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We study the size-cost of Boolean operations on constant height deterministic pushdown
automata, i.e., on the traditional pushdown automata with a built-in constant limit on
the height of the pushdown. We design a simulation showing that a complement can be
obtained with a polynomial tradeoff. For intersection and union, we show an exponential
simulation, and prove that the exponential blow-up cannot be avoided.
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1. Introduction

Themodel of constant height pushdownautomata is introduced in [1],where it is studied fromadescriptional complexity
viewpoint. Roughly speaking, this device is a traditional pushdown automaton (see, e.g., [2]) with a built-in constant
limit (i.e., not depending on the input length) on the height of the pushdown. It is a routine exercise to show that such
devices accept exactly regular languages. Nevertheless, a representation of regular languages by constant height pushdown
automata can potentially be more succinct than by standard formalisms. In fact, in [1], optimal exponential and double-
exponential gaps are proved between the size of constant height deterministic and nondeterministic pushdown automata
(dpdas and npdas, respectively), deterministic and nondeterministic finite state automata (dfas and nfas), and that of
classical regular expressions.

In this paper, we continue the investigation on the descriptional power of constant height dpdas by tackling a truly
classical problem in descriptional complexity, namely, the size-cost of Boolean operations. There exists a wide literature on
this research issue with respect to, e.g., finite state automata [3,4], regular expressions [5,6], grammars [7,8], etc. In our
context, the problem can be expressed as: given two constant height dpdas A and B accepting the languages L(A) and L(B),
respectively, determine the size—as a function of the sizes of A and B—of constant height dpdas accepting L(A)c, L(A)∩L(B),
and L(A) ∪ L(B).

After introducing some basic notation, we analyze the size-cost of complementing a constant height dpda Aworkingwith
a finite set of states Q , a finite pushdown alphabet Γ , and a pushdown of constant height h. A dpda for L(A)c is proposed,
working with ∥Q ′

∥ ≤ ∥Q∥(h+1)+1 states and using the same pushdown alphabet and the same constant height. As an
additional bonus, we can replace each dpda by an equivalent constant height dpda with ∥Q ′

∥ states in a ‘‘normal form’’
such that, on any input of length ℓ ≥ 0, the number of reversals in the pushdown movement does not exceed 2ℓ and the
computation always halts after reading the entire input. Basically, the size increase directly reflects the cost of detecting and
eliminating pushdown overflow/underflow, but there are also other ‘‘non-conventional’’ rejection policies such as blocking
by undefined transitions or infinite loops manipulating with pushdown but not consuming any input.
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Afterward,we study the costs of intersection andunion. Given two constant heightdpdasA and Bworkingwith respective
sets of states QA,QB, pushdown alphabetsΓA, ΓB, and constant heights hA, hB, we design a dpda for L(A)∪L(B)with a number
of states bounded by O(∥QA∥ · hA · ∥QB∥ · ∥ΓB∥

hB). This reflects the fact that we keep the current states for both A and B in the
finite control state, together with the entire content of the pushdown store for B, but only the pushdown height for A. The
number of states in a dpda for L(A) ∩ L(B) can be slightly reduced, to O(∥QA∥ · ∥QB∥ · ∥ΓB∥

hB). Both these machines use the
pushdown alphabetΓA and the constant height hA. The roles of A and B can be swapped here, hence, the cost is exponential in
h = min{hA, hB}. Consequently, if one of these two dpdas is actually a finite state automaton with h = 0 (or even a machine
with a constant height counter, using ∥Γ ∥ = 1), the cost of intersection and union becomes polynomial.

Nevertheless, for the general case, we prove that the exponential blow-up cannot be avoided: for each given alphabet Σ ,
we exhibit {L′

n}n≥1 and {L′′
n}n≥1, two families of languages such that: (i) both L′

n and L′′
n can be accepted by dpdas using

2 · ∥Σ∥+2 states and ∥Σ∥−1 pushdown symbols, with pushdown height h = n, but (ii) their intersection cannot be
accepted by any dpda inwhich both the number of states and the pushdown height are below (∥Σ∥−1)n/9−O(log n). In the case
of union, the corresponding lower boundwe can establish is (∥Σ∥−1)n/15−O(log n). (This required, among others, to introduce
some completely new proof techniques, since already amachine with a polynomial pushdown height can use exponentially
many different pushdown contents, and hence the standard pigeonhole arguments could not be applied directly, to obtain
exponential lower bounds.)

2. Preliminaries

The set of words on an alphabet Σ , including the empty word ε, is denoted here by Σ∗. By |σ |, we denote the length of
a word σ ∈ Σ∗ and by Σ i the set of words of length i, with Σ0

= {ε} and Σ≤m
=

m
i=0 Σ i. For a word σ = s1 . . . sℓ, let

σ R
= sℓ . . . s1 denote its reversal. By ∥S∥, we denote the cardinality of a set S, and by Sc its complement. We assume the

reader is familiar with the models of deterministic and nondeterministic finite state automata (dfa and nfa, for short) and
pushdown automata (dpda and npda, see, e.g., [2]).

For technical reasons, we introduce the npdas in the following form [1], where instructions manipulating the pushdown
store are clearly distinguished from those reading the input tape: an npda is a sextuplet A = ⟨Q , Σ, Γ ,H, qI, F⟩, where Q is
the finite set of states, Σ the input alphabet, Γ the pushdown alphabet, qI ∈ Q the initial state, F ⊆ Q and Q \ F the sets
of accepting and rejecting states, respectively, and H ⊆ Q × ({ε} ∪ Σ ∪ {+, −}·Γ ) × Q the transition relation, with the
following meaning.

(i) (p, a, q) ∈ H: if the next input symbol is a, A gets from the state p to the state q by reading the symbol a, not using the
pushdown store. The set of states starting from which some transitions read from the input is denoted by QΣ . (That is,
QΣ = {p ∈ Q : (p, a, q) ∈ H, for some a ∈ Σ and q ∈ Q }.)

(ii) (p, −X, q) ∈ H: if the symbol on top of the pushdown is X , A gets from p to q by popping X , not using the input tape.
The set of states starting from which some transitions pop from the pushdown is denoted by Q−Γ .

(iii) (p, ε, q) ∈ H: A gets from p to qwithout using the input tape or the pushdown store. The set of states fromwhich some
ε-transitions start will be denoted by Qε .

(iv) (p, +X, q) ∈ H: A gets from p to q by pushing the symbol X onto the pushdown, not using the input tape. The set of
states starting from which some transitions push symbols onto the pushdown is denoted by Q+Γ .

(v) For completeness, Q∅ = Q \ (QΣ ∪ Q−Γ ∪ Qε ∪ Q+Γ ) denotes the set of all remaining states, from which no transitions
can start. (In such states, A is forced to halt.)

Such a machine does not need any initial pushdown symbol. An accepting computation begins in the state qI with the empty
pushdown store, and ends in an accepting state p ∈ F after reading the entire input. As usual, L(A) denotes the language
accepted by A.

In most of the standard textbooks, a transition function is defined by a function δ : Q × (Σ ∪ {ε}) × Γ → 2Q×Γ ∗

,
combining input and pushdown operations into a single step [2]. However, it is not hard to see that any npda in the classical
form can be transformed into the new form and vice versa, preserving determinism in the case ofdpdas. A classical transition
δ(p, a, X) ∋ (q, X1 . . . Xk) can be simulated by (p, −X, pX), (pX , a, q0), (q0, +X1, q1), . . . , (qk−2, +Xk−1, qk−1), (qk−1, +Xk, q),
where pX and q0, . . . , qk−1 are some new states, with obviousmodifications for k < 2. This also requires to store some initial
pushdown symbol XI at the very beginning, using (q′

I, +XI, qI), where q′
I is a new initial state. The converse transformation

is also quite straightforward. (For a more detailed reasoning for introducing our new form, see also Footnote 4 in Section 4
below.)

