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Abstract

We consider the (Ihara) zeta functions of line graphs, middle graphs and total graphs of a regular graph
and their (regular or irregular) covering graphs. Let L(G), M(G) and T (G) denote the line, middle and
total graph of G, respectively. We show that the line, middle and total graph of a (regular and irregular,
respectively) covering of a graph G is a (regular and irregular, respectively) covering of L(G), M(G) and
T (G), respectively. For a regular graph G, we express the zeta functions of the line, middle and total graph
of any (regular or irregular) covering of G in terms of the characteristic polynomial of the covering. Also,
the complexities of the line, middle and total graph of any (regular or irregular) covering of G are computed.
Furthermore, we discuss the L-functions of the line, middle and total graph of a regular graph G.
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1. Introduction

Throughout this paper graphs and digraphs are assumed to be finite, connected and simple (with
no loops and no multiple edges). Let G be a connected (undirected) graph with vertex set V (G)

and edge set E(G), and let νG and εG denote the numbers of vertices and edges of G, respectively.
Let D(G) be the arc set of the symmetric digraph corresponding to G. For e = (u, v) ∈ D(G),
let o(e) = u and t (e) = v. The inverse arc of e is denoted by e−1. A path P of length n in G is a
sequence P = (v0, v1, . . . , vn−1, vn) of n + 1 vertices and n arcs (or edges) such that consecutive
vertices share an arc (or edge) (we do not require that all vertices are distinct). Also, P is called a
(v0, vn)-path. We say that a path has a backtracking if a subsequence of the form . . . , x, y, x, . . .

appears. A (v, w)-path is called a cycle (or closed path) if v = w.
A cycle C is said to be reduced if both C and C2 have no backtracking. Two cycles C1 =

(v1, . . . , vm) and C2 = (w1, . . . , wm) are called equivalent if there is an integer k such that
wj = vj+k for all j , where the subscripts are modulo m. Let [C] denote the equivalence class
which contains a cycle C. Let Br be the cycle obtained by going r times around a cycle B. Such
a cycle is called a multiple of B. A cycle C is prime if C /= Br for any other cycle B and r � 2.
Note that each equivalence class of prime, reduced cycles of a graph G corresponds to a unique
conjugacy class of the fundamental group π1(G, v) of G at a vertex v ∈ V (G).

The (Ihara) zeta function of a graph G is defined as a function of u ∈ C with |u| sufficiently
small by

Z(G, u) = ZG(u) =
∏
[C]

(
1 − u|C|)−1

,

where [C] runs over all equivalence classes of prime, reduced cycles of G, and |C| is the length
of C.

Clearly, the zeta function of a disconnected graph is the product of the zeta functions of its
connected components. Zeta functions of graphs were originated from zeta functions of regular
graphs by Ihara [16], where their reciprocals are expressed as explicit polynomials. A zeta function
of a regular graph G associated to a unitary representation of the fundamental group of G was
developed by Sunada [30]. Hashimoto [13] treated multivariable zeta functions of bipartite graphs.
Bass [2] generalized Ihara’s result on zeta functions of regular graphs to general graphs.

The adjacency matrix A = AG = (aij ) of G is the νG × νG matrix with aij = 1 if vi and vj

are adjacent and aij = 0 otherwise. Let D = DG denote the diagonal matrix whose (i, i)-entry is
the degree degG(vi) of vi , and Q = QG = D − I.

Theorem 1 (Bass). The reciprocal of the zeta function of G is given by

ZG(u)−1 = (1 − u2)εG−νG det(I − uAG + u2QG). (1)

Stark and Terras [29] gave an elementary proof of Theorem 1, and recently Kotani and Sunada
[18] gave another proof.

The complexity κ(G) of a graph G is the number of spanning trees in G. Hashimoto [14] and
Northshield [26] expressed the complexity of a graph as a limit involving its zeta function.

In this paper, we call the matrix LG(u) = I − uAG + u2QG is called the generalized Lapla-
cian matrix of G. Note that LG(1) is the Laplacian matrix LG of G. For a connected graph G,
let fG(u) = det LG(u). Northshield [26] computed κ(G) in terms of the generalized Laplacian
matrix of G as follows.
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Theorem 2 (Northshield). For a connected graph G,

2(εG − νG)κ(G) = f ′
G(1), (2)

where f ′
G(1) is the derivative of the determinant fG(u) = det LG(u) at u = 1.

The complexities for various graphs were given in [6]. Let �(G; λ) = det(λI − A) be the
characteristic polynomial of G.

Theorem 3 [15]. Let G be a regular graph with valency r. Then the complexity κ(G) is

κ(G) = 1

νG

�′(G; r). (3)

The line graph L(G) of a graph G is the graph whose vertex set is the edge set E(G) of G, with
two vertices of L(G) being adjacent if and only if the corresponding edges in G have a vertex in
common. The middle graph M(G) is the graph obtained from G inserting a new vertex into every
edge of G and by joining by edges those pairs of these new vertices which lie on adjacent edges
of G. Another important graph is a total graph. The total graph T (G) is the graph whose vertex
set is the union of the vertex set V (G) and the edge set E(G) of G, with two vertices of T (G)

being adjacent if and only if the corresponding elements of G are adjacent or incident. There have
been lots of work on various properties of line graphs, middle graphs and total graphs of graphs
[3,5,6,11,12,25,27,28].

From the definitions, we have

Theorem 4. The adjacency matrices AL = A(L(G)), AM = A(M(G)) and AT = A(T (G)) are
given as follows:

AL = BBt − 2IεG
, AM =

[
AL B
Bt 0

]
, AT =

[
AL B
Bt A

]
, (4)

where B = (bij ) is the incidence matrix of G : bij = 1 if the edge ei and the vertex vj are incident,
and bij = 0 otherwise.

This paper focuses on the following questions: For the line graph L(G), (also for the middle
graph M(G) and the total graph T (G))

(A) compute the characteristic polynomial �(L(G)), the zeta function ZL(G) and the complexity
κ(L(G)),

(B) determine whether the line graph of a (respectively, regular) covering of a graph G is a
(respectively, regular) covering of L(G),

(C) compute the zeta functions and the complexities of coverings of the line graph L(G),
(D) compute the zeta functions and the complexities of line graphs of coverings of G,
(E) decompose the zeta functions of coverings of the line graph into L-functions.

In Section 3, we present the characteristic polynomial, the complexity and the zeta function
of the line graph of a regular graph. For any (regular or irregular) covering Gα of a connected
graph G derived from a permutation voltage assignment α : D(G) → Sn, we determine a voltage
assignment β : D(G) → Sn such that L(Gα) = L(G)β . The zeta function of the line graph L(Gα)
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for a regular graph G is expressed in terms of the characteristic polynomial of Gα , and also by using
the determinant expression for L-functions of L(G). Furthermore, the complexities of L(Gα) is
computed. In Sections 4 and 5, a parallel work for a middle and a total graph is done respectively.
In Section 6, we add some examples.

For a general theory of the representation of groups and graph coverings, the reader is referred
to [4,10], respectively. Throughout this paper, let [n] denote the set {1, 2, . . . , n} and let Sn denote
the symmetric group on the set [n].

2. Zeta functions and complexities of covering graphs

In this section, we construct a covering of a connected graph G by using a voltage assign-
ment α defined on the arc set D(G), written by Gα , and compute the characteristic polynomial
�(Gα), the zeta function Z(Gα, u), and the complexity κ(Gα) of the covering Gα in terms of the
corresponding quantity of the graph G.

