JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 34, 82-85 (1971)

C-Polynomial Approximation of H^{p} and \mathcal{H}^{p} Functions

CHARLES K. CHUI

Department of Mathematics, State University of New York at Buffalo Submitted by Jacob Korevaar

1. INTRODUCTION AND RESULTS

Let C denote the unit circle and D its interior. Polynomials whose zeros lie on C will be called C-polynomials. It is known that every zero free bounded holomorphic function in D can be boundedly approximated in D by C-polynomials [1, 3]. In this paper, we present some results on C-polynomial approximation for other classes of functions.

Throughout this note, we take $p \ge 1$ and let H^p be the Hardy space with norm $\|\|_p$, and \mathcal{H}^p the class of functions f holomorphic in D such that

$$|f|_p = \left\{\frac{1}{\pi} \iint_D |f(x+iy)|^p \, dx \, dy\right\}^{1/p} < \infty.$$

Both H^p and \mathscr{H}^p are Banach spaces. For H^p , we have a result similar to that for bounded holomorphic functions, namely

THEOREM 1. If $f \in H^p$ is zero free in D, then there exist -polynomials P_n that converge to f uniformly on each compact subset of D and satisfy $||P_n||_p \leq 2||f||_p$ for all n.

Here, uniform approximation on compact subsets of D cannot be replaced by approximation in H^p as can be seen from the following

THEOREM 2. If the P_n are C-polynomials such that $||P_n - f||_p \to 0$, then f is either a C-polynomial or the zero function.

However, we have a stronger result for the space \mathscr{H}^p .

THEOREM 3. If $f \in \mathcal{H}^p$ is zero free in D, then there exist C-polynomials P_n such that $|P_n - f|_p \to 0$.

The author wishes to thank Professor J. Korevaar for suggesting these problems.

2. PROOFS OF THE THEOREMS

The proofs of Theorems 1 and 3 depend on the following result of I. Schur [2], which is also stated and used in [3].

LEMMA. Let

$$P_n(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_n$$
,
 $\tilde{P}_n(z) = \bar{a}_0 z^n + \bar{a}_1 z^{n-1} + \dots + \bar{a}_n$,
 $P_n^*(z) = z^n \tilde{P}_n(z^{-1})$ and $Q_{n,m} = P_n + z^m P_n^*$.

If P_n does not vanish in D, then the $Q_{n,m}$ are C-polynomials for all m = 0, 1, 2, ...,and

$$|P_n^*(z)| \leqslant |P_n(z)| \quad \text{for } |z| \leqslant 1.$$
(1)

Now let $f \in H^p$ be zero free in D and, for 0 < r < 1, let $f_r(z) = f(rz)$. Then $||f_r - f||_p \to 0$ as $r \uparrow 1$, and since each f_r is holomorphic and zero free for |z| < 1/r, it can be approximated uniformly on \overline{D} by polynomials P_n which do not vanish in D. Hence, f can be approximated in H^p by polynomials P_n which do not vanish in D. Let P_n^* and $Q_{n,m}$ be as in the lemma. Then by (1), we have, for all m,

$$\|Q_{n,m} - f\|_{p} \leq \|P_{n} - f\|_{p} + \|z^{m}P_{n}^{*}\|_{p}$$

= $\|P_{n} - f\|_{p} + \|P_{n}^{*}\|_{p}$
 $\leq \|P_{n} - f\|_{p} + \|P_{n}\|_{p} \rightarrow \|f\|_{p}.$ (2)

On each compact subset K of D, the P_n^* are uniformly bounded, and hence, $z^m P_n^* \to 0$ uniformly on K as $m \to \infty$, independent of n. Thus, the $Q_{n,m}$ approximate f uniformly on K as n and $m \to \infty$. Hence, we can choose a single sequence from $Q_{n,m}$ to approximate f uniformly on every compact subset of D. By (2) we can divide the elements of this sequence by suitable positive numbers tending to one to get a sequence R_k of C-polynomials such that $R_k \to f$ uniformly on each compact subset of D and $||R_k||_p \leq 2 ||f||_p$ for all k. This completes the proof of Theorem 1.

If $f \in \mathscr{H}^p$ is zero free in D, then by the same argument as above, we obtain C-polynomials $Q_{n,m} = P_n + z^m P_n^*$ such that

$$|P_n - f|_p \to 0$$

and

$$|Q_{n,m} - f|_{p} \leq |P_{n} - f|_{p} + |z^{m}P_{n}^{*}|_{p}$$
$$\leq |P_{n} - f|_{p} + |z^{m}P_{n}|_{p}.$$

For each $0 < \rho < 1$,

$$|z^m P_n|_p \leq \max_{|z| \leq \rho} |z^m P_n(z)| + \left\{ \frac{1}{\pi} \iint_{\rho < |z| < 1} |P_n|^p \right\}^{1/p}.$$

Let $\epsilon > 0$ be given. Since $|P_n - f|_p \rightarrow 0$ and

$$\lim_{\rho\to 1}\iint_{\rho<|z|<1}|f|^p=0,$$

we can choose $1 - \rho > 0$ so small that

$$\left\{\frac{1}{\pi}\iint_{\rho<|z|<1}|P_n|^p\right\}^{1/p}<\epsilon$$

for all sufficiently large *n*. For this fixed ρ , the polynomials P_n are uniformly bounded on $|z| \leq \rho$, and hence,

$$\max_{|z|\leqslant\rho}|z^mP_n(z)|\to 0$$

as $m \to \infty$, independent of *n*. By choosing a suitable sequence of C-polynomials from $Q_{n,m}$, we complete the proof of Theorem 3.

To prove Theorem 2, let f be holomorphic in D and let the P_n be C-polynomials such that $||P_n - f||_p \to 0$. Then $f \in H^p$, and since $P_n \to f$ uniformly on compact subsets of D, f must be zero free in D, unless $f \equiv 0$. Hence, we can assume, without loss of generality, that $P_n(0) = f(0) = 1$ for all n. Suppose that f is not a C-polynomial. In order to approximate f, the degrees of the polynomials P_n must then tend to infinity. Thus, we can write

$$P_n(z) = \prod_{k=1}^n (1 - z e^{-i\theta_{n,k}})$$

where $n = n_j \rightarrow \infty$. Let

$$f(z)=\sum_{k=0}^{\infty}a_kz^k.$$

By Hölder's inequality, it can be shown that

$$\left|\prod_{k=1}^{n} \left(-e^{-i\theta_{n,k}}\right) - a_{n}\right| = \left|\frac{1}{2\pi i} \int_{|z|=r} \frac{P_{n}(z) - f(z)}{z^{n+1}} \, dz\right| \leq ||P_{n} - f||_{p} \, .$$

Since $f \in H^p$, $a_n \to 0$ by the Riemann-Lebesgue Theorem. This is a contradiction since $||P_n - f||_p \to 0$ but $|\prod_{k=1}^n (-e^{-i\theta_{n,k}})| = 1$ for all n.

C-polynomial approximation

References

- 1. C. CHUI, Bounded approximation by polynomials with restricted zeros, Bull. Amer. Math. Soc. 73 (1967), 967-972.
- 2. G. Pólya and G. SZEGÖ, "Aufgaben und Lehsätze aus der Analysis," Erster Band, Springer-Verlag, 1964.
- 3. Z. RUBINSTEIN, On the approximation by C-polynomials, Bull. Amer. Math. Soc. 74 (1968), 1091-1093.