TCT-844
Active Versus Passive Anchoring Vascular Closure Devices: A Safety and Efficacy Comparative Analysis
Nevin C. Baker1, Michael J. Lipinski1, Ricardo O. Escarega2, Marco A. Magalhaes3, Sa’ar Minha1, Thibault Lhermusier1, Hideaki Ota1, lakkamana Pentyala1, Lowell F. Suler1, Augusto Pichard1, William O. Saddath2, Rebecca Torgason2, Ron Wakoman1
1MedStar Washington Hospital Center, Washington, DC, 2Medstar Washington Hospital Center, Washington, DC, 3Medstar Washington Hospital Center, Washington, DC, 4Washington Hospital Center, Washington, DC, 5Washington Hospital Center, Washington, DC

Background: We evaluate the prevalence of complications and failure rates between the most commonly used “active” anchoring vascular closure device (VCD), AngioSeal™ and the “passive” anchoring VCD, Mynx,1,2 in all-comers undergoing percutaneous coronary intervention (PCI).

Methods: A total of 4,074 patients between 2008-2014, representing an era when both devices were available, were included. 32% were acute coronary syndromes (37% STEMI). VCD choice was at the operator’s discretion and included AngioSeal (n=2910) or Mynx (1,164). Cardiogenic shock or patients receiving intra-aortic balloon pumps were excluded. Safety was assessed by vascular complications defined as either vascular injury (perforation, dissection, acute limb ischemia, arteriovenous fistula, pseudoaneurysm with thrombin injection, or surgical repair) or access-site bleed (hemoglobin drop > 3 g/dL requiring transfusion, retroperitoneal bleed, or hematoma >5cm, or the composite of both). Efficacy was evaluated by failure defined as inability to achieve immediate hemostasis, or additional hemostatic mechanisms required. Outcomes at 30-days were evaluated.

Results: Groups (AngioSeal vs. Mynx) were fairly balanced with regards to bleeding risk factors of gender (male, 65% vs. 66%), body mass index (30.6 vs. 30.7), heart failure class III/IV (5% vs. 6%), chronic kidney disease (15% vs. 17%), use of glycoprotein IIb/IIIa inhibitor (5% vs. 4%) or bivalirudin (86% vs. 88%), all p >0.5. The AngioSeal group was slightly younger (64±12 vs. 65±12, p < 0.001) with less peripheral arterial disease (11.3% vs. 13.9%, p = 0.03), and increased 7F sheath use compared with Mynx (59% vs. 22%, p < 0.001). Safety and efficacy outcomes were similar between groups (table).

Conclusions: AngioSeal and Mynx appear to be equally safe and efficacious VCDs following PCI. The passive anchoring system may prove desirable as no intra-arterial bleedings as compared to femoral approach (FA). However, although the risk of femoral bleeding can be reduced with the adoption of vascular closure devices (VCD), there are few data about the comparison of RA and FA with VCD, particularly in patients with primary percutaneous coronary intervention (PPCI) and to assess whether this translates into differences in angiographic outcomes.

TCT-846
Radial-to-femoral access crossover is not associated with adverse outcomes in the setting of primary percutaneous coronary intervention
Lorenzo Azcalini1, Raz Khani1, Malek Al-Hawwasi1, Raja Hatem2, Annik Fortier1, Philippe L. Allier1, Hung Q. Ly1
1Montreal Heart Institute, Montreal, QC, Canada

Background: We aimed to describe the impact of the vascular access used when patients are treated with primary percutaneous coronary intervention (PPCI) and to assess whether this translates into differences in angiographic outcomes.

Methods: ST-elevation myocardial infarction (STEMI) patients undergoing PPCI were divided into three groups: successful radial access (RA), successful femoral access (FA) and Crossover (failed RA with need for bailout FA) groups. Vascular access-related time (VART) was defined as the delay in PCI that can be attributed to vascular access-related issues. Study endpoint was the final corrected TIMI frame count (CTFC). Multivariable analysis was used to identify predictors of RA failure (RAF; FA+Crossover).

