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√

2 and 2. Suppose that the critical
point of T is not recurrent. Let K denote the inverse limit space obtained by using T
repeatedly as the bonding map. We prove that every homeomorphism of K to itself is
isotopic to some power of the natural shift homeomorphism.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the last fifteen years inverse limits of unimodal maps have been studied extensively. One of the main problems in the
field of study is to classify all such spaces based upon the dynamics of the particular unimodal map that generates the in-
verse limit space. There are many known topological invariants in this class of spaces such as endpoints [3,6], folding points
[7,10,13], asymptotic arc-components [8], and complicated subcontinua [1,5,9]. The main conjecture is due to W.T. Ingram:

Ingram’s conjecture. Let Ts and Tt be tent maps with slopes s and t respectively. Then lim←−{[0,1], Ts} is homeomorphic with
lim←−{[0,1], Tt} if and only if s = t.

Ingram’s conjecture has been proved in many special cases. If Ts is a tent map with a periodic critical point of period n
and Tt is a tent map with a periodic critical point of period n′ then Barge and Martin proved that the core of lim←−{[0,1], Ts}
has n endpoints and the core of lim←−{[0,1], Tt} has n′ endpoints [3]. Hence if n �= n′ then lim←−{[0,1], Ts} is not homeomorphic
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with lim←−{[0,1], Tt}. Bruin extended this by introducing the notion of folding points, and showing that if Ts and Tt have
preperiodic critical points of order n and n′ respectively then lim←−{[0,1], Ts} and lim←−{[0,1], Tt} have n and n′ many folding
points respectively [7]. Hence if n �= n′ then the associated inverse limit spaces are not homeomorphic. Barge and Diamond
proved the conjecture in the case that Ts is one of the three tent maps with a periodic critical point of period 5 [2]. In two
papers Kailhofer proved Ingram’s conjecture in the case that the periodic point is periodic [11] and [12]. Subsequently, Block,
Jakimovik, Kailhofer, and Keesling gave a simplified proof [4]. Independently Štimac proved in her dissertation research that
Ingram’s conjecture holds in the case that the critical point is periodic [16], and then she extended her work to the case
that the critical point is preperiodic [15]. Recently Raines and Štimac have proved the Ingram’s conjecture in the case that
the critical point is non-recurrent [14].

The focus of this paper is the case that the inverse limit is induced by a tent map with a non-recurrent critical point.
Here we describe the structure of the isotopy classes of the set of homeomorphisms of such a space to itself by showing:

Main Theorem. Let T be a tent map with slope strictly between
√

2 and 2 and suppose that the critical point of T is not recurrent. Let
h : lim←−{[0,1], T } → lim←−{[0,1], T } be a homeomorphism. Then there is an integer k such that h is isotopic to σ k.

By σ we mean the natural shift homeomorphism

σ(x0, x1, . . .) = (
T (x0), x0, x1, . . .

)
on lim←−{[0,1], T }.

Block, Jakimovik, Kailhofer and Keesling have proved this result in the case that the critical point is periodic [4]. The
main difference between the periodic case and the non-recurrent case is that in the periodic case there are only finitely
many folding points (points x̄ ∈ lim←−{[0,1], T } with the property that there is no neighborhood of x̄ homeomorphic to the
product of a zero-dimensional set and an arc), and all of these folding points are in fact endpoints. In the case we consider,
the non-recurrent case, there are no endpoints, but we have (perhaps uncountably many) folding points. These folding
points present the main difficulty in proving our result.

2. Definitions and preliminary lemmas

Let T = Ts : [0,1] → [0,1] be a tent map with slope, s, strictly between
√

2 and 2 such that the critical point of T , 1
2 , is

non-recurrent. Let K denote the inverse limit space, K = lim←−{[0,1], T }. For each non-negative integer n, let πn : K → [0,1]
denote the natural projection given by πn(x0, x1, . . .) = xn . Then πn = T ◦ πn+1 for each n. Let C0 denote the arc-component
of the endpoint, (0,0,0, . . .) of K . We call C0 the tail of K . Let X denote the complement of C0 in K . We call X the core
of K . Note that X = lim←−{[T 2( 1

2 ), T ( 1
2 )], T }.

