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We discuss three different ways of defining the strain measures in the non-linear micropo-
lar continuum: (a) by a direct geometric approach, (b) considering the strain measures as
the fields required by the structure of local equilibrium conditions, and (c) requiring the
strain energy density of the polar-elastic body to satisfy the principle of invariance under
superposed rigid-body deformations. The geometric approach (a) generates several two-
point deformation measures as well as some Lagrangian and Eulerian strain measures.
The ways (b) and (c) allow one to choose those Lagrangian strain measures which satisfy
the additional mechanical requirements. These uniquely selected relative strain measures
are called the natural ones. All the strain measures discussed here are formulated in the
general coordinate-free form. They are valid for unrestricted translations, stretches and
changes of orientations of the micropolar body, and are required to identically vanish in
the absence of deformation. The relation of the Lagrangian stretch and wryness tensors
derived here to the ones proposed in the literature is thoroughly discussed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The micropolar (or the Cosserat type) continuum differs from the classical (or the Cauchy type) continuum in that in the
former one each material particle can translate and independently rotate, that is it has six degrees of freedom of a rigid body.
Main ideas leading to the micropolar continuum were discussed already at the end of XIXth century by Kelvin, Helmholtz,
Duhem, Voigt and Cosserat and were worked out in detail by Cosserat and Cosserat (1909). Later results obtained within the
non-linear micropolar continuum were summarised for example by Toupin (1964), Truesdell and Noll (1965), Kafadar and
Eringen (1971) and Pabst (2005) where many references to earlier original papers were given. Nowadays the micropolar con-
tinuum is used with success to model various phenomena in many areas of solid and fluid mechanics such as, for example,
granular media, composites, polycristalline solids, biomaterials, liquid crystals, foams, magnetic fluids, nano-materials, as
well as thin bodies: rods, plates, and shells.

Yet, the representative references collected at the end of this paper and summarised in Table 1 of Section 6 indicate that
various approaches were used in the literature to introduce the Lagrangian strain measures into the non-linear micropolar
continuum. In most papers the strain measures were given simply by definition or referring to Kafadar and Eringen (1971)
and Eringen and Kafadar (1976), who referred to Cosserat and Cosserat (1909) and called the measures the Cosserat defor-
mation and wryness tensors. However, the strain measures originally proposed by Cosserat and Cosserat (1909) had been
written in an awkward notation through components of some fields in the common Cartesian frame. Today such an approach
is hardly readable and it is not apparent that the strain measures used in many contemporary papers are exactly those pro-
posed by Cosserat and Cosserat (1909) indeed. Additionally, the stretch and wryness tensors are defined by different authors
. All rights reserved.
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in various forms using, for example, (a) components in two different curvilinear coordinate systems associated with the
undeformed (reference) of deformed (actual) placements of the body, (b) components in the convective coordinate system,
(c) Lagrangian or Eulerian descriptions, (d) different representations of the rotation group SO(3) in terms of various finite
rotation vectors, Euler angles, quaternions etc., (e) formally different tensor operations and sign conventions, as well as
(f) requiring or not the strain measures to vanish in the undeformed placement of the body. Even the gradient and diver-
gence operators as well as the Cauchy theorem influencing definitions of work-conjugate pairs of the stress and strain mea-
sures are not defined in the same way in the literature. As a result, we feel that there is a need to bring some order into
definitions of the strain measures to be used in this field.

The aim of this paper is to discuss three different methods of defining the strain measures of the non-linear micropolar
continuum: (a) by a direct geometric approach, (b) defining the strain measures as the fields work conjugate to the respec-
tive internal stress and couple-stress tensor fields, and (c) applying the principle of invariance under superposed rigid-body
deformations to the strain energy density of the polar-elastic body. Each of the three ways allows one to associate different
geometric and/or physical interpretations to the corresponding strain measures. In the discussion we use mainly the coor-
dinate-free vector and tensor notation. Orientations of material particles in the reference and deformed placements, respec-
tively, as well as their changes during deformation are described in the most general way by the proper orthogonal tensors.
Our primary strain measures called the natural ones are of the relative type, for they are required to vanish in the reference
placement.

The geometric approach presented in Section 3 consists of analysing differences between the deformed (actual) and unde-
formed (reference) placements of the position and orientation differentials of the micropolar continuum, respectively. Ele-
ments of geometric approach in Cartesian components were used already by Cosserat and Cosserat (1909) and more recently
by Merlini (1997) who took explicitly into account the microstructure curvature tensors describing spatial changes of orien-
tations of the material particles in the reference and actual placements. These tensors were independently introduced also by
Zubov and Eremeev (1996) and Yeremeyev and Zubov (1999) within the theory of viscoelastic micropolar fluids, and by
Chróścielewski et al. (2004) within the general theory of shells. The microstructure curvature tensors were extensively used
in discussion of the local symmetry group of elastic shells by Eremeyev and Pietraszkiewicz (2006).

The basic two-point deformation measures as well as the Lagrangian and Eulerian strain measures are defined in
(15)2,3 and (17)2-5, and their transformations by an orthogonal tensor leading to other deformation or strain measures
are indicated. The relative Lagrangian E, C and Eulerian G, D stretch and wryness tensors, having several important fea-
tures as well as satisfying additional mechanical requirements discussed in Sections 4 and 5, are called the natural strain
measures of the micropolar continuum. The strain measures are valid for unrestricted deformation of the micropolar
continuum, are non-symmetric in general, vanish in the reference placement of the body and in the rigid-body deforma-
tion of the micropolar continuum. Our derivation process itself is concise, direct and seems to be most complete in the
literature.

In an alternative approach developed in Section 4 the local equilibrium conditions derived in Appendix are regarded as
primary relations of the micropolar continuum. These conditions are formally multiplied by the kinematically admissible
virtual translation and virtual rotation fields, and after transformations the principle of virtual work for the micropolar con-
tinuum is formulated. In particular, it is found that the resulting internal virtual work density (32) requires some referential
stress and couple stress tensors to perform virtual work on variations of the Lagrangian strain measures established in Sec-
tion 3. As a result, we prove that the natural strain measures are the required kinematic fields work conjugate to the appro-
priate stress measures of the micropolar continuum indeed. This alternative way of defining the strain measures as those
required by the structure of the local equilibrium conditions seems not to have been often used in the literature on micro-
polar continuum, except in the early papers by Reissner (1973, 1975). However, such an approach was used in the general
theory of shells, see for example Simmonds (1984), Makowski and Stumpf (1990), Libai and Simmonds (1998), Chróścielew-
ski et al. (2004), Pietraszkiewicz et al. (2005) and Eremeyev and Pietraszkiewicz (2006).

In the third approach discussed in Section 5 we seek a reduced form of the strain energy density of the polar-elastic body
following from the principle of invariance under superposed rigid-body deformations. This way of introducing the Lagrang-
ian strain measures is most common in the literature and various such procedures were used, for example, by Kafadar and
Eringen (1971), Stojanović (1972), Zubov (1990), Zubov and Eremeev (1996), and Nikitin and Zubov (1998). Using the results
by Svendsen and Bertram (1999) we confirm again that invariance of the strain energy density is assured when the density is
the function of the Lagrangian strain measures defined in Section 3.