Let N(v) = {w ∈ V (G)|(v, w) ∈ D(G)} denote the neighborhood of a vertex v in G. A graph
G̃ is called a covering of G with projection p : G̃ → G if there is a surjection p : V (G̃) → V (G)

such that p|N(ṽ) : N(ṽ) → N(v) is a bijection for all vertices v ∈ V (G) and ṽ ∈ p−1(v). We
say that the projection p : G̃ → G is an n-fold covering of G if p is n-to-one. Two coverings
pi : G̃i → G, i = 1, 2 are said to be isomorphic if there exists a graph isomorphism � : G̃1 → G̃2
such that p1 = p2 ◦ �. Such a � is called a covering isomorphism [19].

A permutation voltage assignment (or, voltage assignment) of G is a function φ : D(G) → Sn

with the property that φ(e−1) = φ(e)−1 for each e ∈ D(G). The permutation derived graph Gφ is
defined as follows: V (Gφ) = V (G) × [n] and E(Gφ) = E(G) × [n], so that an edge (e, i) of Gφ

joins a vertex (u, i) to (v, φ(e)(i)) for e = uv ∈ D(G) and i = 1, 2, . . . , n. The first coordinate
projection pφ : Gφ → G is an n-fold covering. Following Gross and Tucker [9], every n-fold
covering G̃ of a graph G can be derived from a voltage assignment which assigns the identity
element on the directed edges of a fixed spanning tree T of G. We call such a φ reduced. That
is, for a covering p : G̃ → G, there exists a reduced voltage assignment φ of G such that the
derived covering pφ : Gφ → G is isomorphic to p : G̃ → G. Moreover, for a reduced voltage
assignment φ : D(G) → Sn, the derived graph Gφ is connected if and only if the subgroup of Sn

generated by the image of the voltage assignment φ acts transitively on the set [n] [10]. Such a
voltage assignment is said to be transitive.

A covering p : G̃ → G is said to be regular if there is a subgroup � of the automorphism
group Aut(G̃) of G̃ acting freely on G̃ so that the graph G is isomorphic to the quotient graph
G̃/�, say by h, and the quotient map G̃ → G̃/� is the composition h ◦ p of p and h. The fiber
of an edge or a vertex is its preimage under p.

Let � be a finite group. An ordinary voltage assignment (or, �-voltage assignment) of G is a
function φ : D(G) → � with the property that φ(e−1) = φ(e)−1 for each e ∈ D(G). The values
of φ are called voltages, and � is called the voltage group. The ordinary derived graph G ×φ �
derived from an ordinary voltage assignment φ : D(G) → � has as its vertex set V (G) × �, and
as its edge set E(G) × �, so that an edge (e, g) of G ×φ � joins a vertex (u, g) to (v, gφ(e)) for
e = uv ∈ D(G) and g ∈ �. In the (ordinary) derived graph G ×φ �, a vertex (u, g) is denoted
by ug and an edge (e, g) is denoted by eg . The first coordinate projection pφ : G ×φ � → G,
called the natural projection, commutes with the left multiplication action of the φ(e) and the
right multiplication action of � on the fibers, which is free and transitive, so that pφ is a regular
|�|-fold covering, called simply a �-covering. Gross and Tucker [9] showed that every finite
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regular covering of a graph G can be derived from a �-voltage assignment, where � becomes the
covering transformation group.

In [8] and [20], Kwak et al. expressed the zeta function and the complexity of a (regular or
irregular) covering of G by using those of G, respectively. The tensor product A ⊗ B of matrices
A and B is considered as the matrix A having the element aij replaced by the matrix aij B. Set Im

be the identity matrix of order m.

Theorem 5. Let G be a connected graph and let α : D(G) → Sn be a permutation voltage assign-
ment. Let � = 〈{α(u, v)|(u, v) ∈ D(G)}〉 be the subgroup of Sn generated by {α(u, v)|(u, v) ∈
D(G)}. Let ρ1 = 1, ρ2, . . . , ρk be the irreducible representations of � with degree f1 = 1,

f2, . . . , fk, respectively, and let the permutation representation P : � → GL(n, C) of � be
decomposed into a direct sum of irreducible representations: say P = ⊕k


=1 m
ρ
. For each

γ ∈ �, define a matrix Aγ = Aγ (G) = (a
(γ )
uv ) as follows:

a
(γ )
uv :=

{
1 if (u, v) ∈ D(G) and α(u, v) = γ,

0 otherwise.

Then the reciprocal of the zeta function of Gα is

Z(Gα, u)−1 =(Z(G, u)−1)m1

k∏
i=2

{
(1 − u2)(εG−νG)fi

× det

[
IνGfi

− u
∑
γ∈�

ρi(γ ) ⊗ Aγ + u2(Ifi
⊗ (D − IνG

))

]}mi

. (5)

Suppose that the n-fold covering Gα of G is connected and that εG > νG. Then the complexity
of Gα is

κ(Gα) = 1

n
κ(G)


∏
k=2

det

(
Ifk

⊗ DG −
∑
σ∈�

ρk(σ ) ⊗ Aσ

)mk

. (6)

For each γ ∈ �, let 	G(α,γ ) denote the spanning subgraph of the symmetric digraph 	G corre-
sponding to G whose directed edge set is α−1(γ ). Then the digraph 	G is the edge-disjoint union
of spanning subgraphs 	G(α,γ ), γ ∈ �, and the matrix Aγ = Aγ (G) in Theorem 5 is the adjacency
matrix of the digraph 	G(α,γ ).

Note that the multiplicity m1 of the irreducible representation ρ1 = 1 is the number of orbits
under the action of the group �. Thus, if the covering Gα is connected, we have m1 = 1.

As a special case, let the covering Gα of G is a regular covering with a covering transformation
group A so that Gφ/A∼=G [10]. Let ρ1 = 1, ρ2, . . . , ρ
 be the irreducible representations of A
with degree fk for each k, where f1 = 1. Then the multiplicity mk is equal to the degree fk of ρk

and the fold number n is |A|, the cardinality of A. Thus we have the same formula as Theorem
5 in [22]:

κ(Gφ) = 1

|A|κ(G)


∏
k=2

det

(
Ifk

⊗ DG −
∑
σ∈�

ρk(σ ) ⊗ Aσ

)fk

.



J.H. Kwak, I. Sato / Linear Algebra and its Applications 418 (2006) 234–256 239

Feng et al. [7] expressed the characteristic polynomial of a (regular or irregular) covering
of G in terms of the characteristic polynomial of G. Let �(F; λ) = det(λI − F) for any square
matrix F.

Theorem 6. Let G, Aσ , α, ρi, fi, mi be as in Theorem 5. Then the characteristic polynomial of
the covering graph Gα is

�(Gα; λ) = �(G; λ) ·
t∏

i=2

�

(∑
σ∈�

ρi(σ ) ⊗ Aσ ; λ

)mi

. (7)

3. Line graphs of a graph and its covering graphs

For a simplicity of computing, we assume that the base graph G is regular. The characteristic
polynomial and the complexity of the line graph L(G) of an r-regular graph G are given as follows
[6]:

Theorem 7. Let G be a connected r-regular graph with ν vertices and ε edges. Then

�(L(G); λ) = (λ + 2)ε−ν�(G; λ + 2 − r) and κ(L(G)) = 2ε−ν+1rε−ν−1κ(G). (8)

By Bass Theorem, one can get a matrix expression of the zeta function of the line graph L(G)

as follows.

Theorem 8. Let G be a connected graph with ν vertices and ε edges. Then

Z(L(G), u)−1 = (1 − u2)|E(L(G))|−ε det(I − uAL + u2(DL − I)), (9)

where AL = A(L(G)) and DL = DL(G).

In particular, if G is regular one can express the reciprocal Z(L(G), u)−1 of the zeta function
of the line graph L(G) in terms of the characteristic polynomial of G.