Lemma 2.1. Let C be a composant of X . Then C is an arc-component of X . Moreover, there is a continuous bijection ϕC : R → C from
the real line onto C .

This result is true because the critical point is non-recurrent. It may not be true in other circumstances.

Lemma 2.2. C0 is a ray, i.e., there is a homeomorphism ϕ : [0,∞) → C0 onto C0 . Moreover, C0 is an open dense subset of K .

This is a well-known fact for any value of s with 1 < s < 2.

Lemma 2.3. The arc-components of K are precisely the composants of X and the ray C0 .

This follows from Lemmas 2.1 and 2.2.

Lemma 2.4. Suppose that A is a continuum and either A ⊂ C0 or A is a proper subset of X . Then for n sufficiently large, πn|A is
a homeomorphism. In particular, A is an arc or a point.

Proof. If A ⊂ C0, then the conclusion is well known and does not depend on the hypothesis that 1
2 is not recurrent under T .

So, we assume that A ⊂ X . If there exists a positive integer N such that 1
2 /∈ πk(A) for all k � N , then n = N satisfies the

conclusion of the lemma.
Suppose 1

2 ∈ π j(A) for infinitely many j. There is an open interval V ⊂ [0,1] with 1
2 ∈ V such that there are no elements

of {T ( 1
2 ), T 2( 1

2 ), . . .} in V . Now for each k, πk(A) is an arc. As k → ∞, the length of πk(A) goes to zero. This is because
the restriction of T to [T 2( 1

2 ), T ( 1
2 )] is locally eventually onto. Hence, for some n, πn(A) is a subset of V . The conclusion

follows. �
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Following [4], we define the d̄-metric on arc-components. Let C be some arc-component of K and let x̄, ȳ ∈ C . Choose
n ∈ N to be large enough such that if A is the arc with endpoints x̄ and ȳ in C then πn|A is a homeomorphism. Then define

d̄(x̄, ȳ) = sn
∣∣πn(x̄) − πn( ȳ)

∣∣
(recall that s is the slope of the tent map we are using as the bonding map for K ). Notice that for all m � n we have

d̄(x̄, ȳ) = sm
∣∣πm(x̄) − πm( ȳ)

∣∣.
We let �̄ denote the length of an arc under the d̄-metric.

Lemma 2.5. Let x̄, ȳ ∈ K . Let j be a positive integer. Then

∣∣π j+1(x̄) − π j+1( ȳ)
∣∣ � |π j(x̄) − π j( ȳ)|

s
.

Proof. If π j+1(x̄), π j+1( ȳ) are on the same side of 1
2 , then equality holds. Suppose that π j+1(x̄), π j+1( ȳ) are on opposite

sides of 1
2 . Then

∣∣π j(x̄) − π j( ȳ)
∣∣ � max

{
1 − π j(x̄),1 − π j( ȳ)

} = s · max

{∣∣∣∣π j+1(x̄) − 1

2

∣∣∣∣,
∣∣∣∣π j+1( ȳ) − 1

2

∣∣∣∣
}

� s · ∣∣π j+1(x̄) − π j+1( ȳ)
∣∣.

This proves the lemma. �
Lemma 2.6. Let C be an arc-component of K . Let x̄, ȳ ∈ C. Then for any positive integer j we have

d̄(x̄, ȳ) �
∣∣π j(x̄) − π j( ȳ)

∣∣ · s j .

Proof. For some integer k > j we have

d̄(x̄, ȳ) = ∣∣πk(x̄) − πk( ȳ)
∣∣ · sk.

If n = k − 1 we see that by Lemma 2.5,

d̄(x̄, ȳ) �
∣∣πn(x̄) − πn( ȳ)

∣∣ · sn.

The conclusion follows by repeating this argument. �
Lemma 2.7. Let D be a subcontinuum of K . Suppose that there exists a real number M such that d̄(x̄, ȳ) � M whenever x̄ ∈ D ∩ C0
and ȳ ∈ D ∩ C0 . Then either D ⊂ C0 or D ⊂ X.

