<b$, there is a path Q from u to $p(y)$ in B that avoids $p\left(X_{N}\right)$ of length $\ell(Q) \leq \overline{\mathscr{D}}_{b_{0}}(B) \leq \overline{\mathscr{D}}_{b}(B)$. Let $u^{\prime} \in F(u)$ be the endpoint of the path $\tilde{Q}(y)$. As $\left|F(u) \cap X_{D}\right|=0$, there is a path R from $\varphi_{e}(x)$ to u^{\prime} within $F(u)$ of length $\ell(R) \leq \overline{\mathscr{D}}_{0}(F) \leq \overline{\mathscr{D}}_{a}(F)$. Therefore there is a path P from y to x in $G \backslash X$

$$
P: y \xrightarrow{\tilde{Q}(y)} u^{\prime} \xrightarrow{R} \varphi_{e}(x) \rightarrow x
$$

of length $\ell(P) \leq \overline{\mathscr{D}}_{b}(B)+\overline{\mathscr{D}}_{a}(F)+1$. Note that if $y \in F(u), P$ has length $\ell(P) \leq \overline{\mathscr{D}}_{a}(F)+1$.

Fig. 3. $G=P_{2} \square P_{2}$ with one faulty link.

Case 2. Let $b_{0} \geq b$. First we choose b edges in $X_{N},\left\{e_{1}, e_{2}, \ldots, e_{b}\right\} \subseteq X_{N}$. Then there is a path Q from $p(x)$ to $p(y)$ in B, that avoids $p\left(\left\{e_{1}, e_{2}, \ldots, e_{b}\right\}\right)$, with length $\ell(Q) \leq \bar{D}_{b}(B)$. Therefore the subgraph $p^{-1}(Q)$, which is isomorphic to $Q \square F$ by Remark 2.4, intersects X in at most $b_{0}-b$ nondegenerate edges and a_{0} degenerate edges of X. Therefore $\left|p^{-1}(Q) \cap X\right| \leq b_{0}-b+a_{0}=a+1$. By Lemma 4.2, there is a path P from x to y with length $\ell(P) \leq \overline{\mathscr{D}}_{a}(F)+\ell(\bar{Q})+1 \leq \overline{\mathscr{D}}_{a}(F)+\overline{\mathscr{D}}_{b}(B)+1$.
(2) To complete the proof, we have to consider the case where x and y are in the same fibre, i.e. $p(x)=$ $p(y)$, and $F_{x}=F_{y}$.

If $\left|F_{X} \cap X_{D}\right| \leq a$ then there is a path of length at most $\overline{\mathcal{D}}_{a}(F)$ within the fibre.
If $\left|F_{x} \cap X_{D}\right| \geq a+1$, then $\left|X_{N}\right|=b_{0} \leq b$. Therefore, as before, there is a neighbor u of $p(x)$ in B such that $\left|F(u) \cap X_{D}\right|=0$ and $e=\{p(x), u\} \notin p\left(X_{N}\right)$. We may construct the path P as

$$
P: x \rightarrow \varphi_{e}(x) \xrightarrow{R} \varphi_{e}(y) \rightarrow y
$$

and $\ell(P) \leq 1+\overline{\mathscr{D}}_{0}(F)+1 \leq \overline{\mathscr{D}}_{b}(B)+\overline{\mathscr{D}}_{a}(F)+1$.
The next example shows that the bound in Theorem 4.3 is tight.
Example 4.4. Let $G=P_{2} \square P_{2}$; see Fig. 3. G is a graph bundle with fibre $F=P_{2}$ over the base graph $B=P_{2}$. Then for $a=b=0$ we have

$$
\begin{aligned}
& \overline{\mathscr{D}}_{a+b+1}(G)=3, \\
& \overline{\mathscr{D}}_{b}(B)+\overline{\mathscr{D}}_{a}(F)+1=1+1+1=3 .
\end{aligned}
$$