Theorem 9. Let G be a connected r-regular graph with ν vertices and ε edges. Then

Z(L(G), u)−1 = (1 − u2)(r−2)εuν(1 + 2u + (2r − 3)u2)ε−ν

×�

(
G; 1 + (2 − r)u + (2r − 3)u2

u

)
. (10)

Proof. Note that L(G) is (2r − 2)-regular. By Eq. (1), we have

Z(L(G), u)−1 = (1 − u2)(r−2)ε det(Iε − uAL + au2Iε)

= (1 − u2)(r−2)εuε�

(
L(G); 1 + au2

u

)
,

where a = 2r − 3. By Eq. (8),

Z(L(G), u)−1 = (1 − u2)(r−2)εuν(1 + 2u + au2)ε−ν�

(
G; 1 + (2 − r)u + au2

u

)
.

Therefore, Eq. (10) follows. �
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In [17], Kotani and Sunada showed that the line graph of a regular covering of a graph G

with covering transformation group A is a regular covering of L(G) with the same covering
transformation group A.

Archdeacon et al. [1] showed that the line graph of a covering of a graph G is a covering of
L(G).

Theorem 10 (Archdeacon et al.). Let H be a covering of a graph G, then L(H) is a covering of
L(G).

Let α : D(G) → Sn a permutation voltage assignment. In the n-fold covering Gα , set vg =
(v, g) and eg = (e, g), where v ∈ V (G), e ∈ D(G), g ∈ [n]. For e = (u, v) ∈ D(G), the arc eg

emanates from ug and terminates at vα(e)(g). Note that e−1
g = (e−1)α(e)(g).

For e ∈ D(G), let [e] denote the edge obtained from e by deleting its direction. Then the set
D(L(G)) of arcs in the line graph L(G) is given by

{(e, f )|e /= f −1, t (e) = o(f )},
where o((e, f )) = [e] and t ((e, f )) = [f ]. Furthermore, (e, f )−1 = (f −1, e−1).

Now, we determine a voltage assignment β : D(L(G)) → Sn which derives the covering
L(Gα) → L(G).

Lemma 11. Let G be a connected graph with ν vertices v1, . . . , vν, and let α : D(G) → Sn

be a permutation voltage assignment. For each edge vivj ∈ E(G), let eij = (vi, vj ) as an arc.
Furthermore, let αL : D(L(G)) → Sn be the voltage assignment defined by

αL([eij ], [ejk]) :=


α(eij ) if i < j < k,

α(ejk)α(eij ) if i < j and j > k,

α(ejk) if i > j > k,

1 if i > j and j < k.

Then the covering L(Gα) → L(G) is derived from the voltage assignment αL.

Proof. At first, note that ((eij )s)
−1 = (eji)α(eij )(s) for any s ∈ [n]. Let [(eij )s] = [(eji)α(eij )(s)] =

[eij ]s if i < j .
Let [eij ][ejk] ∈ E(L(G)) be any edge of L(G) and s ∈ [n]. Set v = vi, w = vj , z = vk , x =

eij and y = ejk . Then we have xs = (vs, wα(x)(s)), (xs)
−1 = (x−1)α(x)(s), yα(x)(s) = (wα(x)(s),

zα(y)α(x)(s)) and (yα(x)(s))
−1 = (y−1)α(y)α(x)(s). Note that t (xs) = o(yα(x)(s)), i.e., ([xs],

[yα(x)(s)]) ∈ D(L(Gα)), We consider four cases.
Case 1. i < j < k. In this case, we have [xs] = [x]s , [yα(x)(s)] = [y]α(x)(s), and so ([x]s ,

[y]α(x)(s)) ∈ D(L(Gα)). Furthermore, since αL([x], [y])=α(x), ([x]s , [y]α(x)(s))∈D(L(G)αL).
Case 2. i < j and j > k. In this case, we have [xs] = [x]s , [yα(x)(s)] = [y]α(y)α(x)(s),

and so ([x]s , [y]α(y)α(x)(s)) ∈ D(L(Gα)). Furthermore, since αL([x], [y]) = α(y)α(x), ([x]s ,
[y]α(y)α(x)(s)) ∈ D(L(G)αL).

Case 3. i > j > k. Similarly, we have [xs] = [x]α(x)(s), [yα(x)(s)] = [y]α(y)α(x)(s), and so
([x]α(x)(s), [y]α(y)α(x)(s)) ∈ D(L(Gα)). Since αL([x], [y]) = α(y), ([x]α(x)(s), [y]α(y)α(x)(s)) ∈
D(L(G)αL).

Case 4. i > j and j < k. We have [xs] = [x]α(x)(s), [yα(x)(s)] = [y]α(x)(s), and so
([x]α(x)(s), [y]α(x)(s)) ∈ D(L(Gα)). Since αL([x], [y]) = 1, we have ([x]α(x)(s), [y]α(x)(s)) ∈
D(L(G)αL). �
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Let G be a connected graph with ν vertices v1, . . . , vν and ε edges e1, . . . , eε. For g ∈ �, the
matrix (AL)g = (a

(g)
ef ) is defined as follows:

a
(g)
ef :=

{
1 if αL(e, f ) = g and (e, f ) ∈ D(L(G)),

0 otherwise.
Let DL = (dij ) be the diagonal matrix with dii = degL(G) ei and QL = DL − Iε. By Theorem 5,
the decomposition formulas for the zeta function and the complexity of the line graph L(Gα) of
a covering Gα of a graph G are obtained as follows.

Theorem 12. Let G be a connected graph with ν vertices and ε edges, and α : D(G) → Sn a
permutation voltage assignment. Let � = 〈{α(u, v)|(u, v) ∈ D(G)}〉 be the subgroup of Sn gen-
erated by {α(u, v)|(u, v) ∈ D(G)}, and let P : � → GL(n, C) be the permutation representation
of � such that P(γ ) = Pγ , where Pγ is the permutation matrix of γ.

Suppose that the n-fold covering Gα of G is connected. Furthermore, let ρ1 = 1, ρ2, . . . , ρt

be the irreducible representations of �, and fi the degree of ρi for each i, where f1 = 1, with the
decomposition P = 1 + m2ρ2 + · · · + mtρt into irreducible representations. Then the reciprocal
of the zeta function of L(Gα) is

Z(L(Gα), u)−1 = Z(L(G), u)−1

×
t∏

i=2

(1 − u2)(εL−ε)fi det

Ifiε − u
∑
g∈�

ρi(g) ⊗ (AL)g + u2(QL)fi


mi

,

where (QL)fi
= Ifi

⊗ QL and εL = |E(L(G))|. Suppose that ε > ν. Then the complexity of L(Gα) is

κ(L(Gα)) = 1

n
κ(L(G))

t∏
i=2

det

Ifi
⊗ DL −

∑
g∈�

ρi(g) ⊗ (AL)g

mi

.

By Theorem 9, one can express the zeta function of the line graph L(Gα) in terms of the
characteristic polynomial of Gα when G is regular.

Corollary 13. Let G be a connected regular graph with valency r, ν vertices and ε edges, and α :
D(G) → Sn a permutation voltage assignment. Suppose that the n-fold covering Gα is connected.

Then

Z(L(Gα), u)−1 = (1 − u2)(r−2)εnuνn(1 + 2u + (2r − 3)u2)(ε−ν)n

×�

(
Gα; 1 + (2 − r)u + (2r − 3)u2

u

)
(11)

and

κ(L(Gα)) = 2(ε−ν)n+1r(ε−ν)n−1κ(Gα). (12)

Proof. Note that Gα is an r-regular graph. �

Let G be a graph and α : D(G) → Sn a permutation voltage assignment. The net voltage
α(P ) of each path P = (v1, . . . , v
) of G is defined by α(P ) = α(v1, v2) · · · α(v
−1, v
) [10].
Furthermore, let � = 〈{α(e)|e ∈ D(G)}〉, and let ρ be a representation of �. The L-function of G

associated to ρ and α is defined to be the function of u ∈ C with |u| sufficiently small as follows.
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Z(u, ρ, α) = ZG(u, ρ, α) =
∏
[C]

det
(

If − ρ(α(C))u|C|)−1
,

where f = deg ρ and [C] runs over all equivalence classes of prime, reduced cycles of G (cf.,
[13,16,30]).