Given a constant h ≥ 0, we say that the npda A is of pushdown height h if, for any word in L(A), there exists an accepting
computation alongwhich the pushdown store never containsmore than h symbols. Fromnowon,we shall consider constant
height pushdown automata only. Such a machine will be denoted by a septuplet A = ⟨Q , Σ, Γ ,H, qI, F , h⟩, where h ≥ 0
is a constant denoting the pushdown height, and all other elements are defined as above. By definition, the meaning of the
transitions in the form (iv) is modified as follows:

(iv′ ) (p, +X, q) ∈ H: if the current pushdown store height is smaller than h, then A gets from the state p to the state q by
pushing the symbol X onto the pushdown, not using the input tape; otherwise A aborts and rejects.
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For a constant height npda, a fair definition of size must account for the size of all the components the device consists of,
i.e., the finite state control plus the pushdown store and its alphabet.1 So, according to [1]:

Definition 2.1. The size of a constant height npda A = ⟨Q , Σ, Γ ,H, qI, F , h⟩ is the ordered triple size(A) = (∥Q∥, ∥Γ ∥, h).

A deterministic pushdown automaton (dpda) is, roughly speaking, an npda for which there is at most one possible move
for any configuration. By definition, it must satisfy the following conditions:

• The sets QΣ ,Q−Γ ,Qε,Q+Γ ,Q∅ are pairwise disjoint. (The set Q∅ is listed here just for completeness, satisfying this
condition automatically.)

• For each p ∈ Q and each α ∈ Σ ∪ {−}·Γ ∪ {ε}, there can exist at most one state q ∈ Q with a transition (p, α, q) ∈ H .
• For each p ∈ Q+Γ , there can exist at most one pushdown symbol X ∈ Γ and at most one state q ∈ Q with a transition

(p, +X, q) ∈ H .
• F ⊆ QΣ .

The last condition says that an accepting computation, after reading the last symbol from the input and, optionally, after
passing through a finite number of non-accepting states, must halt in an accepting state p ∈ QΣ , i.e., in a state in which the
machine waits for a next input symbol. This resolves a potential ambiguity in interpreting the outcome of the computation,
if the machine does not stop immediately after reading the last input symbol.2

The reader may easily verify that, for h = 0, the definition of constant height npda exactly coincides with that of an nfa.
(In the deterministic case, h = 0 yields a dfa in which ε-transitions are allowed, under the condition that (p, ε, q) ∈ H
forbids any other transitions starting from p and that p /∈ F .)

Second, the class of languages accepted by constant height npdas coincides with regular languages. Here we provide the
corresponding construction for the deterministic case, since it will be required later.

Lemma 2.2. For each constant height dpda A = ⟨Q , Σ, Γ ,H, qI, F , h⟩, there exists an equivalent dfa A′
= ⟨Q ′, Σ,H ′, q′

I, F
′
⟩

with ∥Q ′
∥ ≤ ∥Q∥ · ∥Γ ≤h

∥+1.

Proof. The basic idea is to keep the current pushdown content in the finite control state (see [1, Prop. 3]). In addition, if the
next-step transition is undefined, or if the height of the pushdown overflows or underflows, we switch to qR, a new error
state and ignore the rest of the input. This gives an intermediate machine Â = ⟨Q ′, Σ, Ĥ, q′

I, F
′
⟩, where Q ′

= Q×Γ ≤h
∪{qR},

q′
I = [qI, ε], and F ′

= F × Γ ≤h.
For each state p ∈ Q and each pushdown content γ ∈ Γ ≤h, we define the transitions in Ĥ as follows.

• If p ∈ QΣ , we add ([p, γ ], a, [p′
a, γ ]) ∈ Ĥ , for each transition (p, a, p′

a) ∈ H . Moreover, for each symbol a ∈ Σ without a
corresponding transition (p, a, p′

a) in H , we add ([p, γ ], a, qR) ∈ Ĥ .
• If p ∈ Q−Γ and |γ | < h, we add ([p, γ X], ε, [p′

X , γ ]) ∈ Ĥ , for each transition (p, −X, p′
X) ∈ H . Moreover, for each symbol

X ∈ Γ without a corresponding transition (p, −X, p′
X) in H , we add ([p, γ X], ε, qR) ∈ Ĥ .

• If p ∈ Q−Γ , we add the transition ([p, ε], ε, qR) ∈ Ĥ .
• If p ∈ Qε and (p, ε, p′) ∈ H , we add ([p, γ ], ε, [p′, γ ]) ∈ Ĥ .
• If p ∈ Q+Γ , |γ | < h, and (p, +X, p′) ∈ H , we add ([p, γ ], ε, [p′, γ X]) ∈ Ĥ .
• If p ∈ Q+Γ and |γ | = h, we add ([p, γ ], ε, qR) ∈ Ĥ .
• If p ∈ Q∅, we add ([p, γ ], ε, qR) ∈ Ĥ .
• Finally, (qR, a, qR) ∈ Ĥ , for each a ∈ Σ .

Note that Â is a deterministic finite state automaton with ε-transitions. That is, an ε-transition ([p, γ ], ε, [p′, γ ′
]) ∈ Ĥ

forbids any other transitions starting from [p, γ ], and implies that [p, γ ] /∈ F ′. Therefore, no cycle consisting of ε-transitions
contains an accepting state, and hence all transitions going to any state belonging to such cycle can be redirected into qR.
This allows us to remove all ε-cycles in Â without increasing the number of states. Now, the remaining loop-free paths of
ε-transitions can be eliminated by the use of standard tools (see, e.g., [2]), in such a way that both the determinism and
the states are preserved. This gives us A′

= ⟨Q ′, Σ,H ′, q′
I, F

′
⟩, the desired deterministic finite state automaton without

ε-transitions. �

If we do not protest against rejection by aborting in the middle of the input, the state qR could be removed. This just
leaves some transitions undefined, in the same way as in the corresponding conversion for nondeterministic machines [1].

1 The reader may easily derive several dependences among these three quantities, e.g., by the well-known worktape compression, using the new
pushdown alphabet Γ ′

= Γ ×Γ , we could reduce h to h′
= ⌊h/2⌋. Conversely, by the use of a binary encoding, we can get Γ ′

= {0, 1}, to be paid
by h′

= h·(1+⌊log ∥Γ ∥⌋).
2 This excludes several peculiar cases of acceptance, among others, a post-processing computation passing through an accepting state in the course

of an infinite loop manipulating with pushdown but not consuming any input, or a pushdown overflow aborting the computation in an accepting state.
Nevertheless, infinite loops after the last symbol is read, as well as pushdown overflows/underflows, are not excluded along rejecting computation paths.
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3. Complementing constant height DPDAs

In this section, we study the size-increase when complementing constant height dpdas. More precisely, given a constant
height dpda A = ⟨Q , Σ, Γ ,H, qI, F , h⟩, determine the size of a constant height dpda accepting the complement of L(A).
Clearly, as a first direct approach, one may turn A into an equivalent dfa A′ by Lemma 2.2, storing possible pushdown
contents of A in the finite control states. Then, by switching accepting with rejecting states in A′, the desired machine A′′

would be obtained, using ∥Q ′′
∥ = ∥Q∥ · ∥Γ ≤h

∥+1 states, with Γ ′′
= ∅ and h′′

= 0. Thus, if an exponential blow-up is
tolerable, the use of a fixed pushdown store can be eliminated. However, to keep the cost of complementation polynomial,
we need to use a full-featured constant height pushdown store.

We start with a few considerations concerning acceptance and rejection on dpdas. By Section 2, our constant height
dpda A accepts an input string σ ∈ Σ∗ by completely sweeping it, and entering an accepting state p ∈ QΣ . On the other
hand, we may encounter several different situations along a rejecting computation path. (See also Fig. 4.)

(i) normal rejection: A completely consumes σ and enters a rejecting state p ∈ QΣ ;
(ii) blocking situation: A gets into a state p ∈ QΣ with the input head scanning a symbol a ∈ Σ , but there is no transition

(p, a, q) ∈ H , for any state q ∈ Q , or A gets to p ∈ Q−Γ with the topmost pushdown symbol X ∈ Γ , but there is no
transition (p, −X, q) ∈ H , or A gets into some p ∈ Q∅, from which the computation cannot carry on whatsoever;

(iii) pushdown overflow or underflow: A pushes a symbol onto the pushdown but h symbols are already piled up
(overflow), or A tries to pop an empty pushdown (underflow);

(iv) infinite loop: A enters an infinite sequence of transitions performing push operations, pop operations, and ε-
transitions; in this computation, the input symbols are not consumed and the pushdown boundaries are never violated.

