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We generalize the notion of comaximal factorization of ring ide-
als to the language of weak ideal systems on monoids and prove
several results generalizing and extending previous work. We also
develop some topological methods for dealing with comaximal fac-
torization and some related finitary weak ideal system problems.
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1. Introduction

Let R be a commutative ring with 1 �= 0. A comaximal factorization of a proper ideal I of R is
a product I = I1 · · · In of proper ideals with Ii + I j = R for i �= j, a proper ideal is called pseudo-
irreducible if it has no comaximal factorizations other than the trivial one I = I , and a complete co-
maximal factorization is a comaximal factorization into pseudo-irreducibles. Some of the early work on
complete comaximal factorizations was done by Noether, who proved in her monumental paper [21]
that if R is Noetherian, then every proper ideal has a unique (up to order) complete comaximal fac-
torization. Much more recently, McAdam and Swan [19] laid the foundations for a systematic study of
comaximal factorization of ideals in arbitrary commutative rings with 1 �= 0. They proved that com-
plete comaximal factorizations are always unique when they exist, generalized Noether’s existence
theorem with a weaker sufficient criterion for the existence of complete comaximal factorizations,
and showed that the comaximal factorizations of an ideal are in a natural one-to-one correspondence
with the comaximal factorizations of its radical.

A natural generalization of comaximal factorizations of ideals is the notion of �-comaximal fac-
torizations of �-ideals, where � is a star operation. (See Section 3 for definitions concerning star
operations.) A �-comaximal factorization of a proper �-ideal I of R is a �-product I = (I1 · · · In)� of
proper �-ideals with (Ii + I j)

� = R for i �= j, a proper �-ideal is called �-pseudo-irreducible if it has
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no nontrivial �-comaximal factorizations, and a complete �-comaximal factorization is a �-comaximal
factorization into �-pseudo-irreducibles. Taking � = d, we reduce to the definitions of comaximal fac-
torization, pseudo-irreducible, and complete comaximal factorization, respectively. Baghdadi, Gabelli,
and Zafrullah [7] did some work on complete �-comaximal factorizations, but they focused on the
special case of (necessarily complete) �-comaximal factorizations into �-ideals with prime radical,
where � is a finitary star operation on an integral domain. A domain where every principal ideal
(equivalently, every �-finitely generated �-ideal) has such a �-comaximal factorization is called a
�-unique representation domain (�-URD), and those authors proved that, if � is a finitary star opera-
tion on a domain D , then D is a �-URD if and only if every principal ideal has only finitely many
minimal primes and any two incomparable prime �-ideals are �-comaximal.

In this paper we will lay the foundations for the most general theory of comaximal factorization,
one using the language of weak ideal systems on monoids. By a monoid, we mean a commuta-
tive multiplicative semigroup with 1 �= 0. If r is a weak ideal system on a monoid H , then an
r-comaximal factorization of a proper r-ideal I is an r-product I = (I1 · · · In)r of proper r-ideals with
(Ii ∪ I j)r = H for i �= j, a proper r-ideal is called r-pseudo-irreducible if it has no nontrivial r-comaximal
factorizations, and a complete r-comaximal factorization is an r-comaximal factorization into r-pseudo-
irreducibles. (See Section 3 for definitions concerning weak ideal systems.) If H is a ring and r is
a star operation, then we reduce to the definitions of the previous paragraph. We will show that
a majority of the theorems of the aforementioned authors are special cases of analogous theorems in
this more general setting. Although we work in this setup in order to preserve maximum generality,
that is not to say that specializing our theorems to ring-theoretic language will not give new results.
The following are a sample of some of the noteworthy developments from a purely ring-theoretic
point of view.

It is well known that if � is a finitary star operation on an integral domain and I1, . . . , In are
pairwise �-comaximal �-ideals, then I1 ∩ · · · ∩ In = (I1 · · · In)� . One proof, which requires some famil-
iarity with the �w operation introduced by Anderson and Cook [3], is given in the introduction to [7].
Corollary 4.3 gives a more elementary proof that does not rely on a finitary assumption or on the ring
being an integral domain.

In [20], the authors proved that every comaximal factorization of a principal ideal has factors of
the form (a, c), where there is a b ∈ R with a | bc and (b, c) = R . This is a special case of Corollary 4.14,
which shows that every comaximal factorization of a proper ideal I has factors of the form (I,a) with
a(a − 1) ∈ I .

In Theorem 4.15, we will prove (in a more general setting) necessary and sufficient conditions for
a proper ideal to have a complete comaximal factorization. In short, the set of pseudo-irreducible
ideals containing a given proper ideal I has minimal elements, called minimal pseudo-irreducibles of I ,
and I has a complete comaximal factorization if and only if it has only finitely many minimal pseudo-
irreducibles. Equivalently, a proper ideal I has a complete comaximal factorization if and only if there
are pseudo-irreducible ideals P1, . . . , Pm containing I such that for every minimal prime P of I we
have some P + Pk �= R . Replacing “pseudo-irreducible” with the stronger “prime”, we get the sufficient
condition proven by McAdam and Swan.

Our main theorem is a generalization of McAdam and Swan’s aforementioned theorem that the
comaximal factorizations of an ideal are in a natural one-to-one correspondence with those of its
radical. We generalize this in the furthest possible way, but stating Theorem 4.18 in terms of star
operations on rings, we have the following: If � is a finitary star operation and I and J are �-ideals
with I ⊆ J ⊆ rad(I), then the map I = (I1 · · · In)� → J = ((I1 + J )� · · · (In + J )�)� is a bijection between
the �-comaximal factorizations of I and J . The original proof of McAdam and Swan makes heavy
use of the connection between comaximal factorizations and direct product decompositions. As this
method does not generalize to star operations, we instead turn to a method using a generalized
version of semistar operations. As an application of the theorem, we show how it can be used to give
an alternate proof of one of the main results of [7]. The definition of �-URD generalizes to a �-unique
representation ring (�-URR) in an obvious way, and our new proof, which does not rely on the ring
being an integral domain, shows that the aforementioned characterization of �-URD’s works just as
well for �-URR’s.
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Finally, in the last section we will show how our main theorem translates statements about
�-comaximal factorizations into equivalent topological statements about the Zariski topology on
the �-spectrum. This makes a topological approach to �-comaximal factorizations possible, and we
demonstrate this and a few other applications with examples. We summarize some of the theory
here. Let � be a finitary star operation on a ring R . (We note that the following statements are
also true in the more general situation of finitary weak ideal systems on monoids.) The �-spectrum
Spec�(R) is given the Zariski topology by declaring the closed subsets to be those of the form
V�(I) = {P ∈ Spec�(R) | P ⊇ I}. We will show that the �-comaximal factorizations of a proper �-ideal I
are in one-to-one correspondence with the separations of the subspace V�(I), so I is connected (resp.,
has a complete �-comaximal factorization) if and only if V�(I) is connected (resp., has a separation
into connected subspaces). We also show that the �-spectrum is a spectral space, and hence homeo-
morphic to the d-spectrum of some reduced ring. This observation allows one to reduce the proof of
certain statements about finitary star operations to the d-operation case. Similarly, we will show that
the collection of strongly �-irreducible �-ideals (see Section 4) forms a spectral space with its Zariski
topology (see Section 5).

2. Preliminaries

Throughout this paper, all monoids will be multiplicative and commutative with 1 �= 0 unless
stated otherwise. Similarly, all rings will be commutative with 1 �= 0. For a set X , we denote the set
of (finite) subsets of X by P (X) (P f (X)).

Let H be a monoid. We denote the units of H by H× and we set H∗ = H \ {0}, H# = H∗ \ H× , and
H#

0 = H \ H× . We call a ∈ H∗ cancellative or regular if ax = ay ⇒ x = y, and we denote the regular
elements of H by Reg(H). We say H is cancellative if Reg(H) = H∗ . If H is a ring, then its regular
elements are precisely the elements that are not zero divisors, so a cancellative ring is simply an
integral domain. We outline some of the theory of standard factorizations. Our main references for
this are [2,4,1]. Those papers deal with rings, but most of the theory translates to the more general
language of monoids with trivial changes.

A factorization of b ∈ H#
0 of length n is a product b = b1 · · ·bn with each bi ∈ H#. We call a length 1

factorization trivial. We will find it convenient to also regard 0 = 0 as a trivial factorization. A re-
finement of a factorization b = b1 · · ·bn is a factorization b = b1,1 · · ·b1,m1 · · ·bn,1 · · ·bn,mn with each
bi = bi,1 · · ·bi,mi ; we say the refinement is proper if some mi > 1. If one factorization is a (proper)
refinement of another, then we call the latter factorization a (proper) partition of the former.