We give a determinant expression for the L-function of the line graph L(G) for a graph G.

Theorem 14. Let G be a connected graph with ν vertices and ε edges and α : D(G) → Sn a per-
mutation voltage assignment. Furthermore, let ρ be a representation of � = 〈{α(e)|e ∈ D(G)}〉
with degree f. Suppose that the n-fold covering Gα of G is connected. Then

ZL(G)(u, ρ, αL)−1 = (1 − u2)(εL−ε)f det

If ε − u
∑
g∈�

ρ(g) ⊗ (AL)g + u2(QL)f

 .

Proof. By Theorem 3 of [21]. �

Corollary 15. Let G be a connected graph with ν vertices and ε edges, and α : D(G) → Sn

a permutation voltage assignment. Let � = 〈{α(u, v)|(u, v) ∈ D(G)}〉 be the subgroup of Sn

generated by {α(u, v)|(u, v) ∈ D(G)}, and let P : � → GL(n, C) be the permutation repre-
sentation of � such that P(γ ) = Pγ . Suppose that the n-fold covering Gα of G is connected.

Furthermore, let ρ1 = 1, ρ2, . . . , ρt be the irreducible representations of �, and fi the degree of
ρi for each i, where f1 = 1, with the decomposition P = 1 + m2ρ2 + · · · + mtρt into irreducible
representations. Then

Z(L(Gα), u) =
t∏

i=1

ZL(G)(u, ρ, αL)mi .

We express the L-function of the line graph L(G) for a regular graph G in terms of characteristic
polynomials.

Theorem 16. Let G be a connected r-regular graph with ν vertices and ε edges and α : D(G) →
Sn a permutation voltage assignment. Furthermore, let ρ be a representation of � = 〈{α(e)|e ∈
D(G)}〉, and f the degree of ρ. Suppose that the n-fold covering Gα of G is connected. Then

ZL(G)(u, ρ, αL)−1 = (1 − u2)(r−2)εf uνf (1 + 2u + (2r − 3)u2)(ε−ν)f

×�

∑
g∈�

ρ(g) ⊗ Ag; 1 + (2 − r)u + (2r − 3)u2

u

 .

Proof. Similar to the proof of Theorem 4 in [23]. �

By Theorem 16 and Corollary 15, Corollary 13 can be confirmed as follows:
Let ρ1 = 1, ρ2, . . . , ρt be the irreducible representations of �, and fi the degree of ρi for each

i, where f1 = 1. Assume that the permutation representation P : � → GL(n, C) is decomposed
into a direct sum of irreducible representations as 1 + m2ρ2 + · · · + mtρt . By Theorem 16 and
Corollary 15, we have
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Z(L(Gα), u)−1 =
t∏

i=1

ZL(G)(u, ρi, αL)−mi

=
t∏

i=1

{
(1 − u2)(r−2)εmi uνmi (1 + 2u + au2)(ε−ν)mi

×�

(∑
g∈�

ρi(g) ⊗ Ag; 1 + (2 − r)u + au2

u

)}mi

,

where a = 2r − 3. Since 1 + m2f2 + · · · + mtft = n,

Z(L(Gα), u)−1 = (1 − u2)(r−2)εnuνn(1 + 2u + au2)(ε−ν)n�

(
G; 1 + (2 − r)u + au2

u

)

×
t∏

i=2

�

∑
g∈�

ρi(g) ⊗ Ag; 1 + (2 − r)u + au2

u

mi

.

Now, Corollary 13 follows from Theorem 6.

4. Middle graphs of a graph and its covering graphs

The middle graph M(G) of G is the graph with V (M(G)) = V (G) ∪ E(G) and E(M(G)) =
E(L(G)) ∪ {ue|e ∈ E(G), u ∈ V (G) are incident in G}. Let V (G) = {v1, . . . , vν}. The end-
line graph G+ of G is defined as follows: V (G+) = {v1, . . . , vν, v

′
1, . . . , v

′
ν} and E(G+) =

E(G) ∪ {v1v
′
1, . . . , vνv

′
ν}. Hamada and Yoshimura [12] showed that M(G) = L(G+).

The characteristic polynomial and the complexity of the middle graph M(G) of an r-regular
graph G are given as follows [6,22]:

Theorem 17. Let G be a connected r-regular graph with ν vertices and ε edges. Then

�(M(G); λ) = (λ + 1)ν(λ + 2)ε−ν�

(
G; λ2 + (2 − r)λ − r

λ + 1

)
(13)

and

κ(M(G)) = 2ε−ν+1(r + 1)ε−1κ(G). (14)

As the case of line graph, one can use Bass theorem to get a matrix expression of the zeta
function of the middle graph M(G) as follows.

Theorem 18. Let G be a connected graph with ν vertices and ε edges. Then

Z(M(G), u)−1 = (1 − u2)|E(M(G))|−εG−νG det(I − uAM + u2(DM − I)), (15)

where AL = A(M(G)) and DM = DM(G).

In particular, if G is regular one can express the reciprocal Z(M(G), u)−1 of the zeta function
of the middle graph M(G) in terms of the characteristic polynomial of G.
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Theorem 19. Let G be a connected r-regular graph with ν vertices and ε edges. Then

Z(M(G), u)−1

= (1 − u2)(r−1)(ε+ν)−εuν(1 + u + (r − 1)u2)ν(1 + 2u + (2r − 1)u2)ε−ν

×�

(
G; 1 + (2 − r)u + (2r − 2)u2 + (r − 1)(2 − r)u3 + (2r − 1)(r − 1)u4

u(1 + u + (r − 1)u2)

)
.

(16)

Proof. For a vertex w of M(G), we have

deg w =
{
r if w ∈ V (G),

2r if w ∈ E(G).

Set a = 2r − 1 and b = r − 1. By Eq. (1), we have

Z(M(G), u)−1 = (1 − u2)(r−1)(ε+ν)−ε det(Iε+ν − uAM + u2QM).

The equalities in Eq. (4) imply that

det(Iε+ν − uAM + u2QM)

= det

[
(1 + au2)Iε − uAL −uB

−uBt (1 + bu2)Iν

]
= det

[
(1 + au2)Iε − uAL − u2

1+bu2 BBt −uB
0 (1 + bu2)Iν

]
.

By Eqs. (4) and (8),

det(Iε+ν − uAM + u2QM)

= uε(1 + bu2)ν−ε(1 + u + bu2)ε�

(
L(G); 1 + (a + b − 2)u2 + abu4

u(1 + u + bu2)

)
= uν(1 + u + bu2)ν(1 + 2u + au2)ε−ν�

×
(

G; 1 + (2 − r)u + (a + b − r)u2 + b(2 − r)u3 + abu4

u(1 + u + bu2)

)
.

Thus, we have

Z(M(G), u)−1 = (1 − u2)(r−1)(ε+ν)−εuν(1 + u + bu2)ν(1 + 2u + au2)ε−ν�(G; h(u)),

where

h(u) = (1 + (2 − r)u + (a + b − r)u2 + b(2 − r)u3 + abu4)(u(1 + u + bu2))
−1

.

Therefore, the result follows. �

For any permutation voltage assignment α : D(G) → Sn, we show that the middle graph of
the n-fold covering Gα of G is an n-fold covering of the middle graph M(G) of G. Also, one can
determine the voltage assignment which derives the covering M(Gα) → M(G).