In Section 6 we provide a thorough review of various definitions of the Lagrangian strain measures of the non-linear
micropolar continuum proposed in several representative papers in the field. In those works different notation, sign conven-
tions, notions of gradient and divergence operators, coordinate systems, form of the Cauchy theorem, description of rota-
tions, etc. are applied. In most papers the measures are introduced simply by definition. To compare them with our
measures we bring the strain measures defined in the papers into the common coordinate-free form. The results summarised
in Table 1 show that the stretch and wryness tensors used in many papers do not agree with each other and with our
Lagrangian strain tensors defined in (13), (17)2,4 and/or (20). Most definitions differ only by transpose of the measures, or
by opposite signs, or the measures do not vanish in the absence of deformation. Such differences are not essential for the
theory, although one should be aware of them. But we have also discovered a few strain measures which are incompatible
with our Lagrangian stretch and wryness tensors. One should avoid such incompatible strain measures when analysing prob-
lems of physical importance using the micropolar continuum model.
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2. Kinematics of the micropolar continuum

Let the body B consisting of material particles X;Y ; . . . deform in the three-dimensional (3D) Euclidean physical space E

whose translation vector space is E.
According to Cosserat and Cosserat (1909), Truesdell and Toupin (1960), Toupin (1964) and Eringen and Kafadar (1976),

for example, each material particle of the micropolar continuum has six degrees of freedom of a rigid body.
In the reference (undeformed) placement jðBÞ ¼ Bj � E the material particle X 2 B is given through its position vector

x 2 E relative to a point o 2 E and by three orthonormal directors ha 2 E, a; b ¼ 1; 2; 3; fixing orientation of X in E (see Fig. 1).
If ia 2 E are orthonormal base vectors of a common inertial frame fo; iag then ha ¼ Hia, where H ¼ ha � ia 2 SOð3Þ (summed
over the range of a) is the structure tensor of Bj, the proper orthogonal one: H�1 ¼ HT , det H ¼ þ1: In the micropolar con-
tinuum the vectors ha may also be viewed as the natural base vectors of the three-orthogonal system of arc-length coordi-
nates sa such that ha ¼ ox=osa.

In the actual (deformed) placement cðBÞ ¼ Bc ¼ vðBjÞ � E the position of X becomes defined by the vector y 2 E, taken
here for simplicity relative to the same point o 2 E, and by three orthonormal directors da 2 E, or by the proper orthogonal
structure tensor D ¼ da � ia 2 SOð3Þ of Bc. As a result, the finite displacement of the micropolar continuum can be described
by two following smooth mappings:
y ¼ vðxÞ ¼ xþ uðxÞ; da ¼ Q ðxÞha; ð1Þ
where u 2 E is the translation vector, and Q ¼ DHT ¼ da � ha 2 SOð3Þ is the proper orthogonal microrotation tensor:
Q�1 ¼ Q T , detQ = +1. Two independent fields u = u(x) and Q = Q(x) describe translational and rotational degrees of freedom
of the micropolar continuum, respectively.

The finite displacements (1) allow one to introduce two strain measures of the micropolar continuum which are different,
in general, from only one strain tensor used in classical continuum mechanics as discussed, for example, by Truesdell and
Toupin (1960), Truesdell and Noll (1965), or Wang and Truesdell (1973). In what follows we discuss three different ways
of defining the two strain measures of the 3D micropolar continuum.

3. Strain measures by geometric approach

Within the geometric approach we define the strain measures by analysing difference of the fields describing position and
orientation differentials of the material particles of the micropolar continuum in the 3D physical space.

Let C be a smooth curve in Bj given by x ¼ xðsÞ, where s is the arc-length parameter. Then x = x(s) and H = H(s), and their
differentials are
dx ¼ d
ds x
� �

ds ¼ x0ds ¼ ðGradxÞdx;

dH ¼ d
ds H
� �

ds ¼ H0ds ¼ ðGradHÞdx; dx 2 E;

Gradx ¼ I 2 E� E; GradH 2 SOð3Þ � E;

ð2Þ
where I is the identity (metric) tensor of E� E, and Grad is the gradient operator in Bj.
In this paper, for the fixed origin o 2 E the gradient of a vector field vðxÞ 2 E is the 2nd-order tensor field GradvðxÞ 2 E� E

and the gradient of the 2nd-order tensor field AðxÞ 2 E� E is the 3rd-order tensor field GradAðxÞ 2 E� E� E; both defined by
the relations, see for example Ogden (1984),
½GradvðxÞ�a ¼ d
dt vðxþ taÞjt¼0;

½GradAðxÞ�a ¼ d
dt Aðxþ taÞjt¼0; for any t 2 R; a 2 E:

ð3Þ
Fig. 1. Micropolar body deformation.
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In components relative to ha we have
v ¼ vaha; A ¼ Aabha � hb;

Gradv ¼ v;c � hc; GradA ¼ A;c � hc; ð:Þ;c � oð:Þ=osc:
ð4Þ
In particular, the gradients of products of the 2nd-order tensor A(x), P(x) and vector v(x) fields in Bj are given by
GradðAvÞ ¼ ðA;cv þ Av;cÞ � hc ¼ vGradAT þ AGradv; ð5Þ

GradðAPÞ ¼ ðA;cPþ AP;cÞ � hc ¼ ðPT AT
;cÞT � hc þ AðP;c � hcÞ ¼ ðPT GradATÞ T

1:2

þ AGradP: ð6Þ
Equivalent to (3) and (4) definitions of the gradient operator were used for example by Truesdell and Toupin (1960), Trues-
dell and Noll (1965) and Wang and Truesdell (1973).

However, using the operator r ¼ hco=oxc alternative definitions of the gradient of v(x) and A(x) not equivalent to (3)
leading to
rv ¼ hc � v;c; rA ¼ hc � A;c; ð7Þ
were used, for example, in the books by Antman (2005), Lurie (1990), Lurie (2005), Naumenko and Altenbach (2007), and
Zubov (1997). In this paper we shall not use these alternative definitions (7).

Since dðHHTÞ ¼ 0 ¼ ðdHÞHT þHðdHTÞ, the tensor ðdHÞHT ¼ �½ðdHÞHT �T is skew-symmetric and can be represented by its
axial vector b depending linearly on dx, so that
ðdHÞHT ¼ b� I ¼ I� b; b ¼ Bdx;
dha ¼ b� ha; b ¼ 1

2 ha � dha; B ¼ 1
2 ha � Gradha:

ð8Þ
Using (5) and the identity v � A ¼ � : ðv � AÞ valid for any vector v and 2nd-order tensor A, for B in (8)2 we obtain two other
representations
B ¼ 1
2

ha � ðhaHGradHTÞ ¼ 1
2
� : ðHGradHTÞ; ð9Þ
where the 3rd-order skew tensor � ¼ �I� I, represented here in the base ha, is the Ricci tensor of the space E� E� E, and the
double dot product : of two 3rd-order tensors A, P represented in the base ha is defined as A : P ¼ AamnPmnbha � hb.

In (8) and (9), B 2 E� E is the microstructure curvature tensor in the undeformed (reference) placement of the micropolar
continuum. Two tensors I, B are the basic measures of local geometry of the reference placement Bj.