References

[1] I. Banič, J. Žerovnik, Fault-diameter of Cartesian graph bundles, Inform. Process. Lett. 100 (2006) 47-51.
[2] I. Banič, J. Žerovnik, Fault-diameter of Cartesian product of graphs, Adv. in Appl. Math. 40 (2008) 98-106.
[3] I. Banič, J. Žerovnik, Edge fault-diameter of Cartesian product of graphs, Lec. Notes Comput. Sci. 4474 (2007) 234-245.
[4] J.-C. Bermond, F. Comellas, D. Hsu, Distributed loop computer networks: a survey, J. Parallel Distrib. Comput. 24 (1995) 2-10.
[5] P. Cull, S.M. Larson, On generalized twisted cubes, Inform. Process. Lett. 55 (1995) 53-55.
[6] D.Z. Du, D.F. Hsu, Y.D. Lyuu, On the diameter vulnerability of Kautz digraphs, Discrete Math. 151 (2000) 81-85.
[7] K. Day, A. Al-Ayyoub, Minimal fault diameter for highly resilient product networks, IEEE Trans. Parallel Distrib. Syst. 11 (2000) 926-930.
[8] K. Efe, A variation on the hypercube with lower diameter, IEEE Trans. Comput. 40 (1991) 1312-1316.
[9] S. Klavžar, W. Imrich, Products Graphs, Structure and Recognition, Wiley, New York, 2000.
[10] M. Krishnamoorthy, B. Krishnamurty, Fault diameter of interconnection networks, Comput. Math. Appl. 13 (1987) 577-582.
[11] S.C. Liaw, G.J. Chang, F. Cao, D.F. Hsu, Fault-tolerant routing in circulant networks and cycle prefix networks, Ann. Combin. 2 (1998) 165-172.
[12] X. Munoz, Asymptotically optimal (δ, d^{\prime}, s)-digraphs, Ars Combin. 49 (1998) 97-111.
[13] T. Pisanski, J. Shawe-Taylor, J. Vrabec, Edge-colorability of graph bundles, J. Combin. Theory Ser. B 35 (1983) 12-19.
[14] T. Pisanski, J. Vrabec, Graph bundles, Preprint Ser. Dep. Math., vol. 20, no. 079, p. 213-298, Ljubljana 1982.
[15] I. Stojmenović, Multiplicative circulant networks: Topological properties and communication algorithms, Discrete Appl. Math. 77 (1997) 281-305.
[16] J.M. Aldous, R.J. Wilson, Graphs and Applications: An introductory Approach, Springer, Berlin, 2000.
[17] M. Xu, J.-M. Xu, X.-M. Hou, Fault diameter of Cartesian product graphs, Inform. Process. Lett. 93 (2005) 245-248.
[18] W. Imrich, T. Pisanski, J. Žerovnik, Recognizing Cartesian graph bundles, Discrete Math. 167-168 (1997) 393-403.
[19] B. Zmazek, J. Žerovnik, Recognizing weighted directed Cartesian graph bundles, Discus. Math. Graph Theory 20 (2000) 39-56.
[20] B. Zmazek, J. Žerovnik, On recognizing Cartesian graph bundles, Discrete Math. 233 (2001) 381-391.
[21] B. Zmazek, J.Žerovnik, Unique square property and fundamental factorizations of graph bundles, Discrete Math. 244(2002) 551-561.
[22] B. Zmazek, J. Žerovnik, Algorithm for recognizing Cartesian graph bundles, Discrete Appl. Math. 120 (2002) 275-302.
[23] J. Žerovnik, On recognizing of strong graph bundles, Math. Slovaca 50 (2000) 289-301.

[^0]: *This work was supported in part by the Slovenian research agency, grants L2-7207-0101, and P1-0294-0101.
 E-mail addresses: iztok.banic@uni-mb.si (I. Banič), rija.erves@uni-mb.si (R. Erveš), janez.zerovnik@imfm.uni-lj.si (J. Žerovnik).
 ${ }^{1}$ On leave from FME, University of Maribor.