Theorem 20. Let G be a connected graph with ν vertices v1, . . . , vν and let α : D(G) → Sn be
a permutation voltage assignment. Then M(Gα) is an n-fold covering of M(G).
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Proof. Recall that M(G) = L(G+). Now, let V (G) = {v1, . . . , vν} and V (G+) = V (G) ∪
{v′

1, . . . , v
′
ν}. Define a function α∗ : D(G+) → Sn by

α∗(u, v) :=
{
α(u, v) if (u, v) ∈ D(G),

1 if uv = viv
′
i .

Then one can show that (Gα)+ = (G+)α
∗
, i.e., M(Gα) = L((Gα)+) = L((G+)α

∗
). By Lemma

11, L((G+)α
∗
) is an n-fold covering of L(G+) and it can be derived from a voltage assignment

α∗
L. Therefore, M(Gα) is an n-fold covering of M(G). �

Corollary 21. M(Gα) = M(G)α
∗
L.

Proof. Since L(Gα) = L(G)αL , M(Gα) = L((G+)α
∗
) = L(G+)α

∗
L = M(G)α

∗
L . �

Mizuno and Sato [22] showed that M(Gα) is a regular covering of M(G) if Gα is a regular
covering of G.

We consider the permutation voltage assignment α∗
L : D(M(G)) → Sn. Set αM = α∗

L. Give
an order in V (G+) as v1, . . . , vν, v

′
1, . . . , v

′
ν . By the definition of α∗, αM is given as follows:

αM(u, v) =


αL(u, v) if (u, v) ∈ D(L(G)),

1 if u = [eij ], v = vjv
′
j and i > j,

α(eij ) if u = [eij ], v = vjv
′
j and i < j,

where eij = (vi, vj ).

For g ∈ Sn, the matrix (AM)g = (a
(g)
uv ) is defined as follows: a

(g)
uv = 1 if αM(u, v) = g and

(u, v) ∈ D(M(G)), and a
(g)
uv = 0 otherwise. Furthermore, let DM = (dij ) be the diagonal matrix

with dii = degM(G) ei(1 � i � ε); dii = degM(G) vi−ε(ε + 1 � i � ε + ν), and QM = DM −
Iε+ν , where V (G) = {v1, . . . , vν} and E(G) = {e1, . . . , eε}. By Theorem 5, the decomposition
formulas for the zeta function and the complexity of the middle graph M(Gα) of a covering Gα

of a graph G are obtained. Note that |E(M(G))| > |V (M(G))| if ε � ν.

Theorem 22. Let G be a connected graph and let α : D(G) → Sn be a permutation voltage
assignment. Let � = 〈{α(u, v)|(u, v) ∈ D(G)}〉 be the subgroup of Sn generated by {α(u, v)|
(u, v) ∈ D(G)}, and let P : � → GL(n, C) be the permutation representation of �. Suppose that
the n-fold covering Gα of G is connected. Furthermore, let ρ1 = 1, ρ2, . . . , ρt be the irreducible
representations of �, and fi the degree of ρi for each i, where f1 = 1, with the decomposition
P = 1 + m2ρ2 + · · · + mtρt into irreducible representations. Then the reciprocal of the zeta
function of M(Gα) is

Z(M(Gα), u)−1 = Z(M(G), u)−1
t∏

i=2

{
(1 − u2)(εM−εG−νG)fi

× det

(
I − u

∑
g∈�

ρi(g) ⊗ (AM)g + u2(QM)fi

)}mi

,

where (QM)fi
= Ifi

⊗ QM and εM = |E(M(G))|. Suppose that εG � νG. Then the complexity
of M(Gα) is
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κ(M(Gα)) = 1

n
κ(M(G))

t∏
i=2

det

Ifi
⊗ DM −

∑
g∈�

ρi(g) ⊗ (AM)g

mi

.

By Theorem 19, one can express the zeta function of the middle graph M(Gα) in terms of the
characteristic polynomial of Gα when G is regular.

Corollary 23. Let G be a connected regular graph with valency r, ν vertices and ε edges, and
α : D(G) → Sn a permutation voltage assignment. Suppose that the n-fold covering Gα of G is
connected. Then the reciprocal of the zeta function of M(Gα) is

Z(M(Gα), u)−1

= (1 − u2)n(r−1)(ε+ν)−εnuνn(1 + u + (r − 1)u2)νn(1 + 2u + (2r − 1)u2)(ε−ν)n

×�

(
Gα; 1 + (2 − r)u + (2r − 2)u2 + (r − 1)(2 − r)u3 + (2r − 1)(r − 1)u4

u(1 + u + (r − 1)u2)

)
.

(17)

Proof. Note that Gα is r-regular. �

Mizuno and Sato [24] expressed the Bartholdi zeta functions of the line graph and the middle
graph of a regular covering of a graph by using the characteristic polynomial of that regular
covering.

By Theorem 17, we obtain the following result.

Corollary 24. Let G be a connected regular graph with valency r, ν vertices and ε edges, and
α : D(G) → Sn a permutation voltage assignment. Suppose that the n-fold covering Gα of G is
connected and ε � ν. Then the complexity of M(Gα) is

κ(M(Gα)) = 2(ε−ν)n+1(r + 1)εn−1κ(Gα). (18)

Next, we state an alternative formula for the complexity κ(M(Gα)).

Corollary 25. LetGbe a connected r-regular graph with ν vertices and ε edges,andα : D(G) →
Sn a permutation voltage assignment. Let � = 〈{α(u, v)|(u, v) ∈ D(G)}〉 be the subgroup of Sn

generated by {α(u, v)|(u, v) ∈ D(G)}, and let P : � → GL(n, C) be the permutation represen-
tation of � such that P(γ ) = Pγ . Suppose that the n-fold covering Gα of G is connected and
ε � ν. Furthermore, let ρ1 = 1, ρ2, . . . , ρt be the irreducible representations of �, and fi the
degree of ρi for each i, where f1 = 1, with the decomposition P = 1 + m2ρ2 + · · · + mtρt into
irreducible representations. Then the complexity of M(Gα) is

κ(M(Gα)) = 1

n
2(ε−ν)(n−1)(r + 1)ε(n−1)κ(M(G))

t∏
i=2

�

∑
g∈�

ρi(g) ⊗ Ag; r

mi

.

Proof. By Eqs. (18) and (3), we have

κ(M(Gα)) = 2(ε−ν)n+1(r + 1)εn−1(1/νn)�′(Gα; r).
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Eq. (7) implies that �′(Gα; r) = �′(G; r)
∏t

i=2 �(
∑

g∈� ρi(g) ⊗ Ag; r)mi . By Eqs. (3) and (14),
we have

�′(G; r) = νκ(G) = ν2−(ε−ν+1)(r + 1)−(ε−1)κ(M(G)).

Therefore, the result follows. �

We give a determinant expression for the L-function of the middle graph M(G) for a graph G.

Theorem 26. Let G be a connected graph with ν vertices and ε edges and α : D(G) → Sn a per-
mutation voltage assignment. Furthermore, let ρ be a representation of � = 〈{α(e)|e ∈ D(G)}〉,
and f the degree of ρ. Suppose that the n-fold covering Gα of G is connected. Then

ZM(G)(u, ρ, αM)−1 = (1 − u2)(εM−ε−ν)f det

I − u
∑
g∈�

ρ(g) ⊗ (AM)g + u2(QM)f

 .

Proof. By Theorem 3 of [21]. �

Corollary 27. Let G be a connected graph with ν vertices and ε edges, and α : D(G) → Sn

a permutation voltage assignment. Let � = 〈{α(u, v)|(u, v) ∈ D(G)}〉 be the subgroup of Sn

generated by {α(u, v)|(u, v) ∈ D(G)}, and let P : � → GL(n, C) be the permutation repre-
sentation of � such that P(γ ) = Pγ . Suppose that the n-fold covering Gα of G is connected.

Furthermore, let ρ1 = 1, ρ2, . . . , ρt be the irreducible representations of �, and fi the degree of
ρi for each i, where f1 = 1, with the decomposition P = 1 + m2ρ2 + · · · + mtρt into irreducible
representations. Then

Z(M(Gα), u) =
t∏

i=1

ZM(G)(u, ρi, αM)mi .