If rejection took place according to possibility (i) only, then we could try to complement A by simply switching accepting
with rejecting states in QΣ , as for dfas. However, the presence of rejection possibilities (ii)–(iv) immediately implies that
such a simple approachwould not work. In what follows, we are going to eliminate possibilities (ii), (iii), and (iv). That is, we
shall replace the given constant heightdpda A = ⟨Q , Σ, Γ ,H, qI, F , h⟩ by an equivalentdpda A′

= ⟨Q ′, Σ, Γ ′,H ′, q′
I, F

′, h′
⟩,

so that A′ rejects by (i) only. Compared with the original machine A, there are the following major differences.
First, besides the current state p ∈ Q , the machine A′ keeps also track of the current pushdown height in its finite state

control, i.e., a value k ∈ {0, . . . , h}. The current content stored in the pushdown of A′ mirrors the pushdown store of the
original machine. That is, for any given input σ = s1 . . . sℓ, the machine A′ can reach a configuration ([p, k], si . . . sℓ, γ ),
where p ∈ Q , k ∈ {0, . . . , h}, si . . . sℓ denotes the rest of the input not processed yet, and γ ∈ Γ ∗ is the pushdown content,
only if k = |γ | and A can reach the corresponding configuration (p, si . . . sℓ, γ ).

Second, if any of the exceptions (ii)–(iv) is detected during the simulation, A′ switches to a new rejecting state qR, inwhich
it scans the remaining part of the input, ignoring the rest of simulation, by the use of the following transitions:

• (qR, a, qR) ∈ H ′, for each a ∈ Σ , with
• qR /∈ F ′.

This gives

• Q ′
= Q×{0, . . . , h} ∪ {qR}, q′

I = [qI, 0], Γ ′
= Γ , and h′

= h.

However, partition of Q ′ into Q ′
ε,Q

′
Σ ,Q ′

+Γ ,Q ′
−Γ ,Q ′

∅
will not necessarily agree with that in the original machine. Also F ′ is

defined in a different way.
Third, observe that if we need to resume the simulation starting from any given configuration ([p, k], si . . . sℓ, γ ), some

leading sequence of transitions depends only on p and k, regardless of the input or the pushdown content. More precisely,
such sequence can consist of unrestricted number of push operations, pop operations, or ε-transitions (provided that the
pushdown boundaries are not violated), but it must end at the moment when A is either going to read the next symbol from
the input, or going, for the first time, to pop the pushdown symbol stored at the level k. Until that moment, neither the input
symbols nor the deepest k symbols in the pushdown can come into play. (Here we do not exclude the possibility that the
length of such leading sequence is zero.) Note also that, for each given p ∈ Q and each given k ∈ {0, . . . , h}, all details about
such leading sequence are completely determined by inspecting the transition table for H , which we can do in advance.

This allows us to define the transitions for A′ as follows. For each given p ∈ Q and each given k ∈ {0, . . . , h}, we
precompute the leading sequence that depends only on p and k. Depending on the type of state inwhich the leading sequence
ends and, optionally, on the pushdown height at this moment, we have the following mutually exclusive cases to consider.

Case i: The leading sequence ends in a state r ∈ QΣ , going to read from the input, when the pushdown height is larger than k.
(Consequently, this can happen only if k < h.) The situation is depicted in Fig. 1. Let (q, +X, q′) ∈ H be the last transition
increasing the pushdownheight from k to k+1, along the path connecting pwith r . That is, in between q′ and r , the pushdown
height never gets below k+1. Then the outcome of the path connecting p with q′ can be obtained by a single transition,
namely,

• ([p, k], +X, [q′, k+1]) ∈ H ′.
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Fig. 1. After storing some more symbols in the pushdown, A reads the next input symbol.

Fig. 2. A reads the next input symbol without changes in the pushdown memory.

We do not exclude p = q or/and q′
= r , with the corresponding computational segments of length zero. (The same

rule applies for all cases that will follow.) Note also that [p, k] qualifies for membership in Q ′
+Γ , regardless of the original

qualification of states in A.

Case ii: The leading sequence ends in a state r ∈ QΣ , going to read from the input, when the pushdown height is equal to k. This
is depicted in Fig. 2. But then the path connecting pwith r does not modify the pushdown content at all, and hence the next
input symbol can be read directly by a transition starting from [p, k]. This is obtained as follows:

• For each (r, a, r ′
a) ∈ H , we add the transition ([p, k], a, [r ′

a, k]) ∈ H ′.
• If, for some symbol a ∈ Σ , there does not exist any state r ′

a ∈ Q with a corresponding transition (r, a, r ′
a) in H , we add

([p, k], a, qR) ∈ H ′.
• Finally, if r ∈ F , we add [p, k] ∈ F ′.

Blocking by undefined input-reading is resolved by entering the rejecting cycle executed in qR; A′ waits for the next input
symbol in an accepting state if and only if A does.3

Case iii: The leading sequence ends in a state q ∈ Q−Γ , going to pop from the pushdown, when the pushdown height is equal to k,
for k > 0. This situation, depicted in Fig. 3, is resolved in a similar way as in the previous case. That is, the path connecting
p with q does not modify the pushdown content, and hence the topmost symbol can be popped directly, by a transition
starting from [p, k], as follows:

• For each (q, −X, q′
X) ∈ H , we add the transition ([p, k], −X, [q′

X , k−1]) ∈ H ′.
• If, for some symbol X ∈ Γ , there is no state q′

X ∈ Q with a corresponding transition (q, −X, q′
X) in H , we add

([p, k], −X, qR) ∈ H ′.

Blocking by undefined pushdown-pop is resolved by a pop operation that enters the rejecting cycle executed in qR. However,
we do not consider whether [p, k] should be included in F ′, since [p, k] is not in Q ′

Σ , but in Q ′
−Γ .

3 In a more sophisticated implementation, we could actually make some additional reduction, by merging [p, k] with [r, k] into a single state. The same
trick could be used in the subsequent Case iii.
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Fig. 3. A pops a symbol from the top of the pushdown.

Fig. 4. Exceptional situations, after which A does not read the rest of the input.

Case iv: The leading sequence ends in a state q ∈ Q−Γ , going to pop from the pushdown, when the pushdown height is equal to k,
for k = 0. Since k = 0, the computation is now blocked by pushdown underflow, and hence the input will not be accepted.
Therefore, we switch directly to the rejecting cycle executed in qR, by the following transitions:

• ([p, k], a, qR) ∈ H ′, for each a ∈ Σ , with
• [p, k] /∈ F ′.

This situation, together with other exceptional cases, is depicted in Fig. 4. Note also that wemay obtain [p, 0] ∈ Q ′
Σ together

with [p, 1] ∈ Q ′
−Γ .

Case v: The leading sequence ends in a state in Q+Γ , going to push a symbol onto the pushdown, but the pushdown height has
already reached the value h. Also this situation is depicted in Fig. 4. Now the computation is blocked by pushdown overflow,
and hence we switch to the rejecting cycle in qR, by the use of the same transitions as presented in Case iv for pushdown
underflow.

Case vi: The leading sequence ends in a state in Q∅. This time the computation is blocked in a statewith no possible transitions.
This is resolved in the same way as in Case iv. (See Fig. 4.)

Case vii: The leading sequence has executedmore than ∥Q∥·∥Γ ≤h−k
∥ steps, but none of the cases above has happened so far. That

is, the computation has been trapped in an infinite loop not consuming any input, and hence the inputwill never be accepted.
(See also Fig. 4.) This follows from the fact that, by fixing the deepest k symbols in the pushdown and the input part not yet
processed, the number of different configurations becomes bounded by ∥Q∥ ·∥Γ ≤h−k

∥, and hence some configurationmust
have been repeated. Therefore, we switch directly to the rejecting cycle executed in qR, by the same transitions as presented
in Case iv.

Let us now present some properties of A′. It is easy to see that A′ never gets to any blocking situation, presented in item (ii)
at the beginning of this section, because we have introduced the complete set of transitions for each state in Q ′.