In the actual (deformed) placement Bc differentials of y = y(s) and D = D(s) along the corresponding material curve
D ¼ vðCÞ are
dy ¼ y0ds ¼ ðgradyÞdy ¼ ðGradyÞdx ¼ Fdx;
dD ¼ D0ds ¼ ðgradDÞdy ¼ ðGradDÞdx; dy 2 E;

grady ¼ I 2 E� E; gradD 2 SOð3Þ � E;

ð10Þ
where grad denotes the gradient operator in Bc defined analogously to (3), and F = Grady is the classical deformation gradient
tensor. In the general curvilinear coordinates xi of Bc with the base vectors gi ¼ oy=oxi, i ¼ 1; 2; 3, gradient of the vector field
vðyÞ 2 E takes the form gradv ¼ v;i � gi.

Again, the skew-symmetric tensor ðdDÞDT can be represented by its axial vector c depending linearly on dy, so that
ðdDÞDT ¼ c� I ¼ I� c; c ¼ Cdy;
dda ¼ c� da; c ¼ 1

2 da � dda;

C ¼ 1
2 da � gradda ¼ 1

2 da � ðdaDgradDTÞ ¼ 1
2 � : ðDgradDTÞ;

ð11Þ
where C 2 E� E is the microstructure curvature tensor in the actual (deformed) placement of the micropolar continuum, and
� is now represented in the da base. Two tensors I, C are the basic measures of local geometry of the actual placement Bc.

Since Q T Q ;c ¼ �ðQ T Q ;cÞT is skew it can be expressed through the axial vector cc ,
Q T Q ;c ¼ cc � I ¼ I� cc;

cc ¼ � 1
2 ha � ðhaQ T Q ;cÞ ¼ � 1

2 � : ðQ T Q ;cÞ:
ð12Þ
This allows one to introduce the 2nd-order tensor
C ¼ cc � hc ¼ � 1
2 ha � ðhaQ T GradQ Þ ¼ � 1

2 � : ðQ T GradQ Þ;
Q T GradQ ¼ I� C:

ð13Þ
The tensor C characterizes uniquely the 3rd-order tensor Q T GradQ skew with regard to first two tensor places. The tensor C
is frequently called the wryness tensor in the literature, cf. Kafadar and Eringen (1971).
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Using the chain rule gradda ¼ ðGraddaÞF�1 with (1), (5) and (12), (13) the tensor C can now be represented by
C ¼ 1
2
ðQhaÞ � ½GradðQhaÞ�F�1 ¼ 1

2
Q ½ha � ðQ T Q ;cha � hcÞ�F�1 þ 1

2
Q ðha � GradhaÞF�1

¼ 1
2

Qfha � ½haðQ T Q ;cÞT � hc�gF�1 þ QBF�1 ¼ �1
2

Q ½ha � ðhaQ T Q ;cÞ � hc�F�1 þ QBF�1 ¼ Q ðCþ BÞF�1: ð14Þ
The relative changes of lengths and orientations of the micropolar continuum during deformation are governed by differ-
ences of differentials (2) and (10) brought to the comparable orientation by the tensor Q,
dy � Q dx ¼ Xdx ¼ Gdy; Cdy � QBdx ¼ Udx ¼ Ddy;
X ¼ F� Q ; G ¼ I� QF�1 ¼ XF�1;

U ¼ CF� QB; D ¼ C� QBF�1 ¼ UF�1:

ð15Þ
Scalar products of each of (15)1 by itself leads to the quadratic forms
dx � XT Xdx ¼ dy � GT Gdy; dx �UTUdx ¼ dy � DTDdy: ð16Þ
However, the relative changes of lengths and orientations can also be calculated by the alternative back-rotated
expressions
Q T dy � dx ¼ Edx ¼ Ydy; Q T Cdy � Bdx ¼ Cdx ¼ Wdy;
E ¼ Q T F� I ¼ Q T X;
Y ¼ Q T � F�1 ¼ EF�1 ¼ Q T G ¼ Q T XF�1;

C ¼ Q T CF� B ¼ Q TU;

W ¼ Q T C� BF�1 ¼ CF�1 ¼ Q TD ¼ Q TUF�1:

ð17Þ
From (9), (17)5 and the chain rule we obtain the following relations for D:
D ¼ QCF�1 ¼ �1
2

da � ðdaQ T gradQ Þ ¼ �1
2

Q� : ðQ T gradQ Þ: ð18Þ
Scalar products of each of (17)1 by itself give the alternative quadratic forms
dx � ET Edx ¼ dy � YT Ydy; dx � CTCdx ¼ dy �WTWdy: ð19Þ

From (16) and (19) it follows that each of the tensors X, E, or G, Y and U, C or D, W is the corresponding measure of defor-
mation, stretch or orientation change of the non-linear micropolar continuum in the Lagrangian or Eulerian description,
respectively.

The quadratic forms (16) and (19) do not change if X, E, U, C and their counterparts G, D, Y, W are replaced by RX, RE,
RU, RC, etc., respectively, where R is a proper orthogonal tensor. Hence, any so transformed tensor can also be regarded as
the possible strain measure of the non-linear micropolar continuum. In particular when such a transformation with R ¼ Q T

is applied to the measures X, G, U, D entering the quadratic form (16) the measures become E, Y, C, W, i.e. those entering the
quadratic form (19).

It follows from (15) and (17) that X, U (and Y, W) are two-point tensors with the left leg associated with the deformed
placement and the right leg with the undeformed one (and reverse for Y, W). Such two-point measures may also be called the
deformation measures. The tensors E, C are the relative Lagrangian strain measures, while the tensors G, D are the relative
Eulerian strain measures.

Let us note some interesting features of the relative strain measures:

(1) All the measures are given in the common coordinate-free notation; their various component representations can eas-
ily be generated, if necessary.

(2) Definitions of the measures are valid for finite translations and rotations as well as for unrestricted stretches and
changes of microstructure orientation of the micropolar body.

(3) The measures are expressed in terms of the rotation tensor Q; for any specific parameterization of the rotation group
SOð3Þ by various finite rotation vectors, Euler angles, quaternions, etc. appropriate expressions for the measures can
easily be found, if necessary.

(4) All the strain measures vanish in the rigid-body deformation y = Ox + a, D = OH with a constant vector a and a constant
proper orthogonal tensor O defined for the whole body.

(5) In the absence of deformation from the reference placement, that is when F = Q = I, the relative strain measures iden-
tically vanish.

(6) The relative Lagrangian and Eulerian strain measures are not symmetric, in general: ET –E, CT –C, and GT –G, DT –D.

If the feature (5) is not required then instead of E and C we can use the following Lagrangian strain measures:
U ¼ Q T F ¼ Eþ I; P ¼ Q T CF ¼ Cþ B;
P ¼ 1

2 ha � ðhaHGradHT � haQ T GradQ Þ ¼ 1
2 � : ðHGradHT � Q T GradQ Þ:

ð20Þ
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While U in (20)1 is still very simple, the formula (20)2 for P in terms of H and Q becomes quite complex, in general. This is the
reason why the wryness tensor P was explicitly defined only in one paper by Shkutin (1980) as PT , see Section 6.

Applying the relative changes (15)1 and (17)1 our relative Lagrangian strain measures E, C and their Eulerian counterparts
G, D are defined uniquely. Hence, the measures U, P and their Eulerian counterparts (which are not discussed here) are de-
fined uniquely as well. In our purely geometric approach there is no need for discussion whether these measures might be
defined as transposed ones or with opposite signs. The derivation process itself is concise, elegant and direct.