We express the L-function of the middle graph M(G) for a regular graph G in terms of
characteristic polynomials.

Theorem 28. Let G be a connected r-regular graph with ν vertices and ε edges and α : D(G) →
Sn a permutation voltage assignment. Furthermore, let ρ be a representation of � = 〈{α(e)|e ∈
D(G)}〉, and f the degree of ρ. Suppose that the n-fold covering Gα of G is connected. Then

ZM(G)(u, ρ, αM)−1

= (1 − u2)(r−1)(ε+ν)f −εf uνf (1 + u + (r − 1)u2)νf (1 + 2u + (2r − 1)u2)(ε−ν)f

×�

∑
g∈�

ρ(g)⊗ Ag; 1 + (2 − r)u + (2r − 2)u2 + (r − 1)(2 − r)u3 + (2r − 1)(r − 1)u4

u(1 + u + (r − 1)u2)

 .

Proof. Similar to the proof of Theorem 6 in [23]. �

By Theorem 28 and Corollary 27, Corollary 23 can be confirmed as follows: Let ρ1 =
1, ρ2, . . . , ρt be the irreducible representations of �, and fi the degree of ρi for each i, where
f1 = 1. Let the permutation representation P : � → GL(n, C) be decomposed into a direct sum of
irreducible representations as 1 + m2ρ2 + · · · + mtρt . By Theorem 28 and Corollary 27, we have
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Z(M(Gα), u)−1 =
t∏

i=1

ZM(G)(u, ρi, αM)−mi

=(1 − u2)n(r−1)(ε+ν)−εnuνn(1 + u + bu2)νn(1 + 2u + au2)(ε−ν)n

×�(G; h1(u))

t∏
i=2

�

∑
g∈�

ρi(g) ⊗ Ag; h1(u)

mi

,

where a = 2r − 1, b = r − 1 and h1(u) = 1+(2−r)u+(a+b−r)u2+b(2−r)u3+abu4

u(1+u+bu2)
. Now, Corollary

23 follows from Theorem 6.

5. Total graphs of a graph and its covering graphs

The characteristic polynomial and the complexity of the total graph T (G) of an r-regular graph
G are given as follows. We denote the set of all eigenvalues of G by SpecG.

Theorem 29. Let G be a connected regular graph with valency r, ν vertices and ε edges, and
SpecG = {λ1 = r, λ2, . . . , λν}. Then

�(T (G); λ) = (λ + 2)ε−ν
ν∏

j=1

(
λ2 − (2λj + r − 2)λ + λ2

j + (r − 3)λj − r
)

, (19)

and

κ(T (G)) = 1

ν
2ε−ν+1(r + 1)ε−ν

ν∏
j=2

(λj − r)(λj − 2r − 3). (20)

Proof. Note that T (G) is a 2r-regular and Eq. (19) comes from Theorem 2.20 of [6]. By Theorem
3, we have

κ(T (G)) = 1

ε + ν
�′(T (G); 2r).

But, we have

�(T (G); λ) = (λ + 2)ε−ν
ν∏

j=1

(λ2 − (2λj + r − 2)λ + λ2
j + (r − 3)λj − r),

where SpecG = {λ1 = r, λ2, . . . , λν}. In the case of λj = r, λ2 − (2λj + r − 2)λ + λ2
j +

(r − 3)λj − r = (λ − 2r)(λ − r + 2). Since the multiplicity of λj = r is 1, we set

�(T (G); λ) = (λ − 2r)k(λ),

and then

�′(T (G); λ) = k(λ) + (λ − 2r)k′(λ),

Thus,

�′(T (G); 2r) = k(2r) = 2ε−ν(r + 1)ε−ν(r + 2)

ν∏
j=2

(λj − r)(λj − 2r − 3).

Since ε + ν = ν(r + 2)/2, the result follows. �
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Theorem 30. Let G be a connected regular graph with valency r, ν vertices and ε edges, and
SpecG = {λ1 = r, λ2, . . . , λν}. Then

Z(T (G), u)−1 = (1 − u2)(ε+ν)(r−1)(1 + 2u + (2r − 1)u2)ε−ν
ν∏

j=1

{
(2r − 1)2u4

−(2r − 1)(2λj + r − 2)u3 + (λ2
j + (r − 3)λj + 3r − 2)u2

−(2λj + r − 2)u + 1
}
. (21)

Proof. Note that T (G) is 2r-regular. Set a = 2r − 1. By Eq. (1), we have

Z(T (G), u)−1 = (1 − u2)(ε+ν)(r−1) det(Iε+ν − uAT + au2Iε+ν)

= (1 − u2)(ε+ν)(r−1)uε+ν�

(
T (G); 1 + au2

u

)
.

From Eq. (19), we have

uε+ν�

(
T (G); 1 + au2

u

)
= uε+ν

(
1 + au2

u
+ 2

)ε−ν ν∏
i=1

{
Bigg(

1 + au2

u

)2

−(2λi + r − 2)

(
1 + au2

u

)
+ λ2

i + (r − 3)λi − r

}

= (1 + 2u + au2)ε−ν
ν∏

i=1

{
a2u4 − a(2λi + r − 2)u3

+(λ2
i + (r − 3)λi − r + 2a)u2 − (2λi + r − 2)u + 1

}
,

where SpecG = {λ1 = r, λ2, . . . , λν}. Thus, we have

Z(T (G), u)−1 = (1 − u2)(ε+ν)(r−1)(1 + 2u + au2)ε−ν
ν∏

i=1

h(u, λi), (22)

where h(u, λ) = a2u4 − a(2λ + r − 2)u3 + (λ2 + (r − 3)λ − r + 2a)u2 − (2λ + r − 2)u + 1.
�

First we show that the total graph T (Gα) of a covering Gα of G is a covering of the total
graph T (G) of G. For two graphs G and H , let G ∪ H be the graph with vertex set V (G ∪ H) =
V (G) ∪ V (H) and edge set E(G ∪ H) = E(G) ∪ E(H).

Theorem 31. Let G be a connected graph and let α : D(G) → Sn be a permutation voltage
assignment. Then the total graph T (Gα) of Gα is an n-fold covering of the total graph T (G)

of G.

Proof. At first, note that T (G) = M(G) ∪ G. Thus, we have T (Gα) = M(Gα) ∪ Gα =
M(G)αM ∪ Gα . Define a function αT : D(T (G)) → Sn by
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αT (u, v) :=
{
αM(u, v) if (u, v) ∈ D(M(G)),

α(u, v) if (u, v) ∈ D(G).

Then it follows that T (Gα) = M(G)αT ∪ GαT = (M(G) ∪ G)αT = T (G)αT . �

Mizuno and Sato [22] showed that T (Gα) is a regular covering of T (G) if Gα is a regular
covering of G.

We consider the permutation voltage assignment αT : D(T (G)) → Sn. For g ∈ Sn, the matrix
(AT )g = (a

(g)
uv ) is defined as follows: a(g)

uv = 1 if αT (u, v) = g and (u, v) ∈ D(T (G)), and a
(g)
uv =

0 otherwise. Furthermore, let DT = (dij ) be the diagonal matrix with dii = degT (G) ei(1 � i �
ε); dii = degT (G) vi−ε(ε + 1 � i � ε + ν), and QT = DT − Iε+ν , where V (G) = {v1, . . . , vν}
and E(G) = {e1, . . . , eε}.

By Theorem 5, the decomposition formulas for the zeta function and the complexity of the total
graph T (Gα) of a covering Gα of a graph G are obtained. Note that |E(T (G))| > |V (T (G))| if
ε � ν.