Let ≡ be a relation on H . We say that factorizations a1 · · ·am and b1 · · ·bn are ≡-homomorphic
if for each i ∈ {1, . . . ,m} there is a j ∈ {1, . . . ,n} with ai ≡ b j , and for each j ∈ {1, . . . ,n} there is
an i ∈ {1, . . . ,m} with b j ≡ ai . If ≡ is symmetric, we say that factorizations a1 · · ·am and b1 · · ·bn

are ≡-isomorphic if m = n and each ai ≡ bi after a suitable reordering. If ≡ is reflexive and transi-
tive, then “≡-homomorphic” is an equivalence relation. If ≡ is an equivalence relation, then so is
“≡-isomorphic”.

Theorem 2.1. Let τ be a transitive relation on H and define a relation ≡ on H by a ≡ b ⇔ aτb and bτa.
Consider two factorizations a1 · · ·am and b1 · · ·bn. If they are ≡-isomorphic, then they are τ -homomorphic. If
m � n and ai/τa j for i �= j, then the converse is true.

Proof. (⇒): Clear. (⇐): Assume that a1 · · ·am and b1 · · ·bn are τ -homomorphic, m � n, and ai/τa j for
i �= j. Reorder if necessary so that a1 ≡ b1, . . . ,ak ≡ bk (where 0 � k � n) and no ai ≡ b j for i, j > k.
Suppose k < m. Then ak+1τb jτai for some i, j, and hence i = k + 1 and b j ≡ ak+1. Therefore j � k
and a j ≡ b j ≡ ak+1, a contradiction. Therefore k = m = n. �

We will note one special case of the above theorem. Two factorizations are called isomorphic if they
are ∼-isomorphic, and weakly homomorphic if they are |-homomorphic. We say that a factorization
a1 · · ·an has incomparable factors if ai � a j for i �= j, or, equivalently, if a1 H, . . . ,an H are incomparable.
Applying the above theorem with τ = | shows that two weakly homomorphic factorizations with
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incomparable factors are isomorphic. We invite the reader to formulate other results using different
transitive relations for τ .

3. Review of module systems and ideal systems

The theory of (weak) ideal systems is carefully developed in our main ideal systems reference [13],
and later many of the results were generalized to (weak) module systems in [14] and [15]. We briefly
give a summary of some of the most important facts and definitions. All the definitions and results in
this section will come from these sources unless stated otherwise.

Let H be a monoid. For X ⊆ H , we define Xs = XsH to be the monoid ideal generated by X , and, if
H is a ring, then we define Xd = XdH to be the ring ideal generated by X . A weak module system on H
is an operation r on P (H) satisfying the following for all X, Y ⊆ H and a ∈ H :

(M1) X ∪ {0} ⊆ Xr ;
(M2) X ⊆ Yr ⇒ Xr ⊆ Yr ; and
(M3) aXr ⊆ (aX)r .

In view of (M1), we could equivalently replace (M2) in the above with the following two axioms:

(M2a) (Xr)r = Xr ; and
(M2b) X ⊆ Y ⇒ Xr ⊆ Yr .

A module system on H is an operation r on P (H) satisfying (M1), (M2), and the following stronger
version of (M3):

(M3+) aXr = (aX)r .

A (weak) ideal system is a (weak) module system with the following stronger axiom in place of (M1):

(I1) Xs ⊆ Xr .

(For consistency, we relabel (M2)–(M3) as (I2)–(I3) in this case.) Equivalently, one could define “(weak)
ideal system” by leaving (M1) unchanged and adding on this additional axiom:

(IS) {1}r = H .

For any weak module system r we have Hr = H and {0} ⊆ ∅r = {0}r , with equality holding if r is
a module system. Given a (weak) module system r on a monoid H , we define another (weak) module
system r f by Xr f = ⋃

Y ∈P f (X) Yr . We say a weak module system r is finitary if r = r f . It is easily seen
that s and d are finitary ideal systems. If we need to use one of the nice properties of finitary weak
ideal systems, we have generally just stated the theorems with an assumption that r is finitary for the
sake of simplicity. Isolating exactly which properties are used in a proof should not be overly difficult
for one familiar enough with weak ideal systems to care about such a thing. Defining Xx = H for all
X ⊆ H yields the trivial weak ideal system x. A more interesting weak ideal system a is obtained by
defining Xa = ann(ann(X)) for X ⊆ H , where ann(X) = {c ∈ H | c X = {0}}.

Let r be a weak module system on a monoid H . We call I ⊆ H an r-module of H if Ir = I . For n � 0
we call an r-module n-generated if it is of the form Xr for some X ∈ P f (H) of cardinality n. We call an
r-module r-finitely generated if it is n-generated for some n � 0. We denote the set of r-modules (resp.,
r-finitely generated r-modules, n-generated r-modules) of H by Mr(H) (resp., Mr, f (H), Mr,n(H)),
and the set of principal ideals of H by Princ(H), where a principal ideal of H is a subset of the
form aH for some a ∈ H . Any intersection of r-modules is an r-module, and if r is a module system,
then Princ(H) ⊆ Mr,1(H). If r is a weak ideal system, then we modify our terminology as follows: an
r-ideal is an r-module and the set of r-ideals (resp., r-finitely generated r-ideals, n-generated r-ideals)
is denoted Ir(H) (resp., Ir, f (H), Ir,n(H)). For example, the d-ideals of a ring are the usual ring ideals,
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and the s-ideals of a monoid are the usual monoid ideals. We can partially order the weak module
systems on H by defining r � r′ if Xr ⊆ Xr′ for every X ⊆ H , or, equivalently, if Mr′ (H) ⊆ Mr(H).
With this ordering, the module system X → X ∪{0} is the smallest weak module system on H and the
ideal system s is the smallest weak ideal system on H . If H is a ring, then a star operation on H is an
ideal system � � d. For subsets X and Y of the total quotient monoid of H , the residuation of X with
respect to Y is [X : Y ] = [X :H Y ] = {a ∈ H | aY ⊆ X}. For y ∈ H , we abbreviate [X : {y}] = [X : y]. If
I ∈ Mr(H) and X ⊆ H , then [I : X] = [I : Xr] ∈ Mr(H). For X, Y ⊆ H , we set XY = {xy | x ∈ X, y ∈ Y },
and we have (XY )r = (Xr Y )r = (Xr Yr)r , and it follows that Mr(H) is a commutative monoid under
the r-multiplication I ·r J = (I J )r . The zero is {0}r and the identity is {1}r . If r is a weak ideal system,
then Ir(H)× = {H}. We have Mr(H) = {H} if and only if r is the trivial weak ideal system. (Note
that, even in the case when H is a ring and I and J are ring ideals, we set I J = {ab | a ∈ I, b ∈ J }.
The usual product of ring ideals is then (I J )d . Conveniently, if � is a star operation, it doesn’t matter
which way we interpret the “I J ” in “(I J )�”. This note allows one to directly translate our results to
ring-theoretic terminology if desired.)

Let r be a weak ideal system on a monoid H . We call I ∈ Ir(H) proper if I �= H . Thus Ir(H)#
0 is the

set of proper r-ideals. (We are tacitly ignoring the trivial weak ideal system.) We say that a proper
r-ideal P is prime if H \ P is multiplicatively closed (or, equivalently, if (I1 I2)r ⊆ P ⇒ some Ii ⊆ P
for I1, I2 ∈ Ir(H)), and maximal if H is the only r-ideal properly containing it. We denote the sets
of prime (resp., maximal) r-ideals by Specr(H) (resp., Maxr(H)). We will sometimes call Specr(H)

the prime r-spectrum or simply r-spectrum of H . Each maximal r-ideal is prime. If r is finitary then
every proper r-ideal is contained in a maximal r-ideal. The r-Krull dimension or simply r-dimension
dimr(H) of H is the supremum of the lengths of the properly descending chains P0 � P1 � · · · � Pn of
prime r-ideals. For X ⊆ H we denote the set of prime (resp., maximal) r-ideals containing X by Vr(X)

(resp., Wr(X)), and the minimal primes or prime divisors of X are the minimal elements of V s(X). Any
prime s-ideal containing X ⊆ H can be shrunk to a minimal prime of X , so every proper s-ideal has a
minimal prime. The minimal primes of H are the minimal primes of {0}, or, equivalently, the minimal
elements of Specs(H). (Different sources vary slightly on this definition. Some, like [13], specify that
a minimal prime of H is a prime s-ideal minimal among the nonzero prime s-ideals.) If r is finitary,
then every minimal prime of an r-ideal is an r-ideal. If I1, . . . , In ∈ Ir(H) and I = (I1 · · · In)r , then
(1) Vr(I) = ⋃n

i=1 Vr(Ii), (2) Wr(I) = ⋃n
i=1 Wr(Ii), and (3) a minimal prime of I is a minimal prime

of some Ii . If additionally (Ii ∪ I j)r = H for i �= j, then (1) the unions are disjoint, and (2) a minimal
prime of any Ii is a minimal prime of I .