It is also easy to see that A′ never violates the pushdown boundaries: by inspecting Cases i–vii, the reader may easily
verify that the push operations are performed only by transitions introduced in Case i, and such transitions are executed
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only if k, the current pushdownheight, satisfies k < h. Similarly, the pop operations, introduced only by Case iii, are executed
only for k > 0. All remaining transitions, including those for the rejecting loop in qR, are input-consuming, not changing the
pushdown height, which completes the argument. Note also that A′ does not use any ε-transitions.

To see that A′ never gets into an infinite loop, let us examine the conditions that allow the execution of a push operation,
in a given state [p, k]. By Case i, this is possible only if the leading sequence, starting in p with the pushdown height equal
to k, ends in a state r ∈ QΣ , when the pushdown height is larger than k. (Cf. Fig. 1.) Then a transition ([p, k], +X, [q′, k+1]) is
executed, which corresponds, in A, to a path from p to some q not modifying the pushdown content, followed by (q, +X, q′),
the last transition increasing the pushdown height from k to k+1 along the path from p to r . This ensures that the pushdown
height never gets below k+1 along the path in between q′ and r . Consider now the next step in A′, for the subsequent state
[q′, k+1]. This step depends on the outcome of the leading sequence starting in q′ with the pushdown height equal to k+1,
as presented by Cases i–vii. But, by the above observation, this leading sequence must also end in a state belonging to QΣ ,
namely, in the same state r with the same pushdown height. (However, this pushdown height is not necessarily larger than
k+1.) This excludes Cases iii–vii and leaves us the following two possibilities: either the next move in A′ is again a push
operation, by Case i, or it is a read operation, by Case ii. Summing up, in A′, a push operation must be followed by another
push operation, or by an input-consuming operation. Consequently, it cannot be followed by a pop operation.

Taking also into account that A′ does not violate the pushdown boundaries, we see that A′ cannot execute more that h
push transitions in a row, the same limit applies for the number of consecutive pop transitions. This gives us the following
structure in between two input-consuming transitions:

• a sequence of consecutive pop transitions, the number of which is between 0 and h, followed by
• a sequence of consecutive push transitions, the number of which is also between 0 and h.

This structure covers also pre-processing and post-processing, however, a computation cannot start with pop transitions.
It should also be obvious that A′ is equivalent to the original dpda A. This follows from the fact that, along each

computation path, every single transition (introduced in Cases i–vii) implements an outcome of changes in configuration
that were made by a legal segment of transitions in the original computation path, except for transitions switching to the
rejecting loop in qR. However, such switch is activated only if the original machine rejects without consuming the rest of the
input.

In conclusion, the above construction enables us to state:

Theorem 3.1. Each constant height dpda A = ⟨Q , Σ, Γ ,H, qI, F , h⟩ can be replaced by an equivalent constant height dpda
A′

= ⟨Q ′, Σ, Γ ,H ′, q′
I, F

′, h⟩ with the number of states bounded by ∥Q ′
∥ ≤ ∥Q∥(h+1)+1, using the same pushdown alphabet

and pushdown height, such that (i) its computations are never blocked, violate pushdown boundaries, or get into loops, (ii) on any
input string, the computation halts after reading the entire input, in a state belonging to Q ′

Σ , in which it waits for a possible next
input symbol.

In addition, in the course of the computation, the sequence of labels in transitions follows the trajectory given by
(+Γ )≤h

[ Σ(−Γ )≤h(+Γ )≤h
]
ℓ, for any input of length ℓ ≥ 0, and hence A′ does notmakemore than 2ℓ reversals in the pushdown

movement.

It is clear that the above theorem directly determines the cost of complementing constant height dpdas:

Theorem 3.2. Each constant height dpda A = ⟨Q , Σ, Γ ,H, qI, F , h⟩ can be replaced by a constant height dpda A′ accepting
the complement of L(A) with the number of states bounded by ∥Q ′

∥ ≤ ∥Q∥(h+1)+1, using the same pushdown alphabet and
pushdown height.

Proof. For the given A, we first construct an equivalent constant height dpda Â in normal form presented by Theorem 3.1.
After that, the constant height dpda A′ is obtained from Â by swapping the roles of accepting and rejecting states. More
precisely, F̂ is replaced by Q̂Σ \ F̂ . �

4. Intersection and union of constant height DPDAs

Let us now deal with the other two Boolean operations, and tackle the following problem: given constant height dpdas
A = ⟨QA, Σ, ΓA,HA, qA, FA, hA⟩ and B = ⟨QB, Σ, ΓB,HB, qB, FB, hB⟩, determine the size of constant height dpdas accepting
L(A) ∩ L(B) and L(A) ∪ L(B).

Clearly, also here one may transform A and B into equivalent dfas, by Lemma 2.2, and operate as usual in order to obtain
dfaswith atmost (∥QA∥·∥Γ

≤hA
A ∥+1)·(∥QB∥·∥Γ

≤hB
B ∥+1) states performing the desired tasks. However, by actually exploiting

the power of pushdown storage, we can provide a slightly improved construction. Before doing so, we need to show costs
for simpler operations, namely, intersection and union of dpdas with dfas.

Lemma 4.1. For each constant height dpda A = ⟨QA, Σ, ΓA,HA, qA, FA, hA⟩ and each dfa B = ⟨QB, Σ,HB, qB, FB⟩, there exist
two constant height dpdas C and D such that L(C) = L(A) ∩ L(B) and L(D) = L(A) ∪ L(B), both using the pushdown
alphabet ΓA and the pushdown height hA, with the number of states in C bounded by ∥QC∥ ≤ ∥QA∥ · ∥QB∥, while in D bounded by
∥QD∥ ≤ (∥QA∥(hA+1)+1) · ∥QB∥.



30 Z. Bednárová et al. / Theoretical Computer Science 449 (2012) 23–36

Proof. First, we can easily present the constant height dpda C for L(A) ∩ L(B). The basic idea is quite simple, to keep
the current states for both A and B in the finite control state, and to manipulate with the pushdown in the same way as
A does. If the computation in A is blocked, violates the pushdown boundaries, or gets into an infinite loop (see (ii)–(iv)
listed at the beginning of Section 3), the computation in C fails for the same reasons and the input is rejected. Thus, let
C = ⟨QC , Σ, ΓC ,HC , qC , FC , hC⟩, where QC = QA×QB, qC = [qA, qB], FC = FA×FB, ΓC = ΓA, and hC = hA. Now, for each state
[p, q] ∈ QA×QB, we define the transitions in HC as follows:

• If, for some symbol a ∈ Σ , (p, a, p′
a) ∈ HA and (q, a, q′

a) ∈ HB, then ([p, q], a, [p′
a, q

′
a]) ∈ HC .

• If, for some X ∈ Γ , (p, −X, p′
X) ∈ HA, then ([p, q], −X, [p′

X , q]) ∈ HC .
• If (p, ε, p′) ∈ HA, then ([p, q], ε, [p′, q]) ∈ HC .
• If (p, +X, p′) ∈ HA, then ([p, q], +X, [p′, q]) ∈ HC .

(Without loss of generality, we assume that B is ε-free, keeping the same number of states.) It is clear that, on any given
input, the dpda C runs A and B in parallel; the choice of the accepting states ensures that C accepts if and only if both A and B
accept.

Let us now consider a constant height dpda D for L(A) ∪ L(B). Note that even if the computation in A fails, e.g., because
of a pushdown overflow or an infinite loop, we still have to verify whether the given input is not accepted by B. Therefore,
we first replace A by an equivalent dpda Â = ⟨Q̂A, Σ, ΓA, ĤA, q̂A, F̂A, hA⟩ in normal form presented in Theorem 3.1, using the
same pushdown, but with ∥Q̂A∥ = ∥QA∥(hA +1)+1 states. This machine, independent of whether the input is accepted,
always halts after reading the entire input, in a state belonging to Q̂Σ,A, in which it waits for a possible next input symbol.

After that, the constant height dpda D accepting L(Â) ∪ L(B) can be obtained in the same way as the machine for the
intersection, but nowwe take FD = (F̂A×QB)∪ (Q̂Σ,A×FB). That is, D accepts if and only if at least one of the original machines
accept. Note also that D fulfills the criteria of the normal form presented in Theorem 3.1.

Clearly, the number of states in these two machines is bounded by ∥QC∥ ≤ ∥QA∥ · ∥QB∥ and by ∥QD∥ ≤ (∥QA∥(hA+1)+
1) · ∥QB∥, respectively. �

Now we are ready to present the costs for intersection and union of two dpdas, beginning with upper bounds.