Proof. Suppose D ∩ C0 �= ∅. The boundedness of D ∩ C0 in the d̄-metric implies that there is a maximum element of D ∩ C0.
This implies that D ⊂ C0. If D ∩ C0 = ∅, then D ⊂ X . �

Let F ⊆ K be the set of folding points for K , i.e. x̄ ∈ F if and only if πn(x̄) = xn ∈ ω( 1
2 ) for all n ∈ N. Here ω( 1

2 ) is the set
of ω-limit points of 1

2 under T . In [13] it was shown that x̄ ∈ F if and only if every neighborhood of x̄ is not homeomorphic
to the product of a zero-dimensional set and an open arc.

Lemma 2.8. Suppose that A is an arc in K which contains no folding points. Then there is a positive integer k such that there are no
points of the closure of the orbit of 1

2 under T in πk(A).

Proof. A and F are disjoint compact subsets of K . Hence, there is a positive integer j such that π j(A) ∩ π j(F ) = ∅.
It follows that there are only finitely many elements of the orbit of 1

2 under T in A. So, for some positive integer n,
A ∩ {T n( 1

2 ), T n+1( 1
2 ), T n+2( 1

2 ), . . .} = ∅. Set k = j + n. The conclusion follows. �
Lemma 2.9. Let {Ai}i∈N be a sequence of arcs in K . Suppose that B is a subcontinuum of K and Ai → B in the Hausdorff metric.
Suppose also that there is an M > 0 such that �̄(Ai) � M for all i. Then B is an arc or a point in K and �̄(B) � M.

Proof. We claim that d̄(x̄, ȳ) � M whenever x̄, ȳ are in B ∩ C0. Proceeding by contradiction, suppose that d̄(x̄, ȳ) > M . For
some j, s j · |π j(x̄) − π j( ȳ)| = d̄(x̄, ȳ). There exist x̄n, ȳn ∈ An such that x̄n → x̄ and ȳn → ȳ. Hence π j(x̄n) → π j(x̄) and
π j( ȳn) → π j( ȳ). It follows that for n sufficiently large, s j · |π j(x̄n) − π j( ȳn)| > M . But d̄(x̄n, ȳn) � s j · |π j(x̄n) − π j( ȳn)| by
Lemma 2.6. This contradicts �̄(An) � M . This proves the claim.
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By Lemma 2.7, either B ⊂ C0 or B ⊂ X . Moreover, as in the first part of the proof, we see that for any composant C of X ,
d̄(x̄, ȳ) � M whenever x̄ and ȳ are in B ∩ C . It follows that B �= X . By Lemma 2.4 B is an arc or a point and, by the previous
argument, �̄(B) � M . �

Suppose that

h : K → K

is a homeomorphism. Then we have h(C0) = C0.
We let Z+ denote the set of non-negative integers, Z+ = {0,1,2, . . .}. We let N denote the set of positive integers,

N = {1,2,3, . . .}. Let p ∈ Z+ . Define the point x̄ ∈ K to be a p-point if there exists l ∈ Z+ such that πp+l(x̄) = 1
2 . We call

such l the p-level of the p-point x̄. Let E p,l be the set of all p-points of p-level l in K , and let E p be the set of all p-points
in K .

Let S ∈ N be large enough to satisfy the conditions from [14, Remark 4.7]. These conditions are quite technical and will
mostly not be important in this paper. A few of the implications, however, of n � S will be important, and we mention them
below. We write C ≺ D if the chaining C refines the chaining D, and we define the mesh of C to be the largest diameter
of any of its links. In [14], we construct a sequence of chainings of K , {Cr,k}r∈Z+,k�S . Let r ∈ Z+ and k � S . Let Vr,k be the
collection of all {0,1} words of length k + r + 1 that can occur as an initial segment of an itinerary of a point x ∈ [0,1]
under the map T . We can use the parity-lexicographic ordering to order this finite set

Vk,r = {
vi

k,r

} j
i=1.

