C-Polynomial Approximation of H^{p} and \mathscr{H}^{p} Functions

Charles K. Chui
Department of Mathematics, State University of New York at Buffalo
Submitted by Jacob Korevaar

1. Introduction and Results

Let C denote the unit circle and D its interior. Polynomials whose zeros lie on C will be called C-polynomials. It is known that every zero free bounded holomorphic function in D can be boundedly approximated in D by C-polynomials [1, 3]. In this paper, we present some results on C-polynomial approximation for other classes of functions.

Throughout this note, we take $p \geqslant 1$ and let H^{p} be the Hardy space with norm $\left\|\|_{p}\right.$, and \mathscr{H}^{p} the class of functions f holomorphic in D such that

$$
|f|_{p}=\left\{\frac{1}{\pi} \iint_{D}|f(x+i y)|^{p} d x d y\right\}^{1 / p}<\infty
$$

Both H^{p} and \mathscr{H}^{p} are Banach spaces. For H^{p}, we have a result similar to that for bounded holomorphic functions, namely

Theorem 1. If $f \in H^{p}$ is zero free in D, then there exist. -polynomials P_{n} that converge to f uniformly on each compact subset of D and satisfy $\left\|P_{n}\right\|_{p} \leqslant 2\|f\|_{p}$ for all n.

Here, uniform approximation on compact subsets of D cannot be replaced by approximation in H^{p} as can be seen from the following

Theorem 2. If the P_{n} are C-polynomials such that $\left\|P_{n}-f\right\|_{p} \rightarrow 0$, then f is either a C-polynomial or the zero function.

However, we have a stronger result for the space \mathscr{H}^{p}.

Theorem 3. If $f \subset \mathscr{H}^{\text {D }}$ is zero free in D, then there exist C-polynomials P_{n} such that $\left|P_{n}-f\right|_{p} \rightarrow 0$.

The author wishes to thank Professor J. Korevaar for suggesting these problems.

2. Proofs of the Theorems

The proofs of Theorems 1 and 3 depend on the following result of I. Schur [2], which is also stated and used in [3].

Lemma. Let

$$
\begin{gathered}
P_{n}(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n} \\
\tilde{P}_{n}(z)=\bar{a}_{0} z^{n}+\bar{a}_{1} z^{n-1}+\cdots+\bar{a}_{n} \\
P_{n}^{*}(z)=z^{n} \tilde{P}_{n}\left(z^{-1}\right) \quad \text { and } \quad Q_{n, m}=P_{n}+z^{m} P_{n} *
\end{gathered}
$$

If P_{n} does not vanish in D, then the $Q_{n, m}$ are C-polynomials for all $m=0,1,2, \ldots$, and

$$
\begin{equation*}
\left|P_{n}^{*}(z)\right| \leqslant\left|P_{n}(z)\right| \quad \text { for }|z| \leqslant 1 . \tag{1}
\end{equation*}
$$

Now let $f \in H^{p}$ be zero free in D and, for $0<r<1$, let $f_{r}(z)=f(r z)$. Then $\left\|f_{r}-f\right\|_{p} \rightarrow 0$ as $r \uparrow 1$, and since each f_{r} is holomorphic and zero free for $|z|<1 / r$, it can be approximated uniformly on \bar{D} by polynomials P_{n} which do not vanish in D. Hence, f can be approximated in H^{p} by polynomials P_{n} which do not vanish in D. Let $P_{n}{ }^{*}$ and $Q_{n, m}$ be as in the lemma. Then by (1), we have, for all m,

$$
\begin{align*}
\left\|Q_{n, m}-f\right\|_{p} & \leqslant\left\|P_{n}-f\right\|_{p}+\left\|z^{m} P_{n}^{*}\right\|_{p} \\
& =\left\|P_{n}-f\right\|_{\nu}+\left\|P_{n}^{*}\right\|_{p} \tag{2}\\
& \leqslant\left\|P_{n}-f\right\|_{p}+\left\|P_{n}\right\|_{p} \rightarrow\|f\|_{p}
\end{align*}
$$

On each compact subset K of D, the $P_{n}{ }^{*}$ are uniformly bounded, and hence, $z^{m} P_{n}{ }^{*} \rightarrow 0$ uniformly on K as $m \rightarrow \infty$, independent of n. Thus, the $Q_{n, m}$ approximate f uniformly on K as n and $m \rightarrow \infty$. Hence, we can choose a single sequence from $Q_{n, m}$ to approximate f uniformly on every compact subset of D. By (2) we can divide the elements of this sequence by suitable positive numbers tending to one to get a sequence R_{k} of C-polynomials such that $R_{k} \rightarrow f$ uniformly on each compact subset of D and $\left\|R_{k}\right\|_{D} \leqslant 2\|f\|_{\mathcal{D}}$ for all k. This completes the proof of Theorem 1 .