Theorem 4.2. For each two constant height dpdas A = ⟨QA, Σ, ΓA,HA, qA, FA, hA⟩ and B = ⟨QB, Σ, ΓB,HB, qB, FB, hB⟩, there
exist two constant height dpdas C and D such that L(C) = L(A) ∩ L(B) and L(D) = L(A) ∪ L(B), both using the pushdown
alphabet ΓA and the pushdown height hA, with the number of states in C bounded by ∥QC∥ ≤ ∥QA∥ · ∥QB∥ · ∥Γ

≤hB
B ∥, while in D

bounded by ∥QD∥ ≤ (∥QA∥(hA+1)+1) · (∥QB∥ · ∥Γ
≤hB
B ∥+1)−1.

Proof. The key idea is first to turn one of the two initial dpdas, say B, into an equivalent dfa B̂ using ∥Q̂B∥ = ∥QB∥·∥Γ
≤hB
B ∥+1

states, by Lemma2.2. Thenwe combine Awith B̂ into a singlemachine by the use of Lemma4.1, simulating A and B̂ in parallel,
with suitably fixed accepting states, and using the pushdown storage in the same way as A does.

However, there are some subtle differences between the dpdas C and D. In the case of C accepting L(A) ∩ L(B̂), we do
not mind if C terminates in the middle of a rejected input because the simulation of B̂ is aborted. Therefore, before using
the construction of Lemma 4.1, we can remove, from B̂, the rejecting cycle executed in the state q̂R,B (introduced to B̂ by the
construction of Lemma 2.2). After that, we apply Lemma 4.1 and get the dpda C using ∥QA∥·(∥Q̂B∥−1) = ∥QA∥·∥QB∥·∥Γ

≤hB
B ∥

states.
On the other hand, in the case of D accepting L(A) ∪ L(B̂), we have to verify whether the input is not accepted by A

even if B̂ has already entered the cycle executed in q̂R,B. Therefore, we apply Lemma 4.1 directly. This gives a machine with
(∥QA∥(hA+1)+1) · ∥Q̂B∥ = (∥QA∥(hA+1)+1) · (∥QB∥ · ∥Γ

≤hB
B ∥+1) states. A finer analysis reveals that actually QD = Q̂A×Q̂B,

where Â is obtained by transformation of A into the normal form presented in Theorem 3.1. Also in this machine we have
a rejecting cycle, executed in a state q̂R,A. Thus, among others, D uses states [p, q̂R,B], for each p ∈ Q̂A and [q̂R,A, q], for each
q ∈ Q̂B. If we do not need a dpda D in normal form, we can save one state by removing [q̂R,A, q̂R,B] from QD. The modified
machine will abort in the middle of the input, if both simulations, running in parallel, abort. �

In the above theorem, the cost of union for two dpdas is dominated by the number of states, bounded by O(∥QA∥·hA ·

∥QB∥ · ∥Γ
≤hB
B ∥) ≤ O(∥QA∥ ·hA · ∥QB∥ · ∥ΓB∥

hB), provided that ∥ΓB∥ ≥ 2. This reflects the fact that we keep the current
states for both A and B in the finite control state, together with the entire content of the pushdown store for B, but only the
pushdown height for A. This value can be slightly reduced for intersection, to O(∥QA∥ · ∥QB∥ · ∥ΓB∥

hB), if we do not mind
aborting computations. The roles of A and B can be swapped, and hence the cost is exponential in h = min{hA, hB}.

The rest of this section is devoted to proving that this exponential cost cannot be avoided. To this end, for arbitrary
input alphabet Σ , we first exhibit {L′

n}n≥1 and {L′′
n}n≥1, two families of languages accepted by dpdas using 2 · ∥Σ∥+2 states

and ∥Σ∥−1 pushdown symbols, with pushdown height h = n. Afterward, we show that any dpda for the intersection of
these languages must use either (∥Σ∥−1)n/9−O(log n) states or its pushdown height must be above (∥Σ∥−1)n/9−O(log n). An
exponential lower bound (∥Σ∥−1)n/15−O(log n) for union then follows easily, by De Morgan’s laws.
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First, for arbitrarily given input alphabet Σ , we fix one symbol $ ∈ Σ as special, and set Σ−1 = Σ \ {$}. Then, for each
integer n ≥ 1, we define three languages on Σ:

L′

n = {φu1$w1$uR
2$w

R
2 : φ, u1, w1, u2, w2 ∈ Σ∗

−1, |φu1|≤n, u1 =u2},

L′′

n = {u1$φw1$uR
2$w

R
2 : φ, u1, w1, u2, w2 ∈ Σ∗

−1, |φw1|≤n, w1 =w2}, (1)

Ln = L′

n ∩ L′′

n.

If we consider only inputs in a special restricted form, the conditions formembership in these languages can be simplified
as follows.

Lemma 4.3. For each u1, w1, u2, w2 ∈ Σ∗
−1 satisfying |u1|=|u2|≤n and |w1|=|w2|≤n,

• u1$w1$uR
2$w

R
2 ∈ L′

n if and only if u1 =u2,
• u1$w1$uR

2$w
R
2 ∈ L′′

n if and only if w1 =w2,
• u1$w1$uR

2$w
R
2 ∈ Ln if and only if u1 =u2 and w1 =w2.

Proof. We content ourselves with an argument for L′
n; the reasoning for L′′

n is similar and the third statement is then trivial.
If u1 =u2, then, using φ=ε and taking |u1|=|u2|≤n for granted, we get u1$w1$uR

2$w
R
2 ∈ L′

n.
Conversely, if we have u1 ≠u2 for two strings satisfying |u1|=|u2|, then u1 cannot be partitioned into u1 = φû1 satisfying

û1 =u2, for no φ ∈ Σ∗
−1, and hence u1$w1$uR

2$w
R
2 /∈ L′

n. �

All additional conditions in (1), not mentioned in the itemization presented in Lemma 4.3, were introduced just for
technical reasons, making life simpler for machines accepting L′

n or L′′
n with a help of a pushdown of constant height h = n.

The additional conditions ensure that suchmachines do not have to verify if certain segments are of ‘‘correct’’ lengths, which
reduces the number of states and, subsequently, increases the derived exponential gap between L′

n, L
′′
n and their intersection.

Lemma 4.4. For any given Σ and each n ≥ 1, the languages L′
n and L′′

n can be accepted by dpdas A1 and A2 using 2 · ∥Σ∥+2
states and ∥Σ∥−1 pushdown symbols, with pushdown height h = n.

Proof. We present only the main features of A1 and A2, the formal definition may be easily filled by the reader.
First, on input φu1$w1$uR

2$w
R
2, the dpda A1 for L′

n pushes the string φu1 onto the pushdown (not taking care of a boundary
betweenφ andu1). If |φu1| > n, it rejects by pushdownoverflow.Otherwise, it sweepsw1 and reaches the secondoccurrence
of $ along the input. At this point, A1 checkswhether u2 =u1 by scanning uR

2 andmatching input symbols against the topmost
|uR

2| symbols in the pushdown. IfA1 finds a pair ofmismatched symbols, it rejects by undefined pop transition. If |uR
2| > |φu1|,

it rejects by pushdown underflow. Otherwise, i.e., if all symbols match successfully until the point when A1 scans the third
occurrence of $, A1 consumes wR

2, the remaining part of the input, by a cycle executed in an accepting state. (Note that A1
leaves a copy of φ in the pushdown.)

Second, the dpda A2 for L′′
n basically runs in the same way as A1, but pushdown loading and input matching are now

performed on φw1 and wR
2, respectively, in order to check whether w2 =w1.

Carefully implemented, both machines use 2 · ∥Σ∥+2 states, ∥Σ∥−1 pushdown symbols, and h = n as a pushdown
height.4 �

We are now ready to establish a lower bound for constant height dpdas accepting Ln. Before doing so, let us present the
main idea behind the proof of Theorem 4.5.