Let I i
k,r be the interval of points in [0,1] whose itinerary begins with vi

k,r . Let

Li
k,r = conv

(
I i
k,r ∪ I i+1

k,r

)
,

where conv J stands for the interior of the convex hull of J . Define �i
k,r ⊆ K to be

�i
k,r = π−1

k

(
Li

k,r

)
.

Notice that this is the set of points in the inverse limit that have the property that the initial segment of the kth coordinate
is either vi

k,r or vi+1
k,r . Then we let

Ck,r = {
�i

k,r: 1 � i � j
}
.

It was shown in [14] that this collection of chains satisfies:

(1) Cq,m ≺ C p,n provided q � p and m � n [14, Lemma 2.22];
(2) the mesh of Cq,m goes to zero as q,m → ∞;
(3) each p-point, x̄, is contained in a link of C p,n , �x

p,n , such that if A is the arc-component of �x
p,n that contains x̄ then

A ∩ E p = {x̄} [14, Remark 3.2].

Let p and n be given (with n � S), and choose q > p and m > n such that

h(Cq,m) ≺ C p,n.

Let x̄ ∈ Eq ∩ C0. It was shown that if A is the arc-component of a link of C p,n which contains h(x̄) then there is a unique
p-point, z̄, in A [14, Lemma 3.3]. An ‘adjusted’ map, hq,p was defined, which maps x̄ to this p-point, z̄. The map hq,p was
extended in a natural monotonic way on the arcs between adjacent q-points in C0 (see [14, Definition 3.4]).

It was shown in [14, Theorems 3.14 and 3.18] that for q, p ∈ Z+ and m,n � S such that

h(Cq,m) ≺ C p,n,

there exists a ∈ N such that for every j ∈ N,

hq,p(Eq, j ∩ C0) = E p, j+a ∩ C0 = E p+a, j ∩ C0.

Therefore, for b = p + a − q we have that

hq,p|Eq∩C0 = σ b|Eq∩C0 . (1)

The next lemma shows that hq,p is (mostly) independent of q.

Lemma 2.10. Let q1, p1 ∈ Z+ , m1,n1 ∈ N with m1,n1 � S such that

h(Cq1,m1) ≺ C p1,n1 ≺ h(Cq,m) ≺ C p,n.

Then hq1,p1(x̄) = hq,p(x̄) for all x̄ ∈ Eq1 ∩ C0 .
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Proof. Let x̄ ∈ Eq1 ∩ C0. Since h(Cq1,m1 ) ≺ h(Cq,m) we see that Cq1,m1 ≺ Cq,m and so q1 � q and m1 � m. This implies that
Eq1 ⊆ Eq . Let �x

q1,m1
be a link of Cq1,m1 containing x̄ and let A1 be the arc-component containing x̄. Then A1 ⊆ A where A is

the arc-component of the link of Cq,m containing x̄. Let B1 be the arc-component of C p1,n1 containing h(x̄) and notice then
that B1 ⊆ B where B is the arc-component of a link of C p,n containing h(x̄). Let ȳ ∈ E p be the unique p-point in B . Then
by definition of hq,p we have hq,p(x̄) = ȳ. Since B1 ⊆ B we then must have that hq1,p1(x̄) = ȳ = hq,p(x̄). �
Lemma 2.11. Let x̄ ∈ F then h(x̄) = σ b(x̄).

Proof. Let x̄ ∈ F , and let ȳ = h(x̄). Since h is a homeomorphism, ȳ ∈ F . Let p1,q1 ∈ Z+ and m1,n1 � S such that

h(Cq1,m1) ≺ C p1,n1 ≺ h(Cq,m) ≺ C p,n

and recursively define p j,q j ∈ Z+ and m j,n j � S such that

h(Cq j,m j ) ≺ C p j ,n j ≺ h(Cq j−1,m j−1) ≺ C p j−1,n j−1 .

For each j ∈ N, let �x
q j ,m j

be a link of Cq j ,m j which contains x̄ and let �
y
p j ,n j

be a link of C p j ,n j which contains h(�x
q j ,m j

).