Results: We included 241 patients (RA n=172, FA n=49, Crossover n=20). Mean VART was longer in Crossover (10.3 (8.8-12.4) min, relative to RA (4.1 (3.2-5.5) min) and FA (4.6 (3.4-8.4) min, p < 0.001). A similar situation was found for time-to-first-device (Crossover: 22.5 (20.3-32.0) min; RA: 15.0 (12.0-19.8) min; FA: 17.9 (13.5-22.3) min; p < 0.001) and total procedure time (Crossover: 60.3 (51.6-71.5) min; RA: 46.8 (38.1-59.7) min; FA: 52.3 (41.9-74.7) min; p < 0.001). No differences in CTFC were observed (Crossover: 26 (18-32) frames; RA: 24 (18-32) frames; FA: 25 (16-34) frames; p = 0.625). Killip class IV (OR 3.628, 95% CI: 1.098-11.981, p = 0.035), cardiopulmonary resuscitation prior to arrival (OR 3.572, 95% CI: 1.028-12.407, p = 0.045) and glomerular filtration rate (OR 0.861, 95% CI: 0.758-0.978, p = 0.021) were independent predictors of RAF.

Conclusions: In the setting of PPCI, radial-to-femoral access crossover can lead to VART delays that do not impact angiographic outcomes, in comparison with successful RA. Killip class IV, cardiopulmonary resuscitation prior to arrival and impaired renal function are independent predictors of RAF in STEMI patients undergoing PPCI.

TCT-847
Safety And Efficacy Of AngioSeal® Vs. Exo-Seal® In Patients Undergoing Primary Percutaneous Coronary Intervention For ST-elevation Myocardial Infarction
Natália Pinhão1, Ignacio Sanchez-Perez1, Maria T. Lopez-Lluva1, Alfonso Jurado-Roman1, Manuel Marina-Breysse1, Jesus Piqueras-Flores1, Pilar Agudo-Quilez2, Fernando Lozano1
1Hospital General Universitario de Ciudad Real, Ciudad Real, Spain, 2Hospital Infanta Leonor, Madrid, Spain

Background: Patients undergoing primary percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction (STEMI) are at high risk of femoral vascular complications (VC). In spite of the growing use of radial approach, femoral remains the most common in primary PCI. The use of femoral vascular closure devices (VCDs) has expanded in recent years despite previous controversial trials. AngioSeal® is a collagen-based plug/anchor intravascular device and Exo-Seal® is an extravascular polyglykolacid plug. Objective: to evaluate safety and efficacy, and to compare these VCDs in primary PCI.

TCT Abstracts/Vascular Access and Intervention - Femoral (includes closure devices)
Methods: We included 827 consecutive patients who underwent primary PCI by femoral access in our institution between August 2009 to October 2013 with a 6 months follow-up. Primary end point was the presence of VC defined as a composite of hematoma≥ 6 cm, recurrent bleeding, pseudoaneurysm, arteriovenous fistula, arterial thrombosis or retroperitoneal bleeding.

Results: 404 (48.8%) patients received Angio-Seal® and 423 (51.2%) Exo-Seal®. 39 (4.7%) patients had a VC with a similar incidence of events between the 2 VCDs: 18 (4.4%) in Angio-Seal® and 21 (4.9%) in Exo-Seal® (p=0.7). Risk of VC was significantly associated with body mass index (p<0.01), sheath size (p<0.04), presence of chronic kidney disease (p<0.005) and peripheral arterial disease (p<0.03). There was no fatal complications. Most of the pseudoaneurysms were resolved with compression and/or thrombin, only 2 of them and 1 retroperitoneal bleeding required vascular surgery.

Conclusions: Although radial approach is increasing in recent years, femoral remains the most frequent in primary PCI. VC after femoral VCDs in patients undergoing primary PCI, have a low but not negligible incidence despite being implanted by interventional cardiologists experienced in femoral access. VC were significantly associated with individual (body mass index, chronic kidney disease, peripheral arterial disease) and procedure-related (sheath size) characteristics. Safety and efficacy of both (Angio-Seal® and Exo-Seal®) VCDs is similar after primary PCI. 