Take a computation path of a constant height dpda An accepting Ln, on an input u$w$uR$wR. For this path, let γu ·γw be the
pushdown content at the moment when the machine reads the second occurrence of $. Here γu denotes the initial portion
from the bottom, loaded into the pushdown in the course of reading u, while γw denotes the top part, loaded in the course of
reading w. In general, the machine could also store some information about u and w in the finite state control. However, if
both the number of states and the pushdown height are polynomial in n, we can fix, by a complicated pigeonhole argument,
two pairs of strings u̇ ≠ ü and ẇ ≠ ẅ, such that all four inputs with u ∈ {u̇, ü} and w ∈ {ẇ, ẅ} share some common
properties. Namely, the corresponding four computationsmust pass through the same states at several fixed ‘‘critical’’ points.
Therefore, (i) to compare u̇R or üR with the first input block u ∈ {u̇, ü}, the machine cannot use any information that was
stored in the finite state control in the course of reading u$w$. (Thus, to compare these blocks, the machine is forced to
examine γu · γw , stored in the pushdown.) In addition, (ii) the machine cannot compare ẇR or ẅR with the second input
block w ∈ {ẇ, ẅ} by the use of information that was stored in the finite state control in the course of reading u$w$uR$.
(Thus, to compare ẇR or ẅR with w, the machine must examine what was left in the pushdown store after reading the
block $uR$.)

This gives us the following possibilities. First, in the course of reading $uR$, the machine does examine the deepest |γu|

symbols of the pushdown content γu · γw . But then the top pushdown string γw is forgotten, and hence the machine cannot

4 Using a transition function in a form introduced in standard textbooks, only O(1) states would be required in our dpdas. However, this would be paid
by Θ(∥Σ∥

2) transitions, introduced in a somewhat artificial way. Moreover, neither ‘‘O(1)’’ nor ‘‘Θ(∥Σ∥
2)’’ reflects the fact that the size-cost is actually

linear in ∥Γ ∥ = ∥Σ∥−1. Thus, our definition of transitions is more realistic if the size-cost is at stake.
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Fig. 5. Parameters and pushdown content along the computation.

distinguish between the inputs u̇$ẇ$u̇R$ẇR and u̇$ẅ$u̇R$ẇR. Second, in the course of reading $uR$, the machine does not
examine the deepest |γu| symbols of γu · γw . But then the bottom string γu is not utilized in the course of reading $uR$,
and hence themachine cannot distinguish between the inputs u̇$ẇ$u̇R$ẇR and u̇$ẇ$üR$ẇR. (Actually, we have two subcases
here, depending on whether the deepest |γu| symbols are examined too late, in the course of reading $wR, or not examined
at all.) All these cases lead to contradictions.

Theorem 4.5. For any given alphabet Σ , with ∥Σ∥ ≥ 3, let {Ln}n≥1 be the language family introduced by (1). Let {An}n≥1 be any
constant height dpdas accepting these languages, and let ∥Qn∥ and hn be, respectively, the number of states and the pushdown
height in An. Then (hn+1) · ∥Qn∥

2 >(∥Σ∥−1)⌊n/3⌋/(4n2), for each n ≥ 7. (This lower bound does not depend on the cardinality
of Γn, the pushdown alphabet used by An.)

Consequently, in {An}n≥1, the number of states and the pushdown height cannot be both polynomial in n; either hn+1 or ∥Qn∥

(or both these values) are above (∥Σ∥−1)⌊n/3⌋/3/ 3√4n2 ≥ (∥Σ∥−1)n/9−O(log n).

Proof. Assume, for contradiction, the existence of An = ⟨Qn, Σ, Γn,Hn, qI,n, Fn, hn⟩, a constant height dpda accepting Ln,
with pn = (hn +1) · ∥Qn∥

2
≤ ∥Σ−1∥

⌊n/3⌋/(4n2), for each n. (Recall that ∥Σ−1∥ = ∥Σ∥−1.) From now on, for the sake
of readability, we simply write p instead of pn, as well as A,Q , Γ ,H, qI, F , h instead of An,Qn, Γn,Hn, qI,n, Fn, hn. (To avoid
confusion, we keep Ln.) Thus, by assumption,

p = (h+1) · ∥Q∥
2

≤ ∥Σ−1∥
⌊n/3⌋/(4n2). (2)

First, we define the set

V0 = {[u, w] : u, w ∈ Σ∗

−1, |u|=⌊n/3⌋ and |w|=n}.

Clearly,

∥V0∥ = ∥Σ−1∥
⌊n/3⌋

· ∥Σ−1∥
n

= ∥Σ−1∥
n+⌊n/3⌋.

Let us consider the computation of A on an input u$w$uR$wR, where [u, w] ∈ V0. By Lemma 4.3, this string is in Ln, and
hence, for each [u, w] ∈ V0, we have an accepting computation path reading the entire string u$w$uR$wR.

For this path, the following parameters are taken: (i) yℓ ∈ {0, . . . , h}, the lowest height of pushdown store in the course
of reading w, (ii) qℓ ∈ Q , the state in which the height yℓ is attained for the last time, along w, (iii) xℓ ∈ {0, . . . , |w|}, the
distance from the beginning of w to the input position in which qℓ is entered, (iv) qk ∈ Q , the state in which the height
yℓ is decreased to yℓ −1 for the first time, in the course of reading $uR$wR, (v) xk ∈ {0, . . . , |$uR$wR

|}, the distance from
the beginning of $uR$wR to the input position in which qk is entered. (If the machine A, along $uR$wR, never decreases the
pushdown height to yℓ −1, we take xk = |$uR$wR

|+1 and, by definition, the state qk coincides with q ∈ F at the end of
the path. That is, the artificial position xk is behind the input, never reached by A, representing ‘‘infinity’’ for the purposes of
our reasoning. Except for this special case, the pushdown height is always equal to yℓ at the position xk.) In addition, upon
reading the second occurrence of the symbol $ in the inputword (i.e., at the end of the stringw), we let: (vi) qe be the starting
state for the transition reading the second occurrence of $, and (vii) γu ·γw be the pushdown content at this moment, where
γu denotes the initial portion from the bottom, of height yℓ, while γw is the remaining part. For better understanding, see
Fig. 5.

Taking into account the lengths of w and $uR$wR, including the artificial position xk = |$uR$wR
| +1 but excluding

xk = 0 (since the second part of the computation starts by reading the symbol $ in the state qe), we have that the number
of different quintuples [xℓ, xk, yℓ, qℓ, qk] is bounded by (n+ 1) · (n+ ⌊n/3⌋ + 3) · (h+ 1) · ∥Q∥

2. It is easy to verify that
(n+1) · (n+⌊n/3⌋+3) ≤ 2n2, for each n ≥ 7. Thus, by using also (2), the number of such quintuples can be bounded
by 2n2

·(h+1) · ∥Q∥
2

≤ 2n2
· ∥Σ−1∥

⌊n/3⌋/(4n2) = ∥Σ−1∥
⌊n/3⌋/2.

Indeed, since u$w$uR$wR is in Ln for each [u, w] ∈ V0, each pair [u, w]∈V0 is associated with an accepting computation
path, and also with one of these quintuples. Hence, a simple pigeonhole argument proves the existence of a set V1 ⊆ V0,
with

∥V1∥ ≥
∥V0∥

∥Σ−1∥
⌊n/3⌋/2

≥
∥Σ−1∥

n+⌊n/3⌋

∥Σ−1∥
⌊n/3⌋/2

= 2 · ∥Σ−1∥
n,
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Fig. 6. Computation on inputs u̇$ẇ$u̇R$ẇR
∈ Ln (solid line), u̇$ẅ$u̇R$ẅR

∈ Ln (dotted line), and u̇$ẅ$u̇R$ẇR /∈ Ln , visiting the lower yℓ pushdown symbols
in the course of reading the third segment.

such that all string pairs [u, w] ∈ V1 share the same quintuple [xℓ, xk, yℓ, qℓ, qk]. Let us now build the following ‘‘projection’’
sets from V1:

V1,1 = {u : ∃w, such that [u, w] ∈ V1},

V1,2 = {w : ∃u, such that [u, w] ∈ V1}.

Clearly, ∥V1,1∥ ≤ ∥Σ−1∥
⌊n/3⌋ and ∥V1,2∥ ≤ ∥Σ−1∥

n. Note also that V1 ⊆ V1,1 ×V1,2, with ∥V1∥ > 0, and hence also with
∥V1,1∥ > 0 and ∥V1,2∥ > 0.