Define z̄ j ∈ Eq j ∩ C0 such that z̄ j ∈ �x
q j ,m j

. Then we must have:

(1) z̄ j → x̄ as j → ∞;
(2) h(z̄ j) ∈ �

y
p j ,n j

and hence by (1) and Lemma 2.10, σ b(z̄ j) = hq,p(z̄ j) = hq j ,p j (z̄ j) ∈ �
y
p j ,n j

;

(3) since the mesh of C p j ,n j goes to zero, σ b(z̄ j) = hq j ,p j (z̄ j) → ȳ.

Thus

h(x̄) = σ b(x̄). �
Lemma 2.12. Let C be an arc-component of K , and let z̄ ∈ C, then h(z̄) ∈ σ b(C).

Proof. Let x̄ ∈ C ∩ Eq . Then there is a sequence of points x̄n ∈ C0 ∩ Eq such that x̄n → x̄. Since hq,p(x̄n) = σ b(x̄n) we see that

d̄
(
h
(
x̄n),σ b(x̄n)) < 2ε

where ε > 0 is the mesh of the chaining C p,n . Let An be the arc in C0 with endpoints σ b(x̄n) and h(x̄n) if these points are
distinct. Otherwise let An be the singleton set {σ b(x̄n)}. By passing to a subsequence, we may assume that An → B in the
Hausdorff metric. Since �̄(An) < 2ε for each n, it follows from Lemma 2.9 that B is an arc or a point that contains σ b(x̄)
and h(x̄). Thus h(x̄) ∈ σ b(C). Since h is a homeomorphism, this shows that h(z̄) ∈ σ b(C). �

Let C be an arc-component of X with C �= C0. Fix a continuous bijection ϕ : R → C as in Lemma 2.1. We define an
order < on C by x̄ < ȳ if and only if ϕ−1(x̄) < ϕ−1( ȳ). In a similar way, using Lemma 2.2, we define an order < on C0.

Lemma 2.13. Let C be an arc-component of K and let x̄ < ȳ in C . Then h(x̄) < h( ȳ) if and only if σ b(x̄) < σ b( ȳ).

Proof. Since h is a homeomorphism of C onto h(C), it is either order-preserving or reversing. Let x̄i and x̄i+1 be adjacent
q-points in C with x̄i < x̄i+1. By [14] we know that h(x̄i) and σ b(x̄i) are on the same arc-component of a link of C p,n , Ai .
Also h(x̄i+1) and σ b(x̄i+1) are on the same arc component of a link of C p,n , Ai+1. It is clear that every point of Ai is less than
every point of Ai+1 or every point of Ai is greater than every point of Ai+1 depending upon whether σ b is order-preserving
or reversing. Hence h(x̄i) < h(x̄i+1) if and only if σ b(x̄) < σ b( ȳ). �
Lemma 2.14. There is a real number M > 0 such that d̄(σ b(z̄),h(z̄)) � M for all z̄ ∈ K .

Proof. Let ε > 0 be the mesh of C p,n . Then notice that the d̄-length of an arc-component of a link of C p,n is at most 2ε

since these arc-components contain at most one p-point. Let x̄i and x̄i+1 be adjacent q-points in C with x̄i � z̄ < x̄i+1. Then,
without loss of generality, h(x̄i) � h(z̄) < h(x̄i+1) and σ b(x̄i) � σ b(z̄) < σ b(x̄i+1). By [14], σ b(x̄i) and h(x̄i) are on the same
arc-component of a link of C p,n , and the same is true for σ b(x̄i+1) and h(x̄i+1). Let

ā = min
{
σ b(x̄i),h

(
x̄i)}

and let

b̄ = max
{
σ b(x̄i+1),h

(
x̄i+1)}.
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Let B be the arc with endpoints ā and b̄. We see that both σ b(z̄) and h(z̄) are in B . Moreover, the length of B is less than
or equal to the length of the arc from σ b(x̄i) to σ b(x̄i+1) plus the lengths of the arc-components of a link of C p,n which
contains a p-point. That is to say

d̄
(
σ b(z̄),h(z̄)

)
� l̄(B) � sp + 4ε. �

3. Isotopy

In the previous section we found an integer b such that h and σ b permute the composants of the core X in the same
way. Moreover, we established several results which give a stronger connection between these two homeomorphisms. Our
goal is to show that these two homeomorphisms are isotopic. We will first show that the desired conclusion holds in the
case that b = 0.