Theorem 32. Let G be a connected graph with ν vertices and ε edges, and α : D(G) → Sn

a permutation voltage assignment. Let � = 〈{α(u, v)|(u, v) ∈ D(G)}〉 be the subgroup of Sn

generated by {α(u, v)|(u, v) ∈ D(G)}, and let P : � → GL(n, C) be the permutation repre-
sentation of � such that P(γ ) = Pγ . Suppose that the n-fold covering Gα of G is connected.

Furthermore, let ρ1 = 1, ρ2, . . . , ρt be the irreducible representations of �, and fi the degree of
ρi for each i, where f1 = 1, with the decomposition P = 1 + m2ρ2 + · · · + mtρt into irreducible
representations. Then the reciprocal of the zeta function of T (Gα) is

Z(T (Gα), u)−1 = Z(T (G), u)−1
t∏

i=2

{
(1 − u2)(εT −ε−ν)fi

× det

(
I − u

∑
g∈�

ρi(g) ⊗ (AT )g + u2(QT )fi

)}mi

,

where (QT )fi
= Ifi

⊗ QT and εT = |E(T (G))|. Suppose that ε � ν. Then the complexity of
T (Gα) is

κ(T (Gα)) = 1

n
κ(T (G))

t∏
i=2

det

Ifi
⊗ DT −

∑
g∈�

ρi(g) ⊗ (AT )g

mi

.

One can express the zeta function of the total graph T (Gα) in terms of the eigenvalues of Gα

when G is regular. Recall that SpecG is a subfamily of SpecGα by Theorem 6.

Corollary 33. Let G be a connected regular graph with valency r, ν vertices and ε edges, and
let α : D(G) → Sn be a permutation voltage assignment. Furthermore, let SpecGα = {λ1 =
r, λ2, . . . , λν, λν+1, . . . , λnν}, where SpecG = {λ1, . . . , λν}. Suppose that the n-fold covering
Gα of G is connected. Then

Z(T (Gα), u)−1

= (1 − u2)ν(r+2)(r−1)(n−1)/2(1 + 2u + (2r − 1)u2)ν(r−2)(n−1)/2Z(T (G), u)−1
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×
nν∏

j=ν+1

{
(2r − 1)2u4 − (2r − 1)(2λj + r − 2)u3

+(λ2
j + (r − 3)λj + 3r − 2)u2 − (2λj + r − 2)u + 1

}
.

Proof. Again T (Gα) is 2r-regular. Set a = 2r − 1 and let

SpecGα = {λ1 = r, λ2, . . . , λν, λν+1, . . . , λ2ν, . . . , λnν}.
Then by Eq (22), we have

Z(T (Gα), u)−1

= (1 − u2)(ε+ν)(r−1)n(1 + 2u + au2)(ε−ν)n
ν∏

i=1

h(u, λi)

nν∏
j=ν+1

h(u, λj )

= (1 − u2)(ε+ν)(r−1)(n−1)(1 + 2u + au2)(ε−ν)(n−1)Z(T (G), u)−1
nν∏

j=ν+1

h(u, λj ),

where h(u, λ) = a2u4 − a(2λ + r − 2)u3 + (λ2 + (r − 3)λ − r + 2a)u2 − (2λ + r − 2)u + 1.
�

We give a determinant expression for the L-function of the total graph T (G) for a graph G.

Theorem 34. Let G be a connected graph with ν vertices and ε edges and α : D(G) → Sn a per-
mutation voltage assignment. Furthermore, let ρ be a representation of � = 〈{α(e)|e ∈ D(G)}〉
of degree f. Suppose that the n-fold covering Gα of G is connected. Then

ZT (G)(u, ρ, αT )−1 = (1 − u2)(εT −ε−ν)f det

I − u
∑
g∈�

ρ(g) ⊗ (AT )g + u2(QT )f

 .

Proof. By Theorem 3 of [21]. �

Corollary 35. Let G be a connected graph with ν vertices and ε edges, and α : D(G) → Sn

a permutation voltage assignment. Let � = 〈{α(u, v)|(u, v) ∈ D(G)}〉 be the subgroup of Sn

generated by {α(u, v)|(u, v) ∈ D(G)}, and let P : � → GL(n, C) be the permutation repre-
sentation of � such that P(γ ) = Pγ . Suppose that the n-fold covering Gα of G is connected.

Furthermore, let ρ1 = 1, ρ2, . . . , ρt be the irreducible representations of �, and fi the degree of
ρi for each i, where f1 = 1, with the decomposition P = 1 + m2ρ2 + · · · + mtρt into irreducible
representations. Then

Z(T (Gα), u) =
t∏

i=1

ZT (G)(u, ρi, αT )mi .

We express the L-function of the total graph T (G) for a regular graph G in terms of eigenvalues
of some matrix.
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Theorem 36. Let G be a connected r-regular graph with ν vertices and ε edges and α : D(G) →
Sn a permutation voltage assignment. Furthermore, let ρ be a representation of � = 〈{α(e)|e ∈
D(G)}〉 of degree f. Let Spec

∑
g∈� ρ(g) ⊗ Ag = {λ1, . . . , λνf } be the family of all eigenvalues

of the matrix
∑

g∈� ρ(g) ⊗ Ag. Suppose that the n-fold covering Gα of G is connected. Then

ZT (G)(u, ρ, αT )−1

= (1 − u2)(r−1)(ε+ν)f (1 + 2u + (2r − 1)u2)(ε−ν)f

×
νf∏

j=1

{
(2r − 1)2u4 − (2r − 1)(2λj + r − 2)u3 + (λ2

j + (r − 3)λj + 3r − 2)u2

−(2λj + r − 2)u + 1
}
.

Proof. At first, T (G) is a 2r-regular graph. By Theorem 34, we have

ZT (G)(u, ρ, αT )−1 = (1 − u2)(r−1)(ε+ν)f det

(
I(ε+ν)f

−u
∑
g∈�

ρ(g) ⊗ (AT )g + u2aI(ε+ν)f

)
,

where a = 2r − 1. But, we have

det(I(ε+ν)f − u
∑
g∈�

ρ(g) ⊗ (AT )g + u2aI(ε+ν)f )

= u(ε+ν)f det

1 + au2

u
I(ε+ν)f −

∑
g∈�

(AT )g ⊗ ρ(g)

 .

Now, let V (G) = {v1, . . . , vν} and E(G) = {e1, . . . , eε}. Furthermore, let Bρ be the εf × νf

matrix defined as follows:

(Bρ)ij :=


If if ei = (vj , vk) and j < k,

ρ(α(ekj )) if ei = (vk, vj ) and j > k,

0f otherwise,

where (Bρ)ij is the (i, j)-block of Bρ . Then we have

BρB
t

ρ =
∑
g∈�

(AL)g ⊗ ρ(g) + 2Iεf (23)

and

B
t

ρBρ =
∑
g∈�

Ag ⊗ ρ(g) + rIνf , (24)

where B
t

ρ is the conjugate transpose of Bρ . By (4), we have∑
g∈�

(AT )g ⊗ ρ(g) =
[∑

g∈�(AL)g ⊗ ρ(g) Bρ

B
t

ρ

∑
g∈� Ag ⊗ ρ(g)

]
, (25)
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where

AT =
[

AL B
Bt A

]
.

By (23)–(25), we have

h(u) := det(I(ε+ν)f − u
∑
g∈�

ρ(g) ⊗ (AT )g + u2(QT )f )

= det(I(ε+ν)f − u
∑
g∈�

(AT )g ⊗ ρ(g) + u2QT ⊗ If )

= u(ε+ν)f det

[
1+au2

u
Iεf − BρB

t

ρ + 2Iεf −Bρ

−B
t

ρ
1+au2

u
Iνf − B

t

ρBρ + rIνf

]
.