TCT-848

Mynx™ Vascular Closure Device Achieves Reliable Closure and Hemostasis of Large Bore Percutaneous Trans-Femoral Venous Access in a Porcine Vascular Model: Acute and 30 Day Evaluation using Angiography, Ultrasound, and Histology

Sanjay S Srivatsa1, Arjun Srivatsa2, Taylor Spangler2
1Heart Artery and Vein Center Fresno CA, Fresno, CA, 2VDx – Preclinical Pathology Services, Davis, CA

Background: Vascular closure device (VCD) based venous closure has been anecdotally reported but systematic evaluation of the reparative response of the vessel wall to venous closure is lacking. The need to control groin complications, and minimize risks associated with postponed sheath removal under conditions of persistent anti-coagulation, has generated interest in the role of vascular closure devices for venous access closure. We sought to characterize the vessel wall response to venous closure, both acutely and in delayed fashion at 30 days using angiography, ultrasound and histology.

Methods: Ten (10) venous 7F sheaths were deployed in the femoral veins of swine. Bilateral venous access sites were subsequently closed utilizing manual compression (control arm, n=4) or a closure device utilizing an extravascular polyethylene glycol sealant (MynxGrip Treatment arm, n=6). Acute (post-closure), 3-day and 30-day vascular ultrasound, as well as venography was used to assess outcomes. Gross pathology and histology were obtained at the 30 day endpoint for all femoral venous closure sites. Each animal was evaluated for venous thromboembolism to down-stream tissues vena cava, heart, and lungs.

Results: Hemostasis was successfully achieved in all cases without access site complications. Venography and ultrasound confirmed normal ilio-femoral anatomy at the study time points. Histopathology revealed no evidence of deep vein thrombosis, and no abnormalities were seen in the vena cava, heart or lungs. Histology (at 30 days) showed complete healing of the vein wall access site, with a small focus of chronic inflammation and fibrosis in the perivascular adventitial tissue of the access tract. There was no microscopic evidence of the sealant. The tissue tract showed mild discrete inflammation (foamy macrophages, lymphocytes, plasma cells) with micro-granulomas centered on residual red cells in both treatment and control groups.

Conclusions: This study provides novel insight into healing mechanisms following femoral vein closure and the bioresorptive role of MynxGrip™ extravascular sealant in achieving effective venous closure, while preserving long term vessel patency without thromboembolism.

TCT-849

Preclosure of vascular access site with the suture-mediated ProGlide system during transfemoral TAVI and MitraClip implantation

William KF. Kong1
1National University Hospital, Singapore, Singapore, Singapore

Background: The ProGlide closure system is becoming popular for the percutaneous deployment of vascular access sheath of patients who have undergone structural interventional procedures using 5F to 21F sheaths. This study is intended to demonstrate the safety, effectiveness and feasibility of a suture-mediated ProGlide for access site closure after transfemoral transcatheter aortic valve implantation (TAVI) and transcatheter MitraClip.

Methods: ProGlide closure was used between 2010 and 2013 in 57 patients in our centre. The ProGlide sutures were deployed in a preclouse technique before the insertion of the large caliber sheath. Achieving effective hemostasis and no further access site-related vascular or hemorrhagic complications during the whole hospital stay is considered success of the closure technique.

Results: Patients were 73±6.5 years old with a logistic EuroSCORE of 22.2±12.4. There were total of 57 patients deemed high risk as surgical candidates undergone percutaneous therapy for transfemoral TAVI with Edwards SAPIEN valves (n=31) and MitraClip procedure (n=26). The overall success rate of the ProGlide closure was 98.3% (one patient had diminished pulses distal to closure site that needed surgical intervention). The success rate remained at 100% among the patients on dual anti-platelet therapy (DAPT) or on anticoagulants. None of the patients that were examined with ultrasound demonstrated an AV fistula, aneurysm, hematoma or local thrombosis related to the ProGlide device.

Conclusions: This study demonstrated that the suture-mediated ProGlide system is a safe, simple and highly effective method to close the large arterial access site after transfemoral TAVI and large venous sites of 24F as needed in patients undergoing MitraClip procedure despite on platelet inhibitors or anticoagulation. Additionally, use of the ProGlide system can result in shorter procedure time, duration to achieve hemostasis and also shorter length of hospital stay.