Now, let us split V1,2 into the following two disjoint sets:

V2 = {w : there exist more than one u ∈ V1,1 such that [u, w] ∈ V1},

V c
2 = {w : there exists exactly one u ∈ V1,1 such that [u, w] ∈ V1}.

Let x = ∥V2∥. First, it is easy to see that ∥V c
2∥ = ∥V1,2∥ − x ≤ ∥Σ−1∥

n
− x. To evaluate a lower bound for x = ∥V2∥, observe

that V1 ⊆ V1,1 ×V1,2 = (V1,1 ×V c
2 ) ∪ (V1,1 ×V2), but the contribution of elements from V1,1 ×V c

2 to the total number of
elements in V1 must be very ‘‘small’’. Consequently, the contribution from V1,1×V2 must be ‘‘large’’. More precisely, observe
that if w ∈ V c

2 , then it is impossible to have [u̇, w] ∈ V1 and [ü, w] ∈ V1 for two different strings u̇, ü ∈ V1,1. On the other
hand, if w ∈ V2, the number of pairs [u, w] ∈ V1 sharing this w is bounded only by ∥V1,1∥ ≤ ∥Σ−1∥

⌊n/3⌋. This gives us that
∥V1∥ ≤ 1 · ∥V c

2∥ + ∥V1,1∥ · ∥V2∥ ≤ (∥Σ−1∥
n
−x) + ∥Σ−1∥

⌊n/3⌋
·x = x · (∥Σ−1∥

⌊n/3⌋
−1) + ∥Σ−1∥

n, whence

∥V2∥ = x ≥
∥V1∥ − ∥Σ−1∥

n

∥Σ−1∥
⌊n/3⌋ − 1

>
2 · ∥Σ−1∥

n
− ∥Σ−1∥

n

∥Σ−1∥
⌊n/3⌋

= ∥Σ−1∥
n−⌊n/3⌋. (3)

(This requires ∥Σ−1∥
⌊n/3⌋ > 1, which clearly holds for ∥Σ−1∥ ≥ 2 and n ≥ 7.)

Let us fix some lexicographical order on the set V1,1 and, for each w ∈ V2, take the first two u̇ ≠ ü in this ordering
satisfying [u̇, w] ∈ V1 and [ü, w] ∈ V1. The number of such u̇ ≠ ü is clearly bounded by ∥V1,1×V1,1∥ ≤ ∥Σ−1∥

2·⌊n/3⌋. This,
together with (3) and a pigeonhole argument, yields the existence of a nonempty set V3 ⊆ V2 ⊆ V1,2, with cardinality

∥V3∥ ≥
∥V2∥

∥V1,1×V1,1∥
>

∥Σ−1∥
n−⌊n/3⌋

∥Σ−1∥
2·⌊n/3⌋

= ∥Σ−1∥
n−3·⌊n/3⌋

≥ ∥Σ−1∥
0

= 1 ,

such that all strings w ∈ V3 share the same pair u̇≠ ü in V1,1, with [u̇, w]∈V1 and [ü, w]∈V1.
Note that ∥V3∥ > 1 implies ∥V3∥ ≥ 2. Thus, we can fix some ẇ ≠ ẅ in V3, such that [u̇, ẇ], [ü, ẇ], [u̇, ẅ], [ü, ẅ] ∈ V1.

Moreover, by definition of V1, we have that all these string pairs share the same quintuple [xℓ, xk, yℓ, qℓ, qk]. Therefore, if we
take the corresponding inputs u$w$uR$wR, for any u ∈ {u̇, ü} and any w ∈ {ẇ, ẅ}, all four of them are in Ln, by Lemma 4.3,
and all four of them have accepting computation paths passing through the same states qℓ, qk, placed at the same positions
xℓ, xk along the input, with the same pushdown height yℓ. Depending on the value xk, there are now the following three cases
to consider.

Case i: xk ∈ {0, . . . , ⌊n/3⌋+1}, that is, the four computations visit the lower content of the pushdown store below the level yℓ in
the course of reading $u̇R or $üR. This situation is depicted in Fig. 6.

Consider the inputs ż = u̇$ẇ$u̇R$ẇR and z̈w = u̇$ẅ$u̇R$ẅR, together with their crossbreed δw = u̇$ẅ$u̇R$ẇR /∈ Ln.
First, at the moment when the machine A gets to the state qℓ at the position xℓ, the pushdown contains a word γu̇,

consisting of the deepest yℓ symbols loaded in the course of reading u̇$, and hence the same for both ż and z̈w . Depending
on the first half of the input, namely, on u̇$ẇ and u̇$ẅ, the machine then gets, respectively, to some state q̇e or q̈e, with the
pushdown content consisting of the word γu̇ under some word γẇ or γẅ . However, on both ż and z̈w , A reaches the same
state qk at the same position xk. Moreover, all information previously stored in the upper part of the pushdown (i.e., γẇ

or γẅ , respectively) has been popped out, since we have reached the pushdown height yℓ. Thus, in both cases, the current
content stored in the pushdown is the same, namely, the string γu̇. So far, the computation on the input δw followed the
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Fig. 7. Computation on inputs u̇$ẇ$u̇R$ẇR
∈ Ln (solid line), ü$ẇ$üR$ẇR

∈ Ln (dotted line), and u̇$ẇ$üR$ẇR /∈ Ln , visiting the lower yℓ pushdown symbols
in the course of reading the last segment.

Fig. 8. Computation on inputs u̇$ẇ$u̇R$ẇR
∈ Ln (solid line), ü$ẇ$üR$ẇR

∈ Ln (dotted line), and u̇$ẇ$üR$ẇR /∈ Ln , not visiting the lower yℓ pushdown
symbols in the course of reading the second half of the input.

trajectory for z̈w , reading u̇$ẅ and the first xk symbols of $u̇R. Hence, also here we must come to the same state qk with the
same pushdown content γu̇.

From this point forward, the computation on δw follows the trajectory for ż, reading the remaining part of $u̇R, the
string $ẇR, and stopping in some accepting5 state q̇ ∈ F .

Thus, the machine A accepts δw = u̇$ẅ$u̇R$ẇR /∈ Ln, which is a contradiction.

Case ii: xk ∈ {⌊n/3⌋+2, . . . , n+⌊n/3⌋+2}, that is, the four computations visit the lower content of the pushdown store below
the level yℓ in the course of reading $ẇR or $ẅR. This situation is depicted in Fig. 7.

This time we consider the inputs ż = u̇$ẇ$u̇R$ẇR and z̈u = ü$ẇ$üR$ẇR, together with δu = u̇$ẇ$üR$ẇR /∈ Ln.
The computation on the input ż begins in the same way as in the previous case: when the machine A gets to the state qℓ

at the position xℓ, the pushdown store contains a word γu̇, loaded in the course of reading u̇$. On the other hand, the input z̈u
beginswith ü$, andhence the corresponding computation on z̈u enters the state qℓ with awordγü in the pushdown, satisfying
|γü| = |γu̇| = yℓ, at the same input position xℓ. The computation on the input δu follows the trajectory for ż and enters qℓ

with γu̇ in the pushdown, reading u̇$ and the first xℓ symbols of ẇ.
After that, the deepest yℓ symbols in the pushdown (i.e., γu̇ or γü, respectively) cannot come into play until the moment

when the pushdown height gets below the level yℓ again. On both ż and z̈u, this will happen in the state qk, at the position xk
from the beginning of $u̇R$ẇR or $üR$ẇR. Thus, A enters qk with the respective string γu̇ or γü in the pushdown, with the
input head pointing into $ẇR. Therefore, A gets from qℓ to qk by reading the following portion of the input: the remaining
part of ẇ, the entire middle string (i.e., $u̇R or $üR, respectively), and the first xk−|$u̇R

| symbols of $ẇR.
In between qℓ and qk, the computation on δu follows the trajectory for z̈u, reading the same symbols along the input.

However, along this path, the configurations differ from the original ones in the deepest yℓ pushdown symbols: γü · γ is
replaced everywhere by γu̇ · γ . Thus, the computation on δu enters qk with γu̇ in the pushdown.

At this point, the configuration on δu agrees with that on ż. Therefore, the computation on δu switches back to the
trajectory for ż, reading the remaining part of the string $ẇR and stopping in some accepting state q̇ ∈ F .