In most of the papers reviewed in Table 1 of Section 6 the strain measures were introduced into the non-linear micropolar
continuum simply by definition, without detailed derivation of those measures. Some papers refer directly to the original
book by Cosserat and Cosserat (1909), where the strain measures were derived in part by the geometric approach in an awk-
ward notation through components in the common Cartesian frame. Nowadays such an approach is difficult to follow and
fully understand. The results of Besdo (1974), where some elements of the geometric approach were used, seem to be incom-
patible with our strain measures (see discussion in Section 6). Most of the authors when introducing the strain measures
refer to Kafadar and Eringen (1971), who used the principle of material frame-indifference of the polar-elastic body to define
the strain measures identified as UT and C in our geometric approach. Unfortunately, their derivation process is not complete
as well (see again discussion in Section 6). Merlini (1997) proposed the two-point deformation measures X, U, but for the
polar-elastic body he used the back-rotated strain measures coinciding with our E and C. It seems that the derivation of the
strain measures by geometric approach presented here is the most complete one in the literature.

4. Principle of virtual work and work-conjugate strain measures

Already Reissner (1973) noted that the internal structure of two local equilibrium equations of the micropolar elastic
body requires two specific strain measures expressed through two independent translation and rotation vectors as the only
field variables. This allowed him to define Cartesian components of such strain measures which may be identified as our
stretch UT and wryness PT tensors (see Section 6). In the present Section we develop this idea in the general case of the
non-linear micropolar continuum using the coordinate-free approach.

The local coordinate-free form of the equilibrium conditions (65) for the micropolar continuum is explicitly derived in the
Appendix. Let us introduce in Bc two arbitrary smooth vector fields v, x 2 E. Then (65) generate the integral identity
Z Z Z

Bj

fðDivTþ fÞ � v þ ½DivM� axðFT� TT FTÞ þm� � xgdv �
Z Z

oBjf

ðnT� t	Þ � v þ ðnM�m	Þ � xf gda ¼ 0: ð21Þ
Let us apply the relation (61) to represent terms with divergence in (21),
ðDivTÞ � v ¼ DivðTvÞ � TT : ðGradvÞ;
ðDivMÞ � x ¼ DivðMxÞ �MT : ðGradxÞ:

ð22Þ
The axial term in (21) can be transformed as follows:
�axðFT� TT FTÞ � x ¼ ½� : ðFTÞ� � x ¼ �x � ½ðI� IÞ : ðFTÞ� ¼ �ðx� IÞ : ðFTÞ ¼ �X : ðFTÞ ¼ þTT : ðXFÞ; ð23Þ
where the skew tensor X ¼ I� x ¼ x� I, x ¼ axðXÞ has been introduced.
The second terms in (22) when used in (21) can be transformed by the divergence theorem
Z Z Z

Bj

DivðTvÞdv ¼
Z Z

oBj

ðnTÞ � vda;
Z Z Z

Bj

DivðMxÞdv ¼
Z Z

oBj

ðnMÞ � xda: ð24Þ
When (22)–(24) are introduced into (21) this identity becomes
Z Z Z
Bj

½TT : ðGradv �XFÞ þMT : Gradx�dv

¼
Z Z Z

Bj

ðf � v þm � xÞdv þ
Z Z

oBjf

ðt	 � v þm	 � xÞdaþ
Z Z

oBjd

½ðnTÞ � v þ ðnMÞ � x�da: ð25Þ
The vector field v may be interpreted, in particular, as the kinematically admissible virtual translation v � dy and the vector
field x as the kinematically admissible virtual rotation x � axðdQQ TÞ in Bc, such that v ¼ x ¼ 0 on oBjd, where d is the sym-
bol of virtual change (variation). Then the last surface integral in (25) identically vanishes, two integrals in the second row of
(25) describe the external virtual work, while the first volume integral in (25) describes the internal virtual work performed
by the stress measures on the work-conjugate virtual strain measures. In this interpretation the formula (25) represents the
principle of virtual work in the non-linear micropolar continuum.

But for such v and x,
dF ¼ d Gradyð Þ ¼ GradðdyÞ ¼ Gradv;
ðdQ ÞQ T ¼ �Q ðdQ TÞ ¼ x� I ¼ X; dQ T ¼ �Q TX;

ð26Þ
and from (17)2 we obtain
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dE ¼ dU ¼ ðdQ TÞFþ Q TdF ¼ �Q TXFþ Q T Gradv ¼ Q TðGradv �XFÞ: ð27Þ
Since C ¼ 1
2 da � ðGraddaÞF�1, we can apply the relations dda ¼ x� da and dF�1 ¼ �F�1ðdFÞF�1 following from da ¼ Qha and

F�1F ¼ I, respectively, and obtain
dC ¼ 1
2
ðx� daÞ � ðGraddaÞF�1 þ 1

2
da � Gradðx� daÞF�1 � CðGradvÞF�1: ð28Þ
The virtual change of C in (17)4 together with (28) leads to
dC ¼ dP ¼ ðdQ ÞT CFþ Q TðdCÞFþ Q T CðdFÞ ¼ �Q Tðx� IÞCFþ Q TðdCÞFþ Q T CGradv

¼ 1
2

Q T �x� ðda � GraddaÞ þ ðx� daÞ � Gradda½ þ da � Gradðx� daÞ�: ð29Þ
But we have the identities
�x� ðda � GraddaÞ þ ðx� daÞ � Gradda ¼ �da � ðx� GraddaÞ;
da � Gradðx� daÞ ¼ �da � ðda � GradxÞ þ da � ðx� GraddaÞ;
�da � ðda � GradxÞ ¼ �daðda � GradxÞ þ ðda � daÞGradx ¼ 2Gradx:

ð30Þ
Introducing (30) into (29) we finally obtain
dC ¼ dP ¼ Q T Gradx: ð31Þ
It follows from (25) with (27) and (31) that the internal virtual work density under the first volume integral of (25) can
now be given by the expressions
r ¼ TT : ðQdEÞ þMT : ðQdCÞ ¼ S : dEþ K : dC ¼ S : dUþ K : dP; ð32Þ
where
S ¼ Q T TT ; K ¼ Q T MT ð33Þ
are the stress and couple-stress tensors whose natural components are referred entirely to the reference (undeformed)
placement. The stress measures S, K are work conjugate to the respective relative Lagrangian strain measures E, C and also
to U, P. These pairs of stress and strain measures are most convenient in the discussion of constitutive equations of the
micropolar continuum.

The alternative way of introducing the strain measures presented in this Section confirms correctness of the Lagrangian
strain measures defined in (17)2,4 and (20)1. Additionally, such an approach allows one to analyse other possible work-con-
jugate pairs of the stress and strain measures within the non-linear micropolar continuum. Some of such pairs have recently
been discussed by Ramezani and Naghdabadi (2007).