So, we assume now that h : K → K is a homeomorphism satisfying the following properties.

Property 1. If x̄ ∈ F then h(x̄) = x̄.

Property 2. Each arc-component C of K is mapped to itself by h in an order-preserving way.

Property 3. There is a real number M > 0 such that d̄(z̄,h(z̄)) � M for all z̄ ∈ K .

Lemma 3.1. Let E be a real number. There exists a positive integer p such that if w̄, ȳ ∈ K are distinct p-points on the same arc-
component of K , then d̄(w̄, ȳ) � E.

Proof. Since 1
2 is not recurrent under T , there is a γ > 0 such that for each positive integer i we have |T i( 1

2 ) − 1
2 | > γ .

There exists a positive integer p such that sp · γ � E . Let w̄, ȳ ∈ K be distinct p-points on the same arc-component of K .
There are positive integers j � p and k � p such that π j(w̄) = 1

2 and πk( ȳ) = 1
2 . We have two cases.

Case 1. j �= k.

We may assume that j < k. Then π j(w̄) = 1
2 and π j( ȳ) = T (k− j)( 1

2 ). Hence, |π j(w̄) − π j( ȳ)| > γ . By Lemma 2.6,

d̄(w̄, ȳ) � s j · γ � E.

Case 2. j = k.

For some integer n > j we have πn(w̄) �= πn( ȳ). We may assume that n > j is the least integer with this property. Then
πn(w̄) and πn( ȳ) are on opposite sides of 1

2 as they are inverse images of the same point under T . Thus, by Lemma 2.5,
we have

∣∣πn(w̄) − πn( ȳ)
∣∣ = 2 ·

∣∣∣∣πn(w̄) − 1

2

∣∣∣∣ � 2 · γ

s(n− j)
.

Finally, by Lemma 2.6, we have

d̄(w̄, ȳ) � sn · ∣∣πn(w̄) − πn( ȳ)
∣∣ � 2 · γ · s j � E. �

Theorem 3.2. Let x̄ ∈ X, and let (x̄n) be a sequence of points in K which converges to x̄. Let An denote the arc with endpoints x̄n

and h(x̄n) if x̄n and h(x̄n) are distinct, or the singleton set {x̄n} if h(x̄n) = x̄n . Let A denote the arc with endpoints x̄ and h(x̄) if x̄
and h(x̄) are distinct, or the singleton set {x̄} if h(x̄) = x̄. Then An → A in the Hausdorff metric.

Proof. We consider two cases:

Case 1. h(x̄) = x̄.

By passing to a subsequence we may assume that the sequence (An) converges in the Hausdorff metric to some contin-
uum B which contains {x̄}. Proceeding by contradiction, we suppose that {x̄} is a proper subset of B .

It follows from Lemma 2.9 that B is an arc. Moreover, at least one endpoint of B which we call z̄ is not x̄.
We claim that z̄ ∈ F . To see this, suppose z̄ /∈ F . There is a positive integer k and an open interval V ⊂ [0,1] such that

πk(z̄) ∈ V and no point of V lies in the closure of the orbit of 1 under T . By Lemma 2.4 we may assume in addition that
2
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the restriction of πk to B is a homeomorphism. Moreover, πk(An) → πk(B) and πk(z) is an endpoint of πk(B). Without loss
of generality we may assume that

πk(x̄) = πk
(
h(x̄)

)
< πk(z̄).

Set α = πk(z̄) − πk(x̄). Then for n sufficiently large, we have that πk(x̄n) < (πk(x̄) + α
3 ) and πk(h(x̄n)) < (πk(x̄) + α

3 ). Also,
for n sufficiently large there is a point ȳn on the arc An with πk( ȳn) > (πk(z̄) − α

3 ). Hence, for n sufficiently large, the
point t̄n ∈ An such that πk(t̄n) is the maximum value must be a k-point with a non-zero k-level. Thus, if V = (a,b) then
b ∈ πk(An) for n sufficiently large. It follows that b ∈ πk(B). This is a contradiction as b > z and z is the right endpoint
of πk(B). So the claim is established.