Let r be a weak ideal system on a monoid H . For I ∈ Is(H), the radical of I is rad(I) = {x ∈ H |
xn ∈ I for some n � 1} = ⋂

I⊆P∈Specs(H) P = ⋂{minimal primes of I} ∈ Is(H). We will find it conve-
nient to introduce a related definition: for I ∈ Ir(H), the r-radical of I is radr(I) = ⋂

I⊆P∈Specr(H) P ∈
Ir(H). If r is finitary, then the notions of radical and r-radical coincide. An r-ideal is called
(r-)radical if it is equal to its (r-)radical. For I ∈ Ir(H), we define the r-Jacobson radical of I to
be Jr(I) = ⋂

I⊆M∈Maxr(H) M , and we have I ⊆ rad(I) ⊆ radr(I) ⊆ Jr(I). For I, J ∈ Ir(H) we have
radr(I) ⊆ radr( J ) ⇔ Vr(I) ⊇ Vr( J ), and if r is finitary then these are equivalent to every min-
imal prime of J containing I . For I, J ∈ Ir(H) we have Jr(I) ⊆ Jr( J ) ⇔ Wr(I) ⊇ Wr( J ). Thus
radr(I) ⊆ radr( J ) ⇒ Jr(I) ⊆ Jr( J ) for I, J ∈ Ir(H). Many of the nice properties of radicals of r-ideals
follow from the following fact: if r is finitary, then we have a finitary weak ideal system r(r) � r given
by Xr(r) = rad(Xr). (See [13, Corollary 6.7].)

Let r be a weak module system on a monoid H . A submonoid of H that is also an r-module is
called an r-submonoid. If D is a submonoid of H , then Dr is an r-submonoid. For each submonoid D
of H , we define a weak module system r[D] � r on H by Xr[D] = (X D)r for X ⊆ H , and we note that
r[D] is a module system if r is. If D is an r-submonoid of H , then the restriction of r[D] to P (D)

yields a weak ideal system on D; this weak ideal system is finitary if r is, and it is an ideal system
if r is a module system. Let S be a nonempty multiplicatively closed subset of H . We use H S = { a

b |
a ∈ H, b ∈ S} to denote the localization of H with respect to S , where multiplication is defined in the
obvious way and a

b = c
d if and only if there is an s ∈ S with sad = sbc. We have a natural monoid

homomorphism j S : H → H S : a → a
1 . If S ⊆ Reg(H), then j S embeds H in H S . For P ∈ Specs(H),

we write j P for jH\P and H P for H H\P . If r is a finitary weak module system and aXr = (aX)r for
a ∈ S and X ⊆ H , then r uniquely extends to a finitary weak module system on H S by defining
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Yr = c−1(cY )r for Y ∈ P f (H S ) and c ∈ S with cY ⊆ H , and defining Xr = ⋃
Y ∈P f (X) Yr for X ⊆ H S ; if

r is a module system on H , then its extension is a module system on H S .
Let q be a finitary weak ideal system on a monoid H , and let S be a nonempty multiplicatively

closed subset of Reg(H) such that aXr = (aX)r for a ∈ S and X ⊆ H . (For example, this last condition
automatically holds if S ⊆ H× , in which case H S = H .) We call a nonempty set L of q-ideals a
q-localizing system if it satisfies the following properties:

(L1) If I ∈ L and I ⊆ J ∈ Iq(H), then J ∈ L.
(L2) If I ∈ L, J ∈ Iq(H), and [ J :H a] ∈ L for every a ∈ I , then J ∈ L.

We say that a q-localizing system L is finitary if it additionally satisfies:

(L3) For every I ∈ L there is a q-finitely generated J ∈ L with J ⊆ I .

Let L be a q-localizing system. By a small adjustment to the proof of [14, Theorem 4.3], the localizing
system L induces a weak module system ρL,S = ρL on H S by defining

XρL,S = XL,S = XL = {
x ∈ H S

∣∣ [Xq :H x] ∈ L
} =

⋃
J∈L

[Xq :H S J ] ∈ Mq(H S)

for X ⊆ H S . If H is cancellative and q is an ideal system, then ρL is a module system. Minor
adaptations of arguments used in [14] yield the following facts: (1) q � q[H L] � ρL = ρL[H L],
(2) ρL is finitary if L is, (3) the q-ideals of H that ρL maps to H L are precisely those in L,
(4) the map ρL : Iq(H) → IρL (H L) is an inclusion-preserving monoid epimorphism with the map
πL : IρL (H L) → Iq(H) : J → J ∩ H a right inverse, and (5) the map ρL : Specq(H)\ L → SpecρL (H L)

is a bijection. In the important special case S ⊆ H× , the map ρL is a weak ideal system on
H = H L and fixes the prime q-ideals not in L. The theory of localizing systems generalizes local-
ization in the following sense. If S is a nonempty multiplicatively closed subset of Reg(H), then
L S = {I ∈ Iq(H) | I ∩ S �= ∅} is a finitary q-localizing system, I L S = I S for I ∈ Iq(H), and ρL S is the
weak ideal system qS on H S induced by q. (See [13, Theorem 4.4] for a definition of qS and some of
its properties. Of particular interest are the facts that sS = sH S and that dS = dH S if H is a ring, show-
ing that this gives an appropriate generalization of the standard theory.) The topics of this paragraph
are discussed in a ring-theoretic context in [11].

4. r-Comaximal factorizations of r-ideals

Throughout this section, we will use r to denote a weak ideal system on a monoid H unless noted
otherwise.

We say two subsets X and Y of H are r-comaximal if (X ∪ Y )r = H , and we say x, y ∈ H are
r-comaximal if {x, y}r = H . (Note: If H is a ring, � is a star operation on H , and I, J ∈ Id(H), then
(I ∪ J )d = I + J and (I ∪ J )� = (I + J )� , so this definition generalizes the familiar ring-theoretic def-
initions.) An r-comaximal factorization of a proper r-ideal is a factorization with the factors pairwise
r-comaximal. The r-ideals that appear in r-comaximal factorizations of a proper r-ideal are called its
r-comaximal factors. An r-comaximal refinement is a refinement where each factor is replaced with an
r-comaximal factorization. If one factorization is an r-comaximal refinement of another, then we call
the latter factorization an r-comaximal partition of the former. A proper r-ideal is r-pseudo-irreducible if
it has no nontrivial r-comaximal factorizations. A complete r-comaximal factorization is an r-comaximal
factorization with no proper r-comaximal refinements, or, equivalently, an r-comaximal factoriza-
tion whose factors are r-pseudo-irreducible. For X, Y1, Y2 ⊆ H with each (X ∪ Yi)r = H , we have
(X ∪ Y1Y2)r = (Xs ∪ Y1Y2)r ⊇ ((X ∪ Y1)(X ∪ Y2))r = H . It follows that any nontrivial r-comaximal
factorization is an r-comaximal refinement of a length 2 r-comaximal factorization.

The following lemma is one of the most useful computational tools for dealing with r-comaximal
factorizations.
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Lemma 4.1. Assume I, I1, . . . , In ∈ Ir(H) satisfy (I1 · · · In)r ⊆ I and (I ∪ Ii ∪ I j)r = H for i �= j. Then I =
((I ∪ I1)r · · · (I ∪ In)r)r .

Proof. The case n = 1 is trivial, so assume n � 2. Let J = (I2 · · · In)r . Then (I ∪ I1 ∪ J )r = H , so

I = (
I(I ∪ I1 ∪ J )

)
r ⊆ (

(I ∪ I1)(I ∪ J )
)

r ⊆ (I ∪ I1 · · · In)r = I.