5. Invariance of strain energy density of the polar-elastic body under superposed rigid-body deformations

In this Section we confine our attention to the simplest micropolar body – the polar-elastic body. In this case the consti-
tutive relations are defined through the strain energy density Wj per unit volume of the undeformed placement Bj. At any
point x 2 Bj, labelled by the undeformed position vector x and the microstructure curvature tensor B, the density Wj can be
assumed to depend, in general, on the deformed position vector y, the deformation gradient tensor F, the microrotation ten-
sor Q, and its gradient GradQ,
Wj ¼Wjðy; F;Q ;GradQ ; x;BÞ: ð34Þ
As any constitutive relation, the form of Wj in (34) should satisfy the principle of material frame-indifference (or the prin-
ciple of objectivity) formulated in the form suitable for classical continuum mechanics by Noll (1958), see Truesdell and Noll
(1965). There has been an extensive discussion in the literature about the proper understanding of this principle, because its
different formulations seem to reflect different physical contents. See for example recent papers by Murdoch (2003), Musc-
hik and Restuccia (2002), Bertram and Svendsen (2001), Svendsen and Bertram (1999) and the book by Bertram (2005). In
particular, Svendsen and Bertram (1999) found that the principle of material frame-indifference contains in fact three inde-
pendent postulates: the principle of invariance under Euclidean transformations, the principle of invariance under super-
posed rigid-body motions, and the principle of form-invariance of the constitutive equations under change of observer. If
any two of them are satisfied the third one becomes satisfied as well. Hence, from the material frame-indifference it follows,
in particular, that Wj should be invariant under superposed rigid-body deformations.

In classical continuum mechanics two deformations vðxÞ and v	ðxÞ of the body differ by a rigid-body transformation if
they are related as v	ðxÞ ¼ OvðxÞ þ a, where a is a constant vector and O a constant rotation tensor, both defined for the
whole body. Corresponding deformation gradients are related as F	ðxÞ ¼ OFðxÞ. However, in micropolar continuum mechan-
ics Q 	ðxÞ cannot be found from the rigid-body transformation, because Q (x) is an independent field not expressible by v(x).
Therefore, after Kafadar and Eringen (1971) and Le and Stumpf (1998) we assume that under the rigid-body transformation
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the directors da are rotated as y: d	aðxÞ ¼ OdaðxÞ, or Q 	ðxÞ ¼ OQ ðxÞ. In other words, we assume that da are objective vectors.
Applying (6) we also obtain that GradQ 	ðxÞ ¼ OGradQ ðxÞ. Then the principle of invariance under the superposed rigid-body
motion requires the values of Wj to be the same for both deformations vðxÞ and v	ðxÞ,
Table 1
Definiti

Paper

Kafadar

Stojano

Besdo (

Shkutin

Badur a

Reissne

Zubov (

Dłu _zew

Merlini

Steinm

Nikitin

Grekov

Nistor (

Rameza

The pre
Wjðy; F;Q ;GradQ ; x;BÞ ¼WjðOy þ a;OF;OQ ;OGradQ ; x;BÞ: ð35Þ
Since a and O are arbitrary, in order to assure invariance of Wj in (35) the density should not depend on y and Q. Then, if
O � Q T , the function Wj can be reduced to
Wj ¼WjðQ T F;Q T GradQ ; x;BÞ; ð36Þ
which by (13)2 and (17)2 becomes equivalent to
Wj ¼WjðEþ I; I� C; x;BÞ ¼WjðE;C; x;BÞ: ð37Þ
As a result of this discussion we again confirm that the relative Lagrangian strain measures E, C (or the ones U, P) are re-
quired to be the independent fields in the elastic strain energy density (34) in order it to be invariant under superposed rigid-
body deformations.

6. Discussion and comparative review of some Lagrangian non-linear strain measures

The geometric approach discussed in Section 3 generates many different strain measures related to each other by proper
orthogonal transformations. Among these measures are the relative Lagrangian stretch E and wryness C tensors having sev-
eral distinctive features. Additionally, the structure of equilibrium conditions discussed in Section 4 and invariance of the
strain energy density of the polar-elastic body analysed in Section 5 both require the Lagrangian strain measures E, C or
U, P. Taking together the results of the three ways of introducing the measures, the relative tensors E and C seem to be
the most appropriate Lagrangian strain measures for the non-linear micropolar continuum. We shall call them the natural
stretch and wryness tensor, respectively.

Let us review some definitions of the Lagrangian strain measures proposed in the representative literature on non-linear
micropolar continuum and compare them with our natural measures E, C or the measures U, P.

The paper by Kafadar and Eringen (1971) is among the most referred to in the literature. The authors used two indepen-
dent systems of curvilinear coordinates: XK in Bj with the reference base vectors GK , K = 1, 2, 3, and xk in Bc with the spatial
ons of the stretch and wryness tensors.

The stretch tensor The wryness tensor

and Eringen (1971) FT Q � 1
2 � : ðQ T GradQ Þ

vić (1972) FT F FT 1
2 � : ðQGradQ T Þ

1974) Q – I F½12 � : ðF�1GradFÞ þ B� � Q ðCþ BÞ

(1980) FT Q � I � 1
2 ½� : ðQ T GradQ Þ�T þ BT

nd Pietraszkiewicz (1986) Q T F 1
2 � : ðQ T GradQ Þ

r (1987) FT Q � 1
2 ½� : ðQ T GradQ Þ�T

1990) FT Q � 1
2 ½� : ðQ T GradQ Þ�T

ski (1993) Q T F Q T Grad/

(1997) F� Q �Q 1
2 � : ðQ T GradQ Þ

Q T F� I � 1
2 � : ðQ T GradQ Þ

ann and Stein (1997) Q T F � 1
2 � : ðQ T GradQ Þ

and Zubov (1998) Q T F � 1
2 � : ðQ T GradQ Þ

a and Zhilin (2001) FT Q 1
2 � : ðQ T GradQ Þ

2002) FT Q � 1
2 ½� : ðQ T GradQ Þ�T

ni and Naghdabadi (2007) FT Q 1
2 � : ðQ T GradQ Þ

sent paper Q T F� I � 1
2 � : ðQ T GradQ Þ
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base vectors gk, k = 1, 2, 3. The deformation was described by three deformation functions xk ¼ xkðXLÞ and the change of ori-
entation by nine components Q k

:K ¼ Q k
:KðX

LÞ in the tensor basis gk � GK of the proper orthogonal tensor field Q ¼ Q ðxÞ satis-
fying the constraints Q T ¼ Q�1, det Q ¼ þ1. Requiring the strain energy density Wj of the polar-elastic body to remain form-
invariant under a rigid-body motion, three first-order PDE were derived, see their formula (25). These equations were re-
garded as the statement of objectivity for the polar elasticity. Then the authors stated without further details that . . .” After
lengthy manipulations it may be shown that the general solution of (25) is ‘‘. . .Wj ¼WjðEKL;CKLÞ, where
EKL ¼ xk;K QkL; CKL ¼
1
2
�KMNQ kM

::;L Q :N
k ; ð38Þ
and (�); means the covariant differentiation in the reference metric GKL ¼ GK � GL. The same components of the strain mea-
sures (38) were used by Maugin (1974) and in Cartesian coordinates by Pabst (2005).

Identifying that xk;K gk � GK ¼ Grady ¼ F and Qk
:K gk � GK ¼ Q , the fields EKL are just components in the tensor basis GK � GL

of the Lagrangian stretch tensor FT Q , that is the tensor UT given in (20)1.
To identify CKL in (38) let us note that by extending the components into the coordinate-free form we can perform the

following transformations:
C ¼ 1
2
�KMNQ kM

::;L Q :N
k GK � GL ¼ �1

2
�NMK GK Q :N

k Q kM
::;L

� �
� GL ¼ �1

2
GN � dN

P Q :P
k dk

j Q jM
::;L

� �
GM � GL

¼ �1
2

GN � GN � GP � Q :P
k gk

� �
� gj � Q jM

::;LGM � GL
� �h i

¼ �1
2

GN � GNQ T GradQ
� �

¼ �1
2
� : Q T GradQ
� �

: ð39Þ
In particular, we are always able to introduce in Bj such a system of coordinates XK in which the natural base vectors GK

would coincide locally with the reference orthonormal directors ha of the orthogonal arc-length coordinates sa. Then (39)
becomes identical with the tensor C in (13). Therefore, CKL of Kafadar and Eringen (1971) are components of our C in the
tensor basis GK � GL indeed.