Thus, A accepts δu = u̇$ẇ$üR$ẇR /∈ Ln, which is a contradiction.

Case iii: xk = n+⌊n/3⌋+3, that is, after passing through ẇ or ẅ, the four computations never visit the lower content of the
pushdown store below the level yℓ. This situation is depicted in Fig. 8.

Also in this case we consider ż = u̇$ẇ$u̇R$ẇR and z̈u = ü$ẇ$üR$ẇR, together with the same δu = u̇$ẇ$üR$ẇR /∈ Ln.
As already discussed above, the machine A reaches the same state qℓ at the same position xℓ on both ż and z̈u, with

a respective string γu̇ or γü in the pushdown. The computation on the input δu follows the trajectory for ż and enters qℓ

with γu̇ in the pushdown, reading u̇$ and the first xℓ symbols of ẇ.

5 The computation on z̈w ends in some q̈ ∈ F .
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After that, by definition of qℓ and the assumptions for Case iii, the deepest yℓ symbols in the pushdown (i.e., γu̇ or γü,
respectively) cannot come into play any more. Therefore, the computation on δu switches to the trajectory for z̈u, reading
the same symbols along the input, namely, the remaining part of ẇ and the entire string $üR$ẇR. However, along this path,
the configurations differ from the original ones in the deepest yℓ pushdown symbols: γü ·γ is replaced everywhere by γu̇ ·γ .
Nevertheless, the computation on δu ends in the same6 state qk ∈ F .

Thus, also in this case A accepts δu /∈ Ln, which is a contradiction.
In conclusion, if a dpda A = An does accept the language Ln, the inequality (2) must be reversed. Thus, the value p = pn

must satisfy pn = (hn + 1) · ∥Qn∥
2 > ∥Σ−1∥

⌊n/3⌋/(4n2) = (∥Σ∥ − 1)⌊n/3⌋/(4n2). Consequently, either the number of
states or the pushdown height (or both) must be exponential in n, since either ∥Qn∥ > (∥Σ∥−1)⌊n/3⌋/3/ 3√4n2, or else
hn+1 > (∥Σ∥−1)⌊n/3⌋/3/ 3√4n2 ≥ (∥Σ∥−1)n/9−2/9/

3√4n2 ≥ (∥Σ∥−1)n/9−O(log n). �

We end this section by showing also an exponential blow-up for union of two dpdas, leaving possible improvements to
the reader.

Theorem 4.6. For any given alphabet Σ , with ∥Σ∥ ≥ 3, let {L′
n
c
}n≥1 and {L′′

n
c
}n≥1 be the complements of the language families

introduced by (1). Then there exist constant height dpdas {A′
n}n≥1 and {A′′

n}n≥1 accepting the respective languages with size
polynomial in ∥Σ∥ and n. Namely, O(∥Σ∥·n) states and ∥Σ∥−1 pushdown symbols are sufficient, using the pushdown height
h = n.

On the other hand, let {Ân}n≥1 be any constant height dpdas accepting their union {L̂n}n≥1 = {L′
n
c
∪ L′′

n
c
}n≥1, and let ∥Q̂n∥

and ĥn be, respectively, the number of states and the pushdown height in Ân. Then (ĥn+1)3 · ∥Q̂n∥
2 > (∥Σ∥−1)⌊n/3⌋/(8n2), for

each n ≥ 7. Consequently, either ĥn+1 or ∥Q̂n∥ (or both) are above (∥Σ∥−1)⌊n/3⌋/5/ 5√8n2 ≥ (∥Σ∥−1)n/15−O(log n).

Proof. First, for each n ≥ 1, both L′
n and L′′

n can be accepted by dpdas with at most 2 · ∥Σ∥+2 states and ∥Σ∥−1 pushdown
symbols, using h = n as the pushdown height, by Lemma 4.4. But then, by Theorem 3.2, both L′

n
c and L′′

n
c can be accepted by

dpdas with at most (2 · ∥Σ∥+2)(n+1)+1 ≤ O(∥Σ∥·n) states, using the same pushdown alphabet and the same pushdown
height.

On the other hand, assume that L̂n = L′
n
c
∪ L′′

n
c is accepted by a constant height dpda Ân with ∥Q̂∥ states and a pushdown

height ĥ. (The machine Ân may use an arbitrary pushdown alphabet.) So, by complementing Ân by the use of Theorem 3.2,
we obtain a constant height dpda An for Ln, with the number of states bounded by ∥Q∥ ≤ ∥Q̂∥(ĥ+1)+1, and the same
pushdownheight ĥ. But then, by Theorem4.5,we get that (ĥ+1)∥Q∥

2 > (∥Σ∥−1)⌊n/3⌋/(4n2). Utilizing also simple inequality
2x2 ≥ (x+1)2, valid for x ≥ 3, we then get:

(ĥ+1)3 · ∥Q̂∥
2

=
1
2

·(ĥ+1)(2 · ∥Q̂∥
2(ĥ+1)2) ≥

1
2

·(ĥ+1)(∥Q̂∥(ĥ+1)+1)2

≥
1
2

·(ĥ+1)∥Q∥
2 >

1
2

· (∥Σ∥−1)⌊n/3⌋/(4n2)

= (∥Σ∥−1)⌊n/3⌋/(8n2) .

Consequently, wemust get either ∥Q̂∥ > (∥Σ∥−1)⌊n/3⌋/5/ 5√8n2, or ĥ+1 > (∥Σ∥−1)⌊n/3⌋/5/ 5√8n2 ≥ (∥Σ∥−1)n/15−O(log n). �

5. Concluding remarks

Wehave analyzed the size-cost of Boolean operations for constant heightdpdas. It turns out that the size complexity of all
basic Boolean operations fordpdaswith constant height pushdown reflects the closure properties ofdpdaswith unrestricted
pushdown for the corresponding operations, thus, the closure properties of the deterministic context-free languages (dcf,
for short). This is emphasized in Table 1.

On the one hand, it is well known [2] (see also the middle column of Table 1) that the class dcf is closed under
complement, but not closed under intersection and union. However, dcf is closed under some simpler operations, namely,
intersection and union with regular languages. We also know that dcf contains nonregular languages and hence, in general,
a dpdawith an unrestricted pushdown cannot be converted into an equivalent dfa.

On the other hand (see the right column of Table 1), dpdas with a pushdown of constant height can recognize regular
languages only, and hence they are closed under all above operations. But, taking into account their size, we have got
that the cost of complement is polynomial but the costs of intersection and union are exponential. For simpler operations,
intersection and union of dpdas with dfas, the costs are polynomial. Finally, the cost of converting a constant height dpda
into an equivalent dfa is exponential [1]. (See also Lemma 2.2.)

So far, we have spotted only one difference in this analogy, namely, intersection with deterministic counter languages:
by Theorem 4.2, given two constant height dpdas A and B, a new dpda for their intersection does not need more than

6 The computation starting from qℓ on ż ends also in the same state qk (not necessarily with the same pushdown height), but by reading a different
sequence of input symbols, not corresponding to the second half of δu .
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Table 1
Analogies between closure properties and size-cost of unrestricted and
constant height dpdas. The results in the middle column are standard (see,
e.g., [2]), those in the right column are proved in this paper, except for the
conversion to dfa [1].
Operation Unrestricted DPDAs Constant height DPDAs

closure/possibility size-cost

Complementation Closed Polynomial
Intersection Not closed Exponential
Union Not closed Exponential
Intersection with dfa Closed Polynomial
Union with dfa Closed Polynomial
Conversion to dfa Not possible Exponential

∥QA∥ · ∥QB∥ · ∥Γ
≤hB
B ∥ states, using the pushdown alphabet ΓA and the constant height hA. But, if B uses its pushdown as

a counter, with ∥ΓB∥ = 1, we need only ∥QA∥ · ∥QB∥·(hB+1) states, and hence the cost remains polynomial. On the other
hand, for machines with unrestricted counters, the intersection is not necessarily context-free, and hence not in dcf.7

Therefore, it would be interesting to investigate the size-cost of other language operations for constant height dpdas
and compare them with unrestricted versions of pushdown automata. Similarly, many properties of nondeterministic or
two-way variants of these machines have not been examined yet.
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