Now, J ⊆ (I ∪ J )r and (I ∪ J ∪ Ii ∪ I j)r = H for distinct i, j � 2, so by induction we have

(I ∪ J )r = (
(I ∪ J ∪ I2)r · · · (I ∪ J ∪ In)r

)
r = (

(I ∪ I2)r · · · (I ∪ In)r
)

r,

and thus I = ((I ∪ I1)r(I ∪ J )r)r = ((I ∪ I1)r · · · (I ∪ In)r)r . �
Corollary 4.2. Let I be an r-pseudo-irreducible and m � 1. Then there is a length-preserving map from the
r-comaximal factorizations of (Im)r to those of I , namely (Im)r = (I1 · · · In)r → I = ((I ∪ I1)r · · · (I ∪ In)r)r .
In particular, a power of an r-pseudo-irreducible is r-pseudo-irreducible.

Proof. Let (Im)r = (I1 · · · In)r be an r-comaximal factorization. Because each (Im ∪ Ii)r = Ii �= H , each
(I ∪ Ii)r �= H , and the rest follows from Lemma 4.1. �
Corollary 4.3. If I1, . . . , In ∈ Ir(H) are pairwise r-comaximal, then (I1 · · · In)r = I1 ∩ · · · ∩ In.

Proof. Apply Lemma 4.1 to (I1 · · · In)r ⊆ I1 ∩ · · · ∩ In . �
We now collect some alternate equivalent definitions of r-pseudo-irreducible, which we will use

freely in the rest of the paper.

Theorem 4.4. The following are equivalent for a proper r-ideal I .

(1) I is r-pseudo-irreducible.
(2) For every r-comaximal I1, I2 ∈ Ir(H) with (I1 I2)r = I , we have some Ii = I .
(3) For every r-comaximal I1, I2 ∈ Ir(H) with (I1 I2)r ⊆ I , we have some Ii ⊆ I .

Proof. (1) ⇒ (2): Clear. (2) ⇒ (3): Assume (2) and that (I1 I2)r ⊆ I for some r-comaximal I1, I2 ∈
Ir(H). Lemma 4.1 yields I = ((I ∪ I1)r(I ∪ I2)r)r . By (2) we obtain I = (I ∪ Ii)r ⊇ Ii for some i.
(3) ⇒ (1): Assume (3) and take any r-comaximal I1, I2 ∈ Ir(H) with I = (I1 I2)r . Without loss of
generality, we have I1 ⊆ I , so I2 = (I ∪ I2)r ⊇ (I1 ∪ I2)r = H , showing I to be r-pseudo-irreducible. �

Note that as a consequence of (3) above, if q � r are weak ideal systems on H , then prime
r-ideal ⇒ r-pseudo-irreducible ⇒ q-pseudo-irreducible. It also implies that any two complete
r-comaximal factorizations of the same element are ⊇-homomorphic, so we could apply Theorem 2.1
with τ = ⊇ to show that complete r-comaximal factorizations are always unique (up to order) when
they exist. We will find it illuminating to give an additional proof in Theorem 4.11 below that uses
the idea of common refinements.

The paper [19] showed that the following statements are equivalent to the corresponding versions
of (1)–(3) above.

(4) The ring R/I is connected.
(5) For every d-comaximal x1, x2 ∈ R with x1x2 ∈ I , we have some xi ∈ I .

(Recall that a ring is called connected or indecomposable if it has no idempotents other than the trivial
ones 0 and 1, or, equivalently, if it has no nontrivial direct product decompositions, or, equivalently,
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if Specd(R) is connected in the Zariski topology. We will explore the Zariski topology in the next
section. In particular, we will show that if r is a finitary weak ideal system on a monoid H , then
a proper r-ideal J is r-pseudo-irreducible if and only if Vr( J ) is a connected subspace of Specr(H)

with the Zariski topology. As one would expect, the topological spaces Specd(R/I) and Vd(I) are
homeomorphic, so in some sense our result generalizes that of [19].) Elaborating on (4), the authors
note that there is a bijection between the d-comaximal factorizations of I and the nontrivial direct
product decompositions of R/I , taking I = (I1 · · · In)d to R/I ∼= R/I1 × · · · × R/In . So I has a complete
d-comaximal factorization if and only if R/I is a finite direct product of connected rings. In particular,
the d-ideal {0} is d-pseudo-irreducible (resp., has a complete d-comaximal factorization) if and only
if R is connected (resp., is a finite direct product of connected rings). So the uniqueness of complete
d-comaximal factorizations noted above gives one way to see that finite direct product decompositions
into connected rings are unique when they exist.

The most convenient thing about studying factorizations in the setting of a cancellative monoid
or an integral domain is undoubtedly the ability to cancel. Of course, the monoid Ir(H) is usually
not cancellative, but it turns out that we always can cancel when dealing with r-comaximal factor-
izations. In the following theorem we collect some simple “cancelation”, divisibility, and uniqueness
results about r-comaximal factorizations. For example, if r is finitary, then we have uniqueness of
r-comaximal factorizations with equal r-Jacobson radicals. We note that part (1) is a weak ideal sys-
tems version of [7, Lemma 2.2].

Theorem 4.5. Let I1, I2, J1, J2 ∈ Ir(H).

(1) If I1 ⊇ ( J1 J2)r and (I1 ∪ J1)r = H, then I1 ⊇ J2 .
(2) If (I1 I2)r = ( J1 J2)r and (I1 ∪ J2)r = ( J1 ∪ I2)r = H, then I1 = J1 and I2 = J2 .
(3) Assume (I1 I2)r = ( J1 J2)r , (I1 ∪ I2)r = ( J1 ∪ J2)r = H, and I1 ⊇ J1 . Then I2 ⊆ J2 . If I1 = J1 , then

I2 = J1 .
(4) Assume that r is finitary, (I1 I2)r = ( J1 J2)r , (I1 ∪ I2)r = ( J1 ∪ J2)r = H, and Jr(I1) ⊇ J1 . Then I1 ⊇ J1

and I2 ⊆ J2 . If Jr(I1) = Jr( J1), then I1 = J1 and I2 = J2 .

Proof. (1) If I1 ⊇ ( J1 J2)r and (I1 ∪ J1)r = H , then J2 = ( J2(I1 ∪ J1))r ⊆ (I1 ∪ J1 J2)r = I1.
(2) Follows from (1).
(3) Similar to the proof of (4) below.
(4) It will suffice to show the first part. For that, we observe that (I1 ∪ J2)r = H and apply part (1)

to I1 ⊇ ( J1 J2)r and J2 ⊇ (I1 I2)r . �
Theorem 4.6. Given a factorization and an r-comaximal factorization of the same proper r-ideal, the former
has an r-comaximal refinement that is a refinement of the latter (up to order).

Proof. Let (I1 · · · Im)r = ( J1 · · · Jn)r be factorizations with the latter an r-comaximal factorization. By
Lemma 4.1, each Ii = ((Ii ∪ J1)r · · · (Ii ∪ Jn)r)r , so we have r-comaximal factorizations

((
(I1 ∪ J1)r · · · (Im ∪ J1)r

)
r · · · ((I1 ∪ Jn)r · · · (Im ∪ Jn)r

)
r

)
r = ( J1 · · · Jn)r .

By Theorem 4.5 part (2), each J i = ((I1 ∪ J i)r · · · (Im ∪ J i)r)r , so ((I1 ∪ J1)r · · · (Im ∪ Jn)r)r is an
r-comaximal refinement of (I1 · · · Im)r that is (up to order) a refinement of ( J1 · · · Jn)r . �
Corollary 4.7. Any two r-comaximal factorizations of a proper r-ideal have a common r-comaximal refinement
(up to order).

Corollary 4.8. Any two distinct r-pseudo-irreducible r-comaximal factors of a proper r-ideal are r-comaximal.

Proof. Let (P I)r = (Q J )r be r-comaximal factorizations with P �= Q r-pseudo-irreducibles. By Corol-
lary 4.7, the two factorizations have a common r-comaximal refinement, so Q ⊇ I and hence
(P ∪ Q )r ⊇ (P ∪ I)r = H . �
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Corollary 4.9. Any r-product of r-pseudo-irreducibles is a refinement of a complete r-comaximal factorization.
So, if a proper r-ideal is an r-product of r-pseudo-irreducibles, then a minimum length such product is its
unique complete r-comaximal factorization.

Proof. Assume I1, . . . , Im are r-pseudo-irreducibles. Theorem 4.6 implies that (I1 · · · Im)r is a refine-
ment of each of its r-comaximal factorizations, and thus each r-comaximal factorization is of length
at most m, and an r-comaximal factorization of maximum length is necessarily complete. �
Corollary 4.10. Let I and J be r-pseudo-irreducibles. Then (I ∪ J )r = H or (I J )r is r-pseudo-irreducible.