Stojanović (1972) used three non-complanar and non-orthonormal directors dðaÞ, a ¼ 1; 2; 3, rigidly rotated by the ten-
sor Q from the fields DðaÞ in the reference placement Bj. Introducing two independent curvilinear coordinate systems as in
Kafadar and Eringen (1971) it was assumed that DðaÞ are parallel vectors satisfying DðaÞ;L ¼ DK ;L

ðaÞGK ¼ 0. Thus the initial micro-
structure curvature tensor B was ignored by definition. The directors dðaÞ½yðxÞ� ¼ QDðaÞðxÞ together with the position vectors
in the deformed placement y(x) were considered as the basic independent field variables. Requiring objectivity of the strain
energy density Wj ¼WjðF;dðaÞ;GraddðaÞ; xÞ of the polar-elastic material and its consistency with thermodynamics it was
found (see his Eq. (4.23)) that in quasi-static problems Wj should be of the form Wj ¼WjðCKL; FKL; xÞ, where
CKL ¼ CLK ¼ gmnxm
:;K xn

:;L; FKL ¼ gmnxm
:;KUn

:L;

Un
:L ¼ 1

2 �
nijQ iNQ N

:j;L:
ð40Þ
Here CKL are components in GK � GL of the Green type symmetric strain tensor C ¼ FT F used in the classical continuum
mechanics, which in our case can also be interpreted through our stretch tensor U defined in (20)1 as C ¼ UT U.

The components QiNQN
:j;L in (40) correspond to QGradQ T and those Un

:L to 1
2 � : ðQGradQ TÞ in the coordinate-free notation,

so that FKL are components in GK � GL of the tensor FT 1
2 � : ðQGradQ TÞ. Let us perform the following transformations:
QGradQ T ¼ QQ T ;L � GL ¼ �Q ;LQ T � GL ¼ �Q ðQ T Q ;LÞQ T � GL ¼ �Q I� cLð ÞQ T � GL ¼ I� ð�QCÞ;
so that QC ¼ 1
2 � : ðQGradQ TÞ. Therefore, the bending measure of Stojanović (1972) coincides with our FT QC.

Besdo (1974) used the curvilinear convected coordinates ni, i ¼ 1; 2; 3; and three base vectors: gi in the actual (de-
formed) placement, ~gi in the reference (undeformed) placement identified with the reference directors in Bj, and ĝi identified
with the directors in Bc which are rotated from ~gi by the finite rotation vector / ¼ /e, where / is the angle of rotation about
the axis described by the unit vector e. Then the mixed components of three strain measures of the micropolar continuum
were defined as (see Besdo, 1974, formulae (5.6) and (5.7))
ei
:j ¼ ~gi � ĝj � di

j; ci
:j ¼ di

j � ĝi � ~gj;

ji
:j ¼ 1

2 �
ikmðgk;j � gm � ĝk;j � ĝmÞ;

ð41Þ
where ð::Þ;j is the partial derivative relative to nj.
In the undeformed basis ~gi � ~gj the Lagrangian strain measures were defined by Besdo (1974), formulae (5.9), as
~e ¼ ei
:j
~gi � ~gj ¼ ĝj � ~gj � I; ~c ¼ ci

:j
~gi � ~gj; ~j ¼ ji

:j
~gi � ~gj: ð42Þ
The stretch measure ~e can alternatively be written as ~e ¼ Q � I which is not compatible with our E defined in (17)1. The sec-
ond Lagrangian stretch measure ~c is not present at all in our approach. In the coordinate-free notation we have
~c ¼ I� Q T ¼ �~eT , which means that ~c is not an independent stretch measure indeed.

The wryness measure ~j in (42) with (41)2 can be written in the coordinate-free form in terms of our tensor fields as (we
omit here those complex transformations)
~j ¼ F
1
2
� : ðF�1GradFÞ þ B

� �
� Q ðCþ BÞ: ð43Þ



W. Pietraszkiewicz, V.A. Eremeyev / International Journal of Solids and Structures 46 (2009) 774–787 783
Since the first term in (43) contains the deformation gradient F it is difficult to establish the geometric meaning of ~j.
Shkutin (1980, 1988), whose results we translate into a more understandable notation of Pietraszkiewicz and Badur

(1983), used convected curvilinear coordinates hi and three base vectors: the undeformed gi associated with Bj, the de-
formed �gi associated with Bc, and the rotated di obtained from gi by the rotation performed with the finite rotation vector
h ¼ 2 tan /=2e. Shkutin (1980), by his formulae (1.4), (1.6) and (3.9), introduced two strain measures with components
eij ¼ ð�gi � diÞ � dj; lij ¼
1
2
ðdk � dk;iÞ � dj: ð44Þ
We can extend the components eij into the coordinate-free Lagrangian stretch tensor using Q instead of h:
e ¼ eijgi � gj ¼ ½ðFgi � QgiÞ � ðQgjÞ�gi � gj ¼ ½giðF
T Q � IÞgj�gi � gj ¼ FT Q � I;
and e here coincides with our ET in (17)1.
Extending analogously the components lij into the coordinate-free form we obtain
lT ¼ lijgj � gi ¼ 1
2
f½ðQgkÞ � ðQgkÞ;i� � ðQgjÞggj � gi ¼ 1

2
f½gk � ðQ T Q ;igk þ gk;iÞ� � gjggj � gi

¼ �1
2

gk � ðgkQ T GradQ Þ þ 1
2

gk � Gradgk ¼ Cþ B ¼ P: ð45Þ
Thus, lij are just components in gi � gj of our PT defined in (20)1.
Badur and Pietraszkiewicz (1986), by their formulas (2.4), defined the strain measures by
U ¼ RT F; K ¼ 1
2
� : ðRT GradRÞ; ð46Þ
with R coinciding with our Q. Hence, the stretch tensor U is identical with U in (20). The wryness tensor K coincides with
�C defined in (13).

Reissner (1987) formulated the strain measures in the common Cartesian frame assuming that ha � ia;da ¼ Qia; and using
the convected initially Cartesian coordinate system xa in which ia;c ¼ 0 and the initial microstructure tensor B � 0. In our
notation his definitions of Cartesian components of the strain measures are (see his Eq. (4) and (9))
eab ¼ y;a � db � dab; kab ¼
1
2
�bmndm;a � dn: ð47Þ
In the Cartesian tensor basis ia � ib the stretch tensor (47)1 takes the coordinate-free form e ¼ FT Q � I which can be identi-
fied with our ET introduced in (17)1. To identify the meaning of kab we perform the following transformations:
kT ¼ kabib� ia¼
1
2

ib�bmn½ðQinÞ � ðQimÞ;a�� ia¼
1
2

ib�bmnðinQ T Q ;aimÞ� ia¼�
1
2

ib�bnm QpnQpm;a
� �

� ia¼�
1
2
� : Q T GradQ
� �

:

ð48Þ
Thus, the components kab of the Reissner wryness tensor can be identified with the Cartesian components of our wryness
tensor CT � PT .