Choose a positive integer p large enough that the restriction of πp to B is a homeomorphism, and d̄(w, y) > M whenever
w, y ∈ K are distinct p-points on the same arc-component of K . This integer p exists by Lemmas 2.4 and 3.1.

Let δ = |πp(x̄) − πp(z̄)|. Then δ > 0. By passing to a subsequence again, we may assume that for each positive integer n

∣∣πp(x̄) − πp
(
x̄n)∣∣ <

δ

3
and

∣∣πp(x̄) − πp
(
h
(
x̄n))∣∣ <

δ

3
.

Since πp(x̄) �= πp(z̄) we may assume without loss of generality that πp(x̄) < πp(z̄). Now, for each n there is a point t̄n

on An such that t̄n → z̄. Then πp(t̄n) → πp(z̄). By passing to a subsequence again, we may assume that for each n

∣∣πp(z̄) − πp
(
t̄n)∣∣ <

δ

3
.

Moreover, we may choose t̄n such that πp(t̄n) � πp( ȳ) for all ȳ ∈ An . It follows that t̄n is a p-point for each n.
Now, for each n we have that t̄n and h(t̄n) lie on the same arc-component of K , and there is no p-point on the arc Bn

which joins them (other than the endpoint t̄n). Hence, the restriction of πp to Bn is a homeomorphism. Moreover, since h
is order-preserving on each arc-component, we must have h(x̄n) ∈ Bn for each n. It follows that for each n

πp
(
h
(
t̄n)) < πp(x̄) + δ

3
.

This contradicts the fact that πp(h(t̄n)) → πp(h(z̄)) = πp(z̄).

Case 2. h(x̄) �= x̄.

By passing to a subsequence we may assume the sequence (An) converges in the Hausdorff metric to some continuum B
which contains A. Proceeding by contradiction, we suppose that A is a proper subset of B .

Then as in Case 1, B is an arc, and at least one endpoint of B which we call z̄ is neither x̄ nor h(x̄). Also, as in Case 1,
we see that z̄ ∈ F .

Again, we may choose a positive integer p large enough that the restriction of πp to B is a homeomorphism, and
d̄(w, y) > M whenever w̄, ȳ ∈ K are distinct p-points on the same arc-component of K .

Let δ be the smaller of |πp(x̄) − πp(z̄)| and |πp(h(x̄)) − πp(z̄)|. Then δ > 0. By passing to a subsequence again, we may
assume that for each positive integer n

∣∣πp(x̄) − πp
(
x̄n)∣∣ <

δ

3
and

∣∣πp
(
h(x̄)

) − πp
(
h
(
x̄n))∣∣ <

δ

3
.

Observe that the three points πp(x̄), πp(h(x̄)), πp(z̄) are distinct, and πp(z̄) does not lie on the interval joining the other
two points. Hence, we may construct t̄n as in Case 1, and obtain a contradiction in the same way. �
Theorem 3.3. The homeomorphism h is isotopic to the identity map of K to itself.

Proof. We define an isotopy H as follows. Let x̄ ∈ K , and let t ∈ [0,1]. If h(x̄) = x̄ set H(x̄, t) = x̄. Suppose h(x̄) �= x̄. Then
there is a unique arc A ⊂ K with endpoints x̄ and h(x̄). Also, there is a positive integer k such that if g denotes the
restriction of πk to A, then g is a homeomorphism. Set

H(x̄, t) = g−1((1 − t) · g
(
h(x̄)

) + t · g(x̄)
)
.

Then H is well defined. We show that H is continuous at (x̄, t). We have three cases.
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Case 1. x̄ is in the tail.

Since the tail is open in K it is easy to see that H is continuous at (x̄, t).

Case 2. x̄ ∈ X and h(x̄) = x̄.

In this case it follows immediately from Theorem 3.2 that H is continuous at (x̄, t).

Case 3. x̄ ∈ X and h(x̄) �= x̄.