Theorem 4.11. Let r be a weak ideal system on a monoid H. The following are equivalent for a proper r-ideal I .

(1) I is a product of r-pseudo-irreducibles.
(2) I has a complete r-comaximal factorization.
(3) I has a unique complete r-comaximal factorization (up to order).
(4) I has only finitely many r-comaximal factorizations.
(5) I has only finitely many r-comaximal factors.
(6) There is an upper bound on the lengths of the r-comaximal factorizations of I .

Proof. (1) ⇔ (2): Corollary 4.9. (2) ⇒ (3): Follows from Corollary 4.7 and the fact that a complete
r-comaximal factorization has no proper r-comaximal refinements, or by applying Theorem 2.1 as
noted above. (3) ⇒ (4): If I has a unique complete r-comaximal factorization (up to order), then each
of its r-comaximal factorizations is a reordering of a partition of this complete r-comaximal factoriza-
tion, so it has only finitely many r-comaximal factorizations. (4) ⇒ (5) ⇒ (6): Clear. (6) ⇒ (2): An
r-comaximal factorization of maximum length is necessarily complete. �

We’ve been giving Ir(H) a monoid structure with the operation ·r , but we could have also done it
with ∩. By Corollary 4.3, we can think of r-comaximal factorizations as a special kind of factorization
in either (Ir(H), ·r) or (Ir(H),∩). A simple consequence of Theorem 4.4 is that an arbitrary nonempty
intersection of pairwise non-r-comaximal r-pseudo-irreducibles is r-pseudo-irreducible. It is then easy
to see that any finite intersection of r-pseudo-irreducibles is a refinement of a complete r-comaximal
intersection, i.e., a nonempty finite intersection of pairwise r-comaximal r-pseudo-irreducibles. So, if
a proper r-ideal is a finite intersection of r-pseudo-irreducibles, then a minimum length such intersec-
tion is its unique complete r-comaximal one. Alternately, we could prove this fact using the following
more general theorem.

Theorem 4.12. Let r be a weak ideal system on a monoid H. Given any finite intersections
⋂m

i=1 Ii = ⋂n
j=1 J j

of proper r-ideals with the J i ’s pairwise r-comaximal, the former has an r-comaximal refinement that is (up
to order) a refinement of the latter.

Proof. Replace r-products with intersections in the proof of Theorem 4.6 as appropriate. �
We are now at a point where we can compare r-pseudo-irreducible r-ideals with other types of

“r-irreducible” r-ideals. In [13], a proper r-ideal I is said to be r-irreducible if whenever I1, I2 ∈ Ir(H)

and I = I1 ∩ I2, then some Ii = I . In analogy with [16], we define a proper r-ideal I to be strongly
r-irreducible if whenever I1, I2 ∈ Ir(H) and I ⊇ I1 ∩ I2, we have some Ii ⊆ I . Finally, analogously
to [5], we call a proper r-ideal I r-nonfactorable if whenever I1, I2 ∈ Ir(H) and I = (I1 I2)r , then
some Ii = H or {0}r . (For those familiar with the factorization terminology of [4], we note that
the r-irreducibles and strong r-irreducibles are precisely the atoms and primes, respectively, in the
monoid (Ir(H),∩), and the r-nonfactorables are precisely the very strong atoms in the monoid
(Ir(H), ·r).) With these definitions, we note the following implications: prime r-ideal ⇒ strongly
r-irreducible ⇒ r-irreducible ⇒ r-pseudo-irreducible ⇐ r-nonfactorable ⇐ prime r-ideal. None of
the implications reverse, even in the case r = d. As the other sorts of “d-irreducibles” have been stud-
ied extensively, we content ourselves with showing that the d-pseudo-irreducible property is strictly
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weaker than any of the others. For this, we note that we will see in Theorem 4.15 that a d-ideal with
prime radical is d-pseudo-irreducible, while it has been shown in the papers referenced that there
are no implications between prime radical and the other kinds of “d-irreducibles”.

For I ∈ Ir(H), we call an r-pseudo-irreducible P containing I a minimal r-pseudo-irreducible of I
if it is minimal among the r-pseudo-irreducibles containing I . We record some facts about minimal
r-pseudo-irreducibles in the following theorem. The d-operation case for part (5) is [12, Proposi-
tion 7.36].

Theorem 4.13. Let I ∈ Ir(H).

(1) Any r-pseudo-irreducible containing I can be shrunk to a minimal r-pseudo-irreducible of I . Thus minimal
r-pseudo-irreducibles of I exist if r is finitary and I �= H.

(2) The minimal r-pseudo-irreducibles of I are pairwise r-comaximal. Hence the number of minimal
r-pseudo-irreducibles of I is bounded above by the size of any collection of proper r-ideals Ω with each
minimal r-pseudo-irreducible contained in some element of Ω .

(3) Let Ω be a set of r-pseudo-irreducible r-ideals with the following two properties: (1) the r-ideal I and
each of its minimal r-pseudo-irreducibles are contained in an element of Ω , and (2) each element of Ω

containing a given proper r-ideal can be shrunk to a minimal such element. Then every minimal r-pseudo-
irreducible of I is contained in an element of Ω minimal over I , and the number of minimal r-pseudo-
irreducibles of I is at most the number of elements of Ω minimal over I .

(4) If I = (I1 · · · In)r is an r-comaximal factorization, then the set of r-pseudo-irreducibles containing I is
the disjoint union of the sets of r-pseudo-irreducibles containing the Ii ’s, and an r-pseudo-irreducible is
minimal over I if and only if it is minimal over some Ii . In particular, if I has a complete r-comaximal
factorization, then the factors in that factorization are the minimal r-pseudo-irreducibles of I .

(5) If r is finitary, then I is the intersection of the r-pseudo-irreducibles containing it, or, equivalently, the in-
tersection of its minimal r-pseudo-irreducibles. In fact, in this case I is the intersection of the r-irreducibles
containing it.

(6) Every minimal r-pseudo-irreducible of {0}r is idempotent.
(7) Every r-comaximal factor of {0}r is idempotent.
(8) If r is finitary, then each r-comaximal factor of I is r-generated by I and a finite number of elements

of H.

Proof. (1) By Zorn’s Lemma it suffices to show that the intersection of any nonempty chain of
r-pseudo-irreducibles is r-pseudo-irreducible, and this easily follows from Theorem 4.4.

(2) If P and Q are distinct minimal r-pseudo-irreducibles of I , then I ⊆ P ∩ Q � P , so P ∩ Q is
not r-pseudo-irreducible and hence (P ∪ Q )r = H .

(3) Let P be a minimal r-pseudo-irreducible of I and Q be an element of Ω minimal over P .
Shrink Q to Q 0 ∈ Ω minimal over I . By part (1), the r-pseudo-irreducible Q 0 contains a mini-
mal r-pseudo-irreducible of I , which must be P by part (2) and the fact that Q 0 and P are not
r-comaximal. Therefore P ⊆ Q 0 ⊆ Q , and Q = Q 0 by minimality.

(4) Can be proven in the same way as the analogous facts about prime r-ideals.
(5) It will suffice to prove the “in fact” part. Assume r is finitary and take any x ∈ H \ I . By the fact

that r is finitary, the union of any chain of r-ideals not containing x is an r-ideal not containing x.
(See [13, Proposition 3.1(v)].) By Zorn’s Lemma, we may then enlarge I to an r-ideal J maximal with
respect to the exclusion of x. If J = J1 ∩ J2 for some J1, J2 � J , then by maximality x ∈ J1 ∩ J2 = J ,
a contradiction. Therefore J is an r-irreducible containing I but not x.

(6) Follows from Corollary 4.2.
(7) If (I J )r = {0}r is an r-comaximal factorization, then we have r-comaximal factorizations

((I2)r J )r = (I J )r and Theorem 4.5 part (2) gives us I = (I2)r .
(8) Assume r is finitary and I = (I1 I2)r is a nontrivial r-comaximal factorization. By the fact that r

is finitary, there is an r-finitely generated r-ideal J1 ⊆ I1 such that ( J1 ∪ I2)r = H . Then I ⊆ (I ∪ J1)r ∩
I2 ⊆ I1 ∩ I2 = I , so (I1 I2)r = ((I ∪ J1)r I2)r are r-comaximal factorizations. By Theorem 4.5 part (2) we
obtain I1 = (I ∪ J1)r . �



J. Juett / Journal of Algebra 352 (2012) 141–166 151
In the course of proving (5), we proved a fact worth noting in its own right: An r-ideal maximal
with respect to the exclusion of an element of H is r-irreducible. More generally, an r-ideal maximal
with respect to not containing some nonempty X ⊆ H is r-irreducible.