Zubov (1990) introduced the following Lagrangian strain measures:
U ¼ ðryÞQ ; �L � I ¼ ðrQ TÞQ ; ð49Þ
where the gradient operator was defined as in (7). Taking into account thatry ¼ ðGradyÞT � FT , the stretch tensor U in (49)1

is just our UT in (20)1. To interpret the wryness tensor L in (49)2 let us represent it in the undeformed base ha leading to
�L � I ¼ ha � Q T ;aQ ¼ �ha � Q T Q ;a ¼ �ha � ca � I ¼ �CT � I:
Thus, the Lagrangian bending measure L of Zubov (1990) is just CT in our approach. The strain measures (49) were then used
by Zubov and Eremeev (1996), Zubov (1997), and Yeremeyev and Zubov (1999).

To describe orientation of the material particles Dłu _zewski (1993) used three Euler angles /a;a ¼ 1; 2; 3; treated as
angular coordinates of the vector / ¼ ð/aÞ in the object orientation space R being the constant curvature space. Deformation
of the polar continuum was described by two maps y = y(x) and / ¼ ð/aÞðxÞ, and the strain measures were defined as
C ¼ Q T F; C ¼ Q T Grad/: ð50Þ
The stretch tensor C here coincides with our U in (20)1. However, the wryness tensor C in (50) is difficult to interpret in
terms of our C in (13) or (17)4 due to the use of the unconventional orientation space R by Dłu _zewski (1993).

Merlini (1997), formula (1), introduced the two-point deformation measures of the micropolar continuum, called the lin-
ear and angular strain, respectively, by
v ¼ F� Q ; x ¼ QaxðQ T GradQ Þ; ð51Þ
where the axial tensor A of Q T GradQ was defined to satisfy Q T GradQ ¼ I� A. According to the relation (13), A here coincides
with our C and we obtain
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x ¼ �Q
1
2
� : ðQ T GradQ Þ: ð52Þ
Thus, the two-point tensors v and x of Merlini (1997) are just X and U defined in (15)2 and (15)3 coinciding with QE and QC
in terms of our natural strain measures, respectively. But in the strain energy density of polar-elastic body Merlini (1997)
used the back-rotated strain measures e ¼ Q T

v and b ¼ Q T
x, called extension and distortion, which coincide with our strain

measures E and C, respectively.
Steinmann and Stein (1997) in their Section 3 introduced the non-symmetric strain measures of the non-linear micropo-

lar continuum to be U ¼ Q T F and K ¼ axðQ T GradQ Þ. The stretch tensor U coincides with our tensor U defined in (20)1. The
axial tensor of the 3rd-order tensor Q T GradQ was defined by Steinmann and Stein (1997) again as satisfying the relation
Q T GradQ ¼ I� K, and for the axial tensor they obtained K ¼ � 1

2 ha � ðhaQ T GradQ Þ which coincides with our C defined in
(13).

Nikitin and Zubov (1998) modified the strain measures (49) by defining them as follows:
U ¼ Q T F; Q T Q ;a � ha ¼ I� L: ð53Þ
Now U in (53) coincides with our U defined in (20)1, while from (13) and (12) it follows that L in (53) coincides with our C.
Nikitin and Zubov (1998) expressed L through the finite rotation vector h ¼ 2 tan /=2e.

Grekova and Zhilin (2001) used the curvilinear convected coordinate system qi, i ¼ 1; 2; 3; with the base vectors ri; rj in
the reference placement Bj. They introduced by definition the following Lagrangian strain measures:
A ¼ ðryÞQ ; K ¼ ðrj � /iÞQ ; ð54Þ
where
/i ¼ ðQ ;iQ
TÞ � ��=2 ¼ �1

2
� : ðQ ;iQ TÞ ¼ 1

2
� : ðQQ ;Ti Þ
are the axial vectors of the skew tensors Q ;iQ
T , that is Q ;iQ

T ¼ I� /i, and ��means two subsequent contractions of the tenso-
rially multiplied tensors.

The stretch tensor A in (54) is just our UT defined in (20)1. To identify the meaning of K in (54) let us remind that using
(12) we obtain
I� /i ¼ Q ðQ T Q ;iÞQ T ¼ Q ðI� ciÞQ
T ¼ I� Qci; /i ¼ Qci;

KT ¼ Q TðQci � riÞ ¼ � 1
2 � : ðQ T GradQ Þ:
Hence, KT in (54) is equivalent to the wryness tensor C of Kafadar and Eringen (1971) and our (13). This definition of K was
earlier introduced by Zhilin (1976) as the second deformation measure of a directed surface.

Nistor (2002) used the initially Cartesian convected coordinates xi, so that ha � ia, and the components of the strain mea-
sures were defined in the common Cartesian frame as
cij ¼ yk;iQkj; cij ¼
1
2
�jmnQpnQpm;i: ð55Þ
In the coordinate-free notation cij are the Cartesian components of the stretch tensor c ¼ FT Q which corresponds to our UT in
(20)1. Performing transformations similar to (48), for the components cij in (55)2 we obtain
cT ¼ cijij � ii ¼ �
1
2

ij�jnmQpnQpm;i � ii ¼ �
1
2
� : ðQ T GradQ Þ:
Thus, from (13) it follows that cT corresponds to our C � P, which also allows one to interpret cij as the components kab de-
fined in (47) by Reissner (1987).

Ramezani and Naghdabadi (2007) referring to Kafadar and Eringen (1971) introduced the coordinate-free form of two
Lagrangian strain measures
U ¼ FT Q ; C ¼ 1
2
� : ðQ T GradQ Þ: ð56Þ
The stretch tensor U coincides with our UT , while the wryness tensor in (56) differs by sign from our C and the one of Kafadar
and Eringen (1971).

From the review above summarised in Table 1 we can draw interesting conclusions. It is apparent that both strain mea-
sures introduced by Stojanović (1972) and Besdo (1974) are incompatible with our Lagrangian strain measures E, C or U, P.
Also the wryness tensor defined by Dłu _zewski (1993) seems to differ from our tensor C in the way which is difficult to inter-
pret. In all other papers summarised in Table 1 the strain measures are defined in the mixed way: the stretch tensor does not
vanish in the reference placement while the wryness tensor does. The results by Shkutin (1980) are reversed: his stretch
tensor is of the relative type while his wryness tensor does not vanish in the reference placement.

The stretch tensors proposed by Kafadar and Eringen (1971), Reissner (1987), Zubov (1990), Nistor (2002), and Ramezani
and Naghdabadi (2007) are defined as transpose of our Lagrangian stretch tensor U, while the stretch tensor of Shkutin
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(1980) coincides with transpose of our E. Similarly, the wryness tensors by Reissner (1987) and Nistor (2002) coincide with
transpose of our C, the one by Shkutin (1980) is transpose of our P, while Badur and Pietraszkiewicz (1986), and Ramezani
and Naghdabadi (2007) defined their wryness tensor with opposite sign to our C. The wryness tensors defined by Kafadar
and Eringen (1971), Steinmann and Stein (1997), and Nikitin and Zubov (1998) agree with our natural wryness tensor C
defined in (13) and (17)4. Only Merlini (1997) in the later part of his paper used the Lagrangian strain tensors coinciding
with our natural strain measures E, C. Nobody as yet used both Lagrangian strain tensors coinciding with our strain mea-
sures U, P.