Suppose (x̄n, tn) → (x̄, t). Let A be the arc with endpoints x̄ and h(x̄). By Properties 1 and 2, there are no folding points
in A. By Lemma 2.8, there is a positive integer k such that there are no points of the closure of the orbit of 1

2 under T
in πk(A).

Claim. πk(H(x̄n, tn)) → πk(H(x̄, t)).

To prove the claim, let An be as in the statement of Theorem 3.2. By Theorem 3.2, An → A, and hence πk(An) → πk(A).
Let W be an open interval with πk(A) ⊂ W such that there are no points of the closure of the orbit of 1

2 under T in W .
Then πk(An) ⊂ W for all n sufficiently large. It follows that

πk
(

H
(
x̄n, tn

)) = (1 − tn) · πk
(
h
(
x̄n)) + tn · πk

(
x̄n)

for all n sufficiently large, and

πk
(

H(x̄, t)
) = (1 − t) · πk

(
h(x̄)

) + t · πk(x̄).

This establishes the claim.

Now we observe that the proof of the claim is valid for all sufficiently large k. Thus, the claim holds for all k. This implies
that H(x̄n, tn) → H(x̄, t) and the continuity is established.

Finally, consider the function ht defined by ht(x̄) = H(x̄, t). Then h0 = h and h1 is the identity map of K to itself. Now,
fix t ∈ [0,1]. We show that ht is injective.

Suppose that ht(x̄) = ht( ȳ), for some x̄, ȳ ∈ K . Then x̄, ȳ are on the same arc-component of K . First, suppose that
h(x̄) = x̄. If ȳ > x̄, then h( ȳ) > x̄ by Property 2. Moreover, ht(x̄) = x̄ while ht( ȳ) is between ȳ and h( ȳ). This contradicts
ht(x̄) = ht( ȳ). Similarly, if ȳ < x̄, then we obtain a contradiction. Thus, ȳ = x̄. So, we may assume that h(x̄) �= x̄ and h( ȳ) �= ȳ.

Similarly, if x̄ �= ȳ and h has a fixed point between x̄ and ȳ, then we obtain a contradiction.
So suppose, without loss of generality that x̄ < h(x̄) and ȳ < h( ȳ) (if one maps to a larger point, and the other maps

to a smaller point we quickly get a contradiction). Then let ā = min{x̄, ȳ}, and let b̄ = max{h(x̄),h( ȳ)}. Let A be the arc
with endpoints ā, b̄. Let m be chosen such that the restriction of πm to A is a homeomorphism. Then it is an easy algebra
exercise to see that we must have πm(x̄) = πm( ȳ). Since the restriction of πm to A is a homeomorphism, this implies that
x̄ = ȳ. Thus, ht is injective.

It is similarly easy to show that ht is surjective. Thus, H is an isotopy. �
We are now ready to prove the main result of the paper as the following corollary.

Corollary 3.4. Let T be a tent map with a non-recurrent critical point. Let

h : lim←−
{[0,1], T

} → lim←−
{[0,1], T

}
be a homeomorphism. Then there is an integer k such that h is isotopic to σ k.

Proof. Let k be the integer b defined in Section 2. Let h′ = σ−b ◦h. We show that h′ satisfies Properties 1–3 at the beginning
of this section.

Property 1. Let x̄ ∈ F . Then by Lemma 2.11, h(x̄) = σ b(x̄). Thus, h′(x̄) = (σ−b ◦ σ b)(x̄) = x̄.

Property 2. Let C be an arc-component of K . By Lemma 2.12, h(C) = σ b(C). Hence h′(C) = C . Moreover, C is mapped to
itself by h′ in an order-preserving way by Lemma 2.13.

Property 3. By Lemma 2.14, d̄(σ b(z̄),h(z̄)) � M for all z̄ ∈ K . In general d̄(σ−1(x̄),σ−1( ȳ)) = s · d̄(x̄, ȳ). Thus, d̄(x̄,h′(x̄)) �
M · sb .

By Theorem 3.3, the homeomorphism h′ is isotopic to the identity. It follows that h is isotopic to σ b . �
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