For examples of sets Ω we can use in (3) when r is finitary, we have Specr(H), Jacr(H),
Maxr(H), or SSpecr(H). Here SSpecr(H) (resp., Jacr(H)) denotes the strongly r-irreducible spectrum
(resp., r-Jacobson subspace of Specr(H)), which consists of the strongly r-irreducible r-ideals (resp.,
r-Jacobson r-ideals), where an r-Jacobson r-ideal (r- J -ideal) is a prime r-ideal that is an intersection
of maximal r-ideals. We will discuss r- J -ideals and some of their properties in the next section. Of
course, we could also take Ω to be the set of r-pseudo-irreducibles itself, and we note that this choice
of Ω gives the smallest number of minimal elements over I .

Corollary 4.14. Let R be a ring and I be a proper d-ideal. Every d-comaximal factorization of I is of the form
I = ((I + a1 R) · · · (I + an R))d, where each ai(ai − 1) ∈ I .

Proof. Passing to R/I , we reduce the problem to showing the following: If {0} = (I1 · · · In)d is a
d-comaximal factorization, then each Ii is a principal ideal generated by an idempotent. But this
now follows directly from Theorem 4.13 and the fact that a d-finitely generated idempotent d-ideal is
a principal ideal generated by an idempotent. �
Theorem 4.15. Assume r is finitary. The following are equivalent for a proper r-ideal I .

(1) I has a complete r-comaximal factorization.
(2) I has only finitely many minimal r-pseudo-irreducibles.
(3) There are r-pseudo-irreducibles P1, . . . , Pm containing I such that every r-pseudo-irreducible P ⊇ I con-

tains some Pk.
(4) For some (resp., each) Ω as in Theorem 4.13 part (3) above, there are r-pseudo-irreducibles P1, . . . , Pm

containing I such that for any P ∈ Ω minimal over I we have some (P ∪ Pk)r �= H.

In this case, the unique complete r-comaximal factorization of I is I = (I1 · · · In)r , where n � m and
I1, . . . , In ∈ Ir(H) are the minimal r-pseudo-irreducibles of I .

Proof. (1) ⇔ (2): Theorem 4.13. (2) ⇒ (3) ⇒ (4): Clear. (4) ⇒ (2): Assume (4). We may assume that
each Pi is a distinct minimal r-pseudo-irreducible of I . If I has some minimal r-pseudo-irreducible
Q other than P1, . . . , Pm , then Q may be enlarged to an element of Ω minimal over I that is
r-comaximal with each of the Pi ’s, a contradiction. Therefore I has exactly m minimal r-pseudo-
irreducibles.

The part about the factors of the complete r-comaximal factorization of I being the minimal
r-pseudo-irreducibles of I follows from Theorem 4.13, and the part about n � m follows from the
proof of “(4) ⇒ (2)”. �

In [19, Theorem 5.4] it was shown that in the case where H is a ring and r = d, statement (4)
with the Pi ’s prime d-ideals and Ω = Specr(H) is sufficient for I to have a complete d-comaximal
factorization. By slightly weakening the hypothesis, we have managed to give necessary and sufficient
conditions for an r-ideal to have a complete r-comaximal factorization.

Let r be a finitary weak ideal system on a monoid H . Theorems 4.13 and 4.15 give us one of
our main methods for deducing that a proper r-ideal has a complete r-comaximal factorization and
estimating its length. For each Ω as in Theorems 4.13 and 4.15, a proper r-ideal with only a finite
number n of elements of Ω minimal over it has a complete r-comaximal factorization of length at
most n. (Also, we can always get n to be equal to the length of the complete r-comaximal factorization
by taking Ω to be the set of r-pseudo-irreducibles, but of course this would be rather circular. Also,
given Ω , we can always shrink it to an Ω that is “optimal” in this way by picking out one element
minimal over each of the minimal r-pseudo-irreducibles of I , but again this is somewhat circular.)
In particular, if a proper r-ideal has a unique element of Ω minimal over it, then it is r-pseudo-
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irreducible. Writing out the most important special cases Ω = Specr(H) and Ω = Maxr(H) explicitly,
we have the following facts.

(a) A proper r-ideal with only finitely many minimal primes has a complete r-comaximal factoriza-
tion.

(b) An r-ideal with prime radical is r-pseudo-irreducible.
(c) A proper r-ideal contained in only finitely many maximal r-ideals has a complete r-comaximal

factorization.
(d) An r-ideal contained in a unique maximal r-ideal is r-pseudo-irreducible.

As a special case of (1), if H is r-Noetherian, or more generally is r(r)-Noetherian (i.e., it satisfies the
ascending chain condition on radical r-ideals), then every proper r-ideal has a complete r-comaximal
factorization. (Recall from [13] that if r is a (not necessarily finitary) weak ideal system on H , then
H is called r-Noetherian if it satisfies the ascending chain condition on r-ideals, or, equivalently, if
r is finitary and every r-ideal is r-finitely generated. By [13, Lemma 7.8.1], if r is finitary, then H is
r(r)-Noetherian if and only if it satisfies the ascending chain condition on prime r-ideals and every
r-ideal has only finitely many minimal primes.)

We now give two examples, one illustrating a method to show that a complete r-comaximal fac-
torization does not exist, and one showing that there are times when d-pseudo-irreducibility cannot
always be verified by counting minimal primes or maximal d-ideals.

Example 4.16. (An example of a 1-dimensional Bézout domain in which every nonzero proper prin-
cipal ideal has arbitrarily long d-comaximal factorizations into principal ideals. Hence no proper
principal ideal has a complete d-comaximal factorization.) Let K be an algebraically closed field, D be
the monoid domain K [x;Q+] = K [{xr | r ∈ Q+}], S be the set of nonzero monomials in D , and R = D S .
The proof of [18, Corollary 3.3] shows that R is our desired example. (If K has characteristic p � 0,
then we can replace Q+ with any p-pure submonoid, where a submonoid of Q+ is p-pure if it is
locally cyclic and has the property that for every t ∈ T there is a natural number n � 2 with t/n ∈ T
and n not a power of p.) Note that we localized to remove the d-pseudo-irreducible principal ide-
als in D , namely the ones generated by non-constant monomials. To see that these principal ideals
are d-pseudo-irreducible, it suffices by Corollary 4.14 and the fact that D is Bézout to show that
they have no nontrivial d-comaximal factorizations into principal ideals, which follows from the ob-
servations that the nonzero monomials are a saturated subset of D and that no two non-constant
monomials are relatively prime. Alternatively, we could simply note that each non-constant mono-
mial is contained in a unique maximal d-ideal, namely the one consisting of the elements with zero
constant term.

Example 4.17. Example 5.23 from the next section gives an example of a d-pseudo-irreducible d-ideal
with infinitely many minimal primes and which is contained in infinitely many maximal d-ideals.
More specifically, it gives a connected ring with infinitely many minimal primes and infinitely many
maximal d-ideals. The ring in the example has d-dimension 1, but one might ask if it is possible to
construct such a ring of d-dimension 0. In the next section we will use topological methods to show
that 1 is in fact the minimum d-dimension of such a ring.

In [19, Lemma 5.5] it is shown that if I and J are d-ideals of a ring R with I ⊆ J ⊆ rad(I),
then there is a bijection between the d-comaximal factorizations of I and those of J , mapping I =
(I1 · · · In)d to J = (( J + I1) · · · ( J + In))d . Unfortunately, the technique used to prove the above in [19]
does not seem to generalize to weak ideal systems. Assume r is finitary and let I, J ∈ Ir(H) be
such that I ⊆ J ⊆ rad(I). The corresponding version of the above map, taking I = (I1 · · · In)r to J =
(( J ∪ I1)r · · · ( J ∪ In)r)r still takes an r-comaximal factorization to an r-comaximal factorization by
Lemma 4.1 (and we can relax our condition on I and J to I ⊆ J ⊆ Jr(I) here), so it’s not hard to
apply Theorem 4.11 to obtain: If J has a complete r-comaximal factorization of length n, then I has
a complete r-comaximal factorization of length at most n. However, we wish to go a step further and
obtain that the above map is in fact a bijection, and for this we need considerably more work.
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Theorem 4.18. Let r be a finitary weak ideal system on a monoid H. Let I and J be proper r-ideals with
I ⊆ J ⊆ Jr(I).

(1) There is an injection φ from the r-comaximal factorizations of I into the r-comaximal factorizations of J ,
given by

I = (I1 · · · In)r → J = (
( J ∪ I1)r · · · ( J ∪ In)r

)
r .

