A Counter Example to a Conjecture of
 D. J. Rose on Minimum Triangulation

Yehoshua Perl
Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel

Submitted by Gian-Carlo Rota
D. J. Rose concluded his discussion on the elimination process in graphs [1] with a conjecture saying that there exists a minimum triangulation \hat{T} of a graph $G=(X, E)$ such that S_{0} is a separator clique in $\hat{G}=(X, E \cup \hat{T})$, where S_{0} is a separator of G with minimum deficiency. In Fig. 1 we show a graph G_{1} such that $S_{0}=\{3,4,5,6,7,8\}$ is the only separator of G with deficiency less than or equal to 2 . Let T be a minimum triangulation of G using S_{0} as a separator clique. Then $|T|=8$. However, elimination of the vertices of G in the order $6,1,7,2,9,3,4,5,8,10$, adds only seven edges. All these facts were confirmed by checking all possibilities by means of a computer program. Thus T is not a minimum triangulation, contradicting the conjecture.

In this case a minimum triangulation can be achieved by choosing as a separator clique, a separator with minimum vertices. But this approach does not guarantee a minimum triangulation either. For example, the graph drawn in Fig. 2 has only two separators $S_{1}=\{1,2,3,4\}, S_{2}-\{5,6,7,8,9\}$. Triangulation using S_{1} as a separator clique adds six edges, while triangulation using S_{2} adds only four.

Figure 1

Figure 2

As a result of these examples, I do not believe that there exists a method of achieving minimum triangulation through some local criterion for choosing a separator to become a separator clique.

Reference

1. D. J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32 (1970), 597-609.