If $f \in \mathscr{H}^{p}$ is zero free in D, then by the same argument as above, we obtain C-polynomials $Q_{n, m}=P_{n}+z^{m} P_{n}{ }^{*}$ such that

$$
\left|P_{n}-f\right|_{p} \rightarrow 0
$$

and

$$
\begin{aligned}
\left|Q_{n, m}-f\right|_{p} & \leqslant\left|P_{n}-f\right|_{p}+\left|z^{m} P_{n} *\right|_{p} \\
& \leqslant\left|P_{n}-f\right|_{p}+\left|z^{m} P_{n}\right|_{p} .
\end{aligned}
$$

For each $0<\rho<1$,

$$
\left|z^{m} P_{n}\right|_{p} \leqslant \max _{|z| \leqslant \rho}\left|z^{m} P_{n}(z)\right|+\left\{\left.\frac{1}{\pi} \iint_{\rho<|z|<1}\left|P_{n}\right|^{p}\right|^{1 / p}\right.
$$

Let $\epsilon>0$ be given. Since $\left|P_{n}-f\right|_{p} \rightarrow 0$ and

$$
\lim _{\rho \rightarrow 1} \iint_{\rho<|z|<1}|f|^{p}-0
$$

we can choose $1-\rho>0$ so small that

$$
\left\{\frac{1}{\pi} \iint_{p<|z|<1}\left|P_{n}\right|^{p}\right\}^{1 / p}<\epsilon
$$

for all sufficiently large n. For this fixed ρ, the polynomials P_{n} are uniformly bounded on $|\boldsymbol{z}| \leqslant \rho$, and hence,

$$
\max _{|z| \leqslant \rho}\left|z^{m} P_{n}(z)\right| \rightarrow 0
$$

as $m \rightarrow \infty$, independent of n. By choosing a suitable sequence of C-polynomials from $Q_{n, m}$, we complete the proof of Theorem 3.

To prove Theorem 2, let f be holomorphic in D and let the P_{n} be C polynomials such that $\left\|P_{n}-f\right\|_{p} \rightarrow 0$. Then $f \in H^{p}$, and since $P_{n} \rightarrow f$ uniformly on compact subsets of D, f must be zero free in D, unless $f \equiv 0$. Hence, we can assume, without loss of generality, that $P_{n}(0)=f(0)=1$ for all n. Suppose that f is not a C-polynomial. In order to approximate f, the degrees of the polynomials P_{n} must then tend to infinity. Thus, we can write

$$
P_{n}(z)=\prod_{k=1}^{n}\left(1-z e^{-i \theta_{n, k}}\right)
$$

where $n=n_{j} \rightarrow \infty$. Let

$$
f(z)=\sum_{k=0}^{\infty} \boldsymbol{a}_{k} z^{k}
$$

By Hölder's inequality, it can be shown that

$$
\left|\prod_{k=1}^{n}\left(-e^{-i \theta_{n, k}}\right)-a_{n}\right|=\left|\frac{1}{2 \pi i} \int_{|z|=r} \frac{P_{n}(z)-f(z)}{z^{n+1}} d z\right| \leqslant\left\|P_{n}-f\right\|_{p}
$$

Since $f \in H^{p}, a_{n} \rightarrow 0$ by the Riemann-Lebesgue Theorem. This is a contradiction since $\left\|P_{n}-f\right\|_{p} \rightarrow 0$ but $\left|\prod_{k=1}^{n}\left(-e^{-i \theta_{n, k}}\right)\right|=1$ for all n.

References

1. C. Chur, Bounded approximation by polynomials with restricted zeros, Bull. Amer. Math. Soc. 73 (1967), 967-972.
2. G. Pólya and G. Szecö, "Aufgaben und Lehsätze aus der Analysis," Erster Band, Springer-Verlag, 1964.
3. Z. Rubinstein, On the approximation by C-polynomials, Bull. Amer. Math. Soc. 74 (1968), 1091-1093.