(2) The map φ takes r-comaximal refinements to r-comaximal refinements.
(3) If J has a complete r-comaximal factorization, then I has one that is no longer.
(4) If I ⊆ J ⊆ rad(I), then φ is a bijection.

Proof. (1) If I = (I1 · · · In)r is an r-comaximal factorization, then so is J = (( J ∪ I1)r · · · ( J ∪ In)r)r by
Lemma 4.1 and the fact that each ( J ∪ Ii)r ⊆ Jr(Ii) � H . So φ does indeed take r-comaximal factoriza-
tions to r-comaximal factorizations. If I = (I1 · · · In)r = (I ′1 · · · I ′n)r are two r-comaximal factorizations
with each ( J ∪ Ii)r = ( J ∪ I ′i)r , then each Jr(Ii) = Jr(( J ∪ Ii)r) = Jr(( J ∪ I ′i)r) = Jr(I ′i), and hence each
Ii = I ′i by Theorem 4.5. This shows that φ is injective.

(2) This is a simple consequence of the definitions and Lemma 4.1.
(3) Assume J has a complete r-comaximal factorization, and consider the pre-image of a maxi-

mum length r-comaximal partition of that factorization that is in the image of φ. By part (2), such
a factorization must be the unique complete r-comaximal factorization of I .

(4) (For this part, we use some of the ideas seen in the proof of [7, Proposition 2.4].) Assume
I ⊆ J ⊆ rad(I). It only remains to show that our map is surjective, so let J = ( J1 · · · Jn)r be any
r-comaximal factorization of length n � 2. For each i = 1, . . . ,n we have ( J i ∪ ∏

j �=i J j)r = H , and by
the fact that r is finitary there is a finite Ei ⊆ ∏

j �=i J j such that ( J i ∪ Ei)r = H .

For i = 1, . . . ,n, let Li be the set of J ∈ Ir(H) with Ek
i ⊆ J for some k � 1. Each Li is finitary and

closed under r-products, and hence a finitary r-localizing system by [14, Proposition 4.2(2)]. For each
i = 1, . . . ,n let ρLi = ρLi ,H× and Ii = I Li ∈ IρLi

(H) ⊆ Ir(H). If I is in some Li , then there is a k � 1

with Ek
i ⊆ I ⊆ J ⊆ J i , contradicting the fact that J i and Ei are r-comaximal. Therefore for each i we

have I ⊆ Ii � H .
Take any i ∈ {1, . . . ,n} and let P be a minimal prime of Ii . Because ( J1 · · · Jn)r ⊆ rad(I) ⊆

rad(Ii) ⊆ P , we have some J j ⊆ P . If j �= i, then Ei ⊆ J j ⊆ P , so P ∈ Li and P = P Li = H , a con-
tradiction. Therefore J i is the unique J j contained in P . We’ve now shown that any minimal prime
of Ii contains J i , so Vr(Ii) ⊆ Vr( J i) and rad(Ii) ⊇ rad( J i).

We claim that I1 ∩ · · · ∩ In ⊆ j−1
M (IM) for any M ∈ Maxr(H). The only nontrivial case is I ⊆ M ∈

Maxr(H). In this case, M ⊇ rad(I) ⊇ ( J1 · · · Jn)r , so some J i ⊆ M . But (M ∪ Ei)r ⊇ ( J i ∪ Ei)r = H , so

there is a c ∈ Ei \ M . For any a ∈ Ii , there is a k � 1 with ack ∈ I , so a
1 = ack

ck ∈ IM , and thus a ∈ j−1
M (IM).

Therefore I1 ∩ · · · ∩ In ⊆ Ii ⊆ j−1
M (IM), as desired.

By the above, I ⊆ I1 ∩ · · · ∩ In ⊆ ⋂
M∈Maxr(H) j−1

M (IM) = I, where the last equality is [13, The-
orem 7.4]. For each i �= j we have (rad(Ii) ∪ rad(I j))r ⊇ (rad( J i) ∪ rad( J j))r = H , showing that
I = I1 ∩ · · · ∩ In = (I1 · · · In)r is an r-comaximal factorization. We have

n⊔
i=1

Vr( J i) = Vr( J ) = Vr(I) =
n⊔

i=1

Vr(Ii),

where the unions are disjoint by r-comaximality. Because each Vr(Ii) ⊆ Vr( J i), we are in fact led
to the conclusion that each Vr(Ii) = Vr( J i). We have (( J ∪ I1)r · · · ( J ∪ In)r)r = J = ( J1 · · · Jn)r and
each rad( J i) = rad(( J ∪ Ii)r), and Theorem 4.5 implies that each J i = ( J ∪ Ii)r , showing φ to be
surjective. �

We note that in the case J = rad(I), the bijection φ takes I = (I1 · · · In)r to rad(I) =
(rad(I1) · · · rad(In))r . To see this, we note that
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(
rad(I) ∪ I1

)
r ∩ · · · ∩ (

rad(I) ∪ In
)

r = rad(I) = rad
(
(I1 · · · In)r

) = rad(I1) ∩ · · · ∩ rad(In),

and that each rad(Ii) = (rad(I)∪ Ii)r by Theorem 4.5. In particular, every r-comaximal factor of a rad-
ical r-ideal is radical.

Example 4.19. The map φ need not be a bijection if we only assume I ⊆ J ⊆ Jr(I). Indeed, if R
is any connected ring with a finite number n of maximal d-ideals, then {0} is d-pseudo-irreducible
and Jd({0}) has a complete d-comaximal factorization of length n. We can construct such an R with
various nice properties. For example, choosing K to be a field containing at least n distinct elements
a1, . . . ,an , Mi = (x − ai)K [x] for i = 1, . . . ,n, S = K [x] \ (M1 ∪ · · · ∪ Mn), and R = K [x]S , we get such
an example where R is a PID.

Corollary 4.20. Assume r is finitary and I is a proper r-ideal. There is a bijection χ between the minimal
r-pseudo-irreducibles of I and those of rad(I), taking P to (rad(I) ∪ P )r .

Proof. First we show that χ does indeed take minimal r-pseudo-irreducibles of I to minimal
r-pseudo-irreducibles of rad(I). Let P be any minimal r-pseudo-irreducible of I . We have P ⊆
(rad(I) ∪ P )r ⊆ rad(P ), so (rad(I) ∪ P )r is r-pseudo-irreducible by Theorem 4.18. Now we show min-
imality over rad(I). If Q is any r-pseudo-irreducible with rad(I) ⊆ Q ⊆ (rad(I) ∪ P )r , then we can
shrink Q to a minimal r-pseudo-irreducible of I , which must be P by the fact that P and Q are not
r-comaximal, showing that Q = (rad(I) ∪ P )r .

If (rad(I) ∪ P )r = (rad(I) ∪ Q )r for minimal r-pseudo-irreducibles P and Q of I , then (P ∪ Q )r ⊆
(rad(I) ∪ P )r � H , so P = Q . Therefore χ is injective.

For surjectivity, let Q be any minimal r-pseudo-irreducible of rad(I), and shrink Q to a minimal
r-pseudo-irreducible P of I . Then rad(I) ⊆ (rad(I)∪ P )r ⊆ Q and (rad(I)∪ P )r is r-pseudo-irreducible,
so by minimality we have Q = (rad(I) ∪ P )r . �

Let r be a weak ideal system on a monoid H . We call H an r-unique representation monoid (r-URM)
if every r-finitely generated proper r-ideal has a unique r-comaximal factorization into r-ideals with
prime radical. (We note that [7] defines a �-unique representation domain (�-URD) in a somewhat dif-
ferent but equivalent way.) If r is finitary, then Theorem 4.15 shows that an r-ideal with prime radical
is r-pseudo-irreducible, so Theorem 4.11 tells us that r-comaximal factorizations into r-ideals with
prime radical are unique whenever they exist. (This gives an alternate proof of [7, Theorem 2.3].) The
paper [7] extensively studied these concepts in the context of star operations on integral domains.
As an application of Theorem 4.18, we give a different proof of a slightly generalized version of [7,
Proposition 2.4].

Corollary 4.21. Let r be a finitary weak ideal system on a monoid H. The following are equivalent for a proper
r-ideal I .

(1) I has only finitely many minimal primes, and these minimal primes are pairwise r-comaximal.
(2) I has a unique r-comaximal factorization into r-ideals with prime radical.
(3) I has a factorization into r-ideals with only finitely many minimal primes, and the minimal primes of I

are pairwise r-comaximal.