7. Conclusions

We have discussed three different ways of defining the strain measures in the non-linear micropolar continuum.
The geometric approach has combined definitions of the relative changes of lengths and orientations of the body with

appropriate quadratic forms in the Euclidean vector space. This has led to several two-point deformation measures as well
as to the family of Lagrangian, global and relative strain measures and their Eulerian counterparts. All the measures are re-
lated to each other by orthogonal transformations. Due to several distinctive features of the relative Lagrangian and Eulerian
strain measures combined with additional mechanical arguments presented in two other approaches, we have called such
relative strain measures the natural ones.

In the alternative approach developed here the global equilibrium conditions of forces and couples acting on an arbitrary
part of the micropolar body have been regarded as primary relations. After formal transformations it has been proved that
the back-rotated nominal stress and couple-stress tensors are required to perform virtual work on corresponding variations
of the Lagrangian strain measures derived by the geometric approach. Thus, we have independently confirmed that the
structure of equilibrium conditions of the micropolar continuum requires the Lagrangian strain measures coinciding with
the ones derived here.

Finally, we have confirmed once more that the invariance of strain energy density of the polar-elastic body under super-
posed rigid-body deformations requires the density to be expressed through our Lagrangian strain measures as well.

Review of the representative literature in this field has shown that the Lagrangian strain measures were defined in some
papers in the form incompatible with our Lagrangian strain measures. In most other papers the measures were defined
either as transpose of our natural strain measures, or with opposite signs, or they did not vanish in the absence of deforma-
tion. One should be aware of those differences when analysing problems of physical importance using the micropolar con-
tinuum model.

We believe that in the present paper we have presented enough arguments to conclude that the relative stretch tensor E
and the relative wryness tensor C introduced here by three different approaches are the most appropriate Lagrangian strain
measures to be used in the non-linear micropolar continuum.
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Appendix. Local form of equilibrium conditions

Let any part P of the micropolar body B, identified with its sufficiently regular reference placement Pj ¼ jðPÞ � Bj, be in
an equilibrium state. Then in the referential description the global balances of forces and couples of Pj take the form, see for
example Eringen and Kafadar (1976), Eringen (1999), Lurie (2005),
RR

oPj
tðnÞdaþ

RRR
Pj

fdv ¼ 0;RR
oPj
ðy � tðnÞ þmðnÞÞdaþ

RRR
Pj
ðy � f þmÞdv ¼ 0:

ð57Þ
Here f and m are the volume force and couple vectors applied at any point y ¼ vðxÞ of the deformed body Pc, but measured
per unit volume of Pj, while tðnÞ and mðnÞ are the surface traction and couple vectors applied at any point of oPc, but measured
per unit area of oPj, respectively.

If n is the unit vector externally normal to oPj, then by the Cauchy theorem the vectors tðnÞ and mðnÞ are expressible as
linear functions of the respective stress T and couple-stress M tensors, called also the nominal type stress and couple-stress
tensors in the literature, according to
tðnÞ ¼ nT; mðnÞ ¼ nM: ð58Þ
This version of the Cauchy theorem follows a long tradition of defining the stress tensor in classical elasticity, see for example
Love (1927), and Sneddon and Berry (1958). According to this tradition the first index of the stress tensor indicates direction
of the normal to the cross section, on which acts the internal stress force vector, while the second index indicates direction of
the component of the stress force.

The 2nd-order tensors T and M in (58) are mixed tensors whose left-hand sides are associated with the reference place-
ment and right-hand sides with the deformed one. The transposed tensors TT ¼ TR and MT ¼MR may be regarded as the 1st



786 W. Pietraszkiewicz, V.A. Eremeyev / International Journal of Solids and Structures 46 (2009) 774–787
Piola–Kirchhoff type stress and couple-stress tensors, respectively. The form (58) of the Cauchy theorem was used, for exam-
ple, by Eringen and Kafadar (1976), Atkin and Fox (1980), Billington (1986), Dai (2003), and Ramezani and Naghdabadi
(2007).

The divergence of the 2nd-order tensor field A(x) on Bj convenient to be used with (58) is usually defined as the vector
field DivA(x) satisfying
½DivAðxÞ�a ¼ Div½AðxÞa� 8a 2 E; ð59Þ
which in components relative to ha takes the form
DivA ¼ ha � A;a ¼ Aab;ahb: ð60Þ
In particular, the divergence of product of the 2nd-order tensor A(x) and vector v(x) fields on Bj is given by
DivðAvÞ ¼ ha � ðA;av þ Av;aÞ ¼ ðDivAÞv þ AT : ðGradvÞ; ð61Þ
where the double dot product : of two 2nd-order tensors A, P is defined by A : P ¼ trðAT PÞ ¼ AabPab.
According to Billington (1986), Section 1.10, the divergence theorems corresponding to the conventions (3), (58), (59) and

(60) are
RR
oPj

nTdv ¼
RRR

Pj
DivTdv ;

RR
oPj

nMda ¼
RRR

Pj
DivMdv;RR

oPj
ðy � nTÞda ¼

RRR
Pj
½y � DivT� axðFT� TT FTÞ�dv ;

ð62Þ
where ax (A) is the axial vector of the skew 2nd-order tensor A. In this paper we shall use the conventions (58)–(62) together
with (3).

However, many authors used alternative forms of the Cauchy theorem tðnÞ ¼ TRn;mðnÞ ¼MRn and/or the alternative def-
inition of divergence of the 2nd-order tensor field A(x) satisfying
½DivAðxÞ�a ¼ Div½ATðxÞa� 8a 2 E;

DivA ¼ A;b � hb ¼ Aab;bha;
ð63Þ
see for example Stojanović (1972), Wang and Truesdell (1973), Gurtin (1981), Marsden and Hughes (1983), Scarpetta (1989),
or Dłu _zewski (1993). When these alternative conventions were applied, the corresponding divergence theorem would lead
to, for example,
Z Z Z

Pj

DivTRdv ¼
Z Z

oPj

TRnda;
Z Z Z

Pj

DivMRdv ¼
Z Z

oPj

MRnda: ð64Þ
In this paper we shall not use these alternative conventions (63) and (64).
Let t	ðxÞ and m	ðxÞ be the external force and couple vector fields prescribed on the part oBcf , but measured per unit area of

oBjf , respectively. Then using (58)–(62), from (57) after some transformations we obtain the local equilibrium equations and
corresponding dynamic boundary conditions
DivTþ f ¼ 0; DivM� axðFT� TT FTÞ þm ¼ 0 in Pj � Bj;

nT� t	 ¼ 0; nM�m	 ¼ 0 along oPjf � oBjf :
ð65Þ
The corresponding kinematic boundary conditions are given by the relations
y ¼ y	; Q ¼ Q 	 along oPjd � oBjd ¼ oBj n oBjf ; ð66Þ

where y	, Q 	 are given functions of x.

One can derive seven other formally different coordinate-free local forms of equilibrium conditions. Some of them follow-
ing from other combinations of definitions of the gradient, divergence and/or Cauchy theorem were given without deriva-
tions by Maugin (1974), Scarpetta (1989), Lurie (1990), Zubov (1990), Zubov (1997), Steinmann and Stein (1997), Maugin
(1998), Yeremeyev and Zubov (1999), and Dai (2003).
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