Let b = 1+au2

u
. Then we have

h(u) = u(ε+ν)f det

[
(b + 2)Iεf − BρB

t
ρ −Bρ

−B
t
ρ (b + r)Iνf − B

t
ρBρ

]

= u(ε+ν)f det

[
(b + 2)Iεf −Bρ

−(b + r + 1)B
t
ρ + B

t
ρBρB

t
ρ (b + r)Iνf − B

t
ρBρ

]

= u(ε+ν)f det

[
(b + 2)Iεf 0

∗ − b+r+1
b+2 B

t
ρBρ + 1

b+2 B
t
ρBρB

t
ρBρ + (b + r)Iνf − B

t
ρBρ

]
.

Let Aρ = ∑
g∈� Ag ⊗ ρ(g). By (24), we have

h(u) = u(ε+ν)f det

[
(b + 2)Iεf 0

∗ 1
b+2 {A2

ρ − (2b − r + 3)Aρ + (b2 − br + 2b − r)Iνf }
]

= u(ε+ν)f (b + 2)(ε−ν)f det(A2
ρ − (2b − r + 3)Aρ + (b2 − br + 2b − r)Iνf ).

Now, let

SpecAρ = {λ1, . . . , λνf }.
Then we have

u2νf det(A2
ρ − (2b − r + 3)Aρ + (b2 − br + 2b − r)Iνf )

=
νf∏

j=1

{
a2u4 − a(2λj + r − 2)u3 + (λ2

j + (r − 3)λj + 2a − r)u2 − (2λj + r − 2)u + 1
}

,

and so, the result follows. �

As the cases of line and middle graphs, one can derive Corollary 33 from Theorem 36 and
Corollary 35. The details are omitted.

6. Examples

Let G = K3 be the complete graph with three vertices v1, v2, v3 and let α : D(K3) → S3 be the
permutation voltage assignment defined by α(v1, v2) = (12), α(v1, v3) = (23) and α(v2, v3) = 1.
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Then, the 3-fold covering Kα
3 is the cycle graph C9 with nine vertices. Furthermore, we have

αL([e12], [e23]) = α(v1, v2) = (12); αL([e23], [e31]) = α(v3, v1)α(v2, v3) = (23); αL([e31],
[e12]) = 1. Since L(Kα

3 ) = L(C9) = C9 and L(K3) = K3, it is certain that L(Kα
3 ) = L(K3)

αL .
The prime, reduced cycles of K3 are C and C−1, where C = (v1, v2, v3, v1). Thus,

Z(K3, u)−1 =(1 − u3)2. Similarly, we have Z(L(Kα
3 ), u)−1 = (1 − u9)2.

Next, we have � = 〈(12), (23)〉 = S3. And S3 has three irreducible representations ρ1 = 1,
ρ2 (the sign representation) and ρ3 with degrees f1 = f2 = 1 and f3 = 2, respectively. The
representation ρ3 is given by

ρ3(1) = I2, ρ3((123)) =
[
ζ 0
0 ζ 2

]
, ρ3((132)) =

[
ζ 2 0
0 ζ

]
,

ρ3((12)) =
[

0 1
1 0

]
, ρ3((23)) =

[
0 ζ

ζ 2 0

]
, ρ3((13)) =

[
0 ζ 2

ζ 0

]
,

where ζ = exp 2π
√−1
3 = −1+√−3

2 . Let P : � → GL(3, C) be the permutation representation of
� such that P(γ ) = Pγ . Then we have P = 1 + ρ3. Let ρ = ρ3. By Eq. (7), we have

�(Kα
3 ; λ) = �(K3; λ)�

∑
g∈S3

ρ(g) ⊗ Ag; λ



= det

 λ −1 −1
−1 λ −1
−1 −1 λ

 · det



λ 0 0 0 −1 −ζ

0 λ −1 −1 0 0
0 −1 λ −ζ 0 0
0 −1 −ζ 2 λ 0 0

−1 0 0 0 λ −1
−ζ 2 0 0 0 −1 λ


= (λ3 − 3λ − 2)(λ3 − 3λ + 1)2.

By Eq. (11), we have

Z(L(Kα
3 ), u)−1 = u9�

(
Kα

3 ; 1 + u2

u

)
= (1 − u3)2(1 + u3 + u6)2 = (1 − u9)2

as shown already.
Let V (M(K3)) = {[v1], [v2], [v3], [e12], [e23], [e31]}, where we set [vi] = viv

′
i , i = 1, 2, 3.

Then, the permutation voltage assignment αM : D(M(K3)) → S3 is defined as follows:

αM(u.v) = αL(u, v), (u.v) ∈ D(L(K3)); αM([v2], [e12]) = α(v1, v2)
−1 = (12);

αM([v3], [e23]) = αM([v1], [e13]) = αM([v1], [e12]) = αM([v2], [e23]) = 1;
αM([v3], [e13]) = (23).

It is certain that M(Kα
3 ) = M(C9) = M(K3)

αM . By Eq. (17), we have

Z(M(Kα
3 ), u)−1

= (1 − u2)9u9
(

1 + u + u2
)9

�

(
Kα

3 ; 1 + 2u2 + 3u4

u + u2 + u3

)
= (1 − u2)9(1 + u + 3u2 + u3 + 3u4)(1 − u)
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×(1 + u2 − 6u3 − 4u4 − 13u5 − 6u6 − 9u7)

×(1 − u + 3u2 − 8u3 + 10u4 − 20u5 + 21u6 − 36u7 + 22u8 − 32u9

+39u10 − 9u11 + 27u12)2.

Furthermore, noting SpecK3 = {2, −1, −1}, one can have by Eq. (21)

Z(T (K3), u)−1 = (1 − u2)6(1 − 4u + 6u2 − 12u3 + 9u4)(1 + 2u + 6u2 + 6u3 + 9u4)2.

Since Kα
3 = C9, the eigenvalues of Kα

3 are given as follows [6]:

SpecKα
3 = {2, −1, −1} ∪

{
2 cos

2jπ

9

∣∣∣∣ 1 � j � 8; j /= 3, 6

}
.

By Corollary 33, we have

Z(T (Kα
3 ), u)−1

= (1 − u2)12Z(T (K3), u)−1

×
8∏

j=1;j /=3,6

{
9u4 − 12 cos

2jπ

9
u3 +

(
4 cos2 2jπ

9
− 2 cos

2jπ

9
+ 4

)
u2

−4 cos
2jπ

9
u + 1

}
= (1 − u2)18(1 − 4u + 6u2 − 12u3 + 9u4)(1 + 2u + 6u2 + 6u3 + 9u4)2

×
8∏

j=1;j /=3,6

{
9u4 − 12 cos

2jπ

9
u3 +

(
4 cos2 2jπ

9
− 2 cos

2jπ

9
+ 4

)
u2

−4 cos
2jπ

9
u + 1

}
.

As the other example, let G = K4 be the complete graph with four vertices v1, v2, v3, v4. Let
α : D(K4) → S3 be the permutation voltage assignment defined byα(v1, v2) = (12), α(v1, v3) =
(23) and α(v1, v4) = α(v2, v3) = α(v2, v4) = α(v3, v4) = 1. The complexity of K4 is 44−2 = 16
[6]. By Eq. (6), we have

κ((K4)
α)= 1

3
κ(G) det



3 0 0 −1 0 −1 −ζ 0

0 3 −1 −1 −1 0 0 0

0 −1 3 −1 −ζ 0 0 0

−1 −1 −1 3 0 0 0 0

0 −1 −ζ 2 0 3 0 0 −1

−1 0 0 0 0 3 −1 −1

−ζ 2 0 0 0 0 −1 3 −1

0 0 0 0 −1 −1 −1 3


= 1

3
· 42 · 720 = 3840,

where ζ = −1+√−3
2 . By Eq. (18), we have κ(M(Kα

4 )) = 27417κ(Kα
4 ) = 27417 · 3840.
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