In this case, the following observations hold:

(a) The length of the factorization in (2) is the number n of minimal primes of I .
(b) Any factorization of I into r-pseudo-irreducibles has length at least n.
(c) Any length n factorization of I into r-pseudo-irreducibles is its unique r-comaximal factorization.

Proof. (1) ⇒ (2): Using Theorem 4.18, we can reduce the problem to showing that rad(I) has an
r-comaximal factorization into prime r-ideals, which is obvious. (2) ⇒ (1), (3): Clear. (3) ⇒ (2):
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Assume (3). We can partition the given factorization to obtain an r-comaximal factorization I =
(I1 · · · In)r with each Ii having only finitely many minimal primes. Each minimal prime of an Ii
is a minimal prime of I , so the minimal primes of any given Ii are pairwise r-comaximal. Using
“(1) ⇒ (2)”, we get the desired conclusion.

Observation (a) follows from the observation that the length of the factorization in (2) is the
length of the complete r-comaximal factorization of rad(I). Observations (b) and (c) follow from
Corollary 4.9. �

We can now formulate some characterizations of r-URM’s analogous to those found in [7] for
star operations on integral domains. We will only do the following one. The interested reader is
encouraged to read [7] for more information. One definition we will need for the following is that
Specr(H) is called treed if any two incomparable prime r-ideals are r-comaximal. If r is finitary, then
this is equivalent to saying that the prime r-ideals that are contained in a given maximal r-ideal are
linearly ordered.

Corollary 4.22. Let r be a finitary weak ideal system on a monoid H. The following are equivalent.

(1) H is an r-URM.
(2) Every (nonzero) 1-generated r-ideal has only finitely many minimal primes, and these minimal primes are

pairwise r-comaximal.
(3) Specr(H) is treed and every r-finitely generated r-ideal has only finitely many minimal primes.
(4) There is a collection C of r(r)-ideals such that (1) C is closed under finite intersections, (2) every r(r)-ideal

is r(r)-generated by a collection of elements of C , (3) every element of C has only finitely many minimal
primes, and (4) the minimal primes of an element of C are pairwise r-comaximal.

We have added characterization (4) to capture the essential property of the 1-generated r-ideals
that allows for the key implication (2) ⇒ (3). For the topological approach that we will take in the
next section, it will be useful to have such a characterization that does not refer to the number of
generators.

Proof of Corollary 4.22. (We note that this proof is essentially given in [7], but our generalized Corol-
lary 4.21 lets us get by without the cancellative assumption present in that paper.) (2) ⇒ (4): Take C
to be the collection of radicals of 1-generated r-ideals. (4) ⇒ (3): Assume (4). Now let P1, P2 ∈
Specr(H) be any incomparable prime r-ideals. We can observe that P1 and P2 are r(r)-generated by
the elements of C they contain, so there are J1, J2 ∈ C with J1 � P2, J2 � P1, and each J i ⊆ Pi .
Corollary 4.21 gives us J1 ∩ J2 = (I1 · · · In)r , where the Ii ’s are pairwise r-comaximal and have prime
radical. Then (I1 · · · In)r ⊆ P1 ∩ P2, so some Ii ⊆ P1 and I j ⊆ P2. If i = j, then J1 ∩ J2 is con-
tained in the prime r-ideal rad(Ii), so some Jk ⊆ rad(Ii) ⊆ P1 ∩ P2, a contradiction. Therefore i �= j,
so (P1 ∪ P2)r ⊇ (Ii ∪ I j)r = H , showing that Specr(H) is treed. The statement that every r-finitely
generated r-ideal has only finitely many minimal primes is equivalent to the statement that every
r(r)-finitely generated r(r)-ideal has only finitely many minimal primes. Any r-ideal I of the latter
type can be written in the form I = ( J1 ∪ · · · ∪ Jn)r(r) , where each J i ∈ C . To show that I has only
finitely many minimal primes, it will suffice to show that a minimal prime P of I is minimal over
some J i . For each i = 1, . . . ,n, shrink P to a minimal prime Pi of J i . Because Specr(H) is treed, we
can reorder so that P1 ⊆ · · · ⊆ Pn ⊆ P . So Pn contains every J i , and by the minimality of P we get
P = Pn . (3) ⇒ (1) ⇒ (2): Corollary 4.21. �
5. Topological methods

Throughout this section, we will use r for a finitary weak ideal system on a monoid H unless
noted otherwise.

The subsets of Specr(H) of the form Vr(I) for I ∈ Ir(H) form the closed sets of a topology on
Specr(H), called the Zariski topology. (This follows from observing that Vr(H) = ∅, Vr({0}r) = Specr(H),
Vr(I) ∪ Vr( J ) = Vr(I ∩ J ) = Vr((I J )r) for I, J ∈ Ir(H), and that

⋂
λ∈Λ Vr(Iλ) = Vr((

⋃
λ∈Λ Iλ)r) for any
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family {Iλ}λ∈Λ of r-ideals.) The map Vr is a bijection between the radical r-ideals and the closed
subsets of Specr(H), so we could equivalently restrict our attention to the radical r-ideals when defin-
ing the Zariski topology. Whenever we talk about a subset of Specr(H), we are always giving it the
subspace topology. Perhaps the most fundamental special case are the subspaces of the form Vr(I),
whose closed subsets are simply those of the form Vr( J ) for some r-ideal J ⊇ I . The Zariski topol-
ogy is of considerable interest to algebraic geometers, so in this section we will translate some of
our results into topological terms, as well as exploring how topological methods can help us better
understand the r-comaximal factorizations we have been exploring throughout this paper, in addition
to a multitude of other topics about rings and monoids. We will just touch the surface of the many
possibilities.

First we review some standard topological terminology and results. If X is a topological space, we
will say that a separation of X of length n < ∞ is an expression of X as a disjoint union of n nonempty
disjoint open (equivalently, closed) subsets. Calling a separation of length 1 trivial, a topological space
is connected if has no nontrivial separations, or, equivalently, if it has no nonempty proper subsets that
are both open and closed. A topological space is called irreducible if it cannot be written as the union
of two proper closed subsets. Any irreducible topological space is connected. A subspace Y of a topo-
logical space X is irreducible if and only if whenever Y ⊆ Z1 ∪ · · · ∪ Zn and each Zi is a closed subset
of X , then some Zi ⊇ Y . A subspace Y of a topological space X is connected if and only if whenever
Y ⊆ Z1 � · · · � Zn and the Zi ’s are pairwise disjoint open (equivalently, closed) subsets of X , we have
some Zi ⊇ Y . The irreducible (resp., connected) components of a topological space are those subspaces
that are maximal with respect to being irreducible (resp., connected). The union of any chain of
irreducible (resp., connected) subspaces is irreducible (resp., connected), so by Zorn’s Lemma any ir-
reducible (resp., connected) subspace can be enlarged to an irreducible (resp., connected) component.
Clearly, subspaces containing exactly one element are irreducible, so each element of a topological
space is contained in an irreducible (resp., connected) component, and the irreducible (resp., con-
nected) components are nonempty except in the trivial case where the space is empty. Because the
closure of an irreducible (resp., connected) subspace is irreducible (resp., connected), the irreducible
(resp., connected) components of a topological space are closed subsets. Because the union of two
non-disjoint connected subspaces is connected, the distinct connected components are disjoint. Thus
the connected components are simultaneously open and closed if there are only finitely many of
them. A topological space is disconnected if it is not connected, and totally disconnected if its con-
nected components are of size at most 1. (The way that we have stated the definitions, the empty
space is both connected and totally disconnected, but there is no general consensus on this. For our
purposes, it will not make a difference.) We will shortly see that for a proper r-ideal I we have Vr(I)
irreducible (resp., connected) if and only if I has prime radical (resp., is r-pseudo-irreducible).

A topological space is called Kolmogorov or T0 if for each pair of distinct points there is an open
(equivalently, a closed) subset that contains exactly one of the points, accessible or T1 if every point is
closed, Hausdorff or T2 if any two distinct points have disjoint open neighborhoods, and quasicompact
if each of its open coverings has a finite subcovering. A subset of a topological space is called locally
closed if it is the intersection of a closed and an open subset, a subset of a topological space is dense
(resp., strongly dense) if it intersects every nonempty open (resp., locally closed) subset, and a topo-
logical space is called T D if every point is locally closed. Another characterization of strongly dense
subsets is given by the G-topology, which was defined by Picavet [22] on the d-spectrum and later
generalized to an arbitrary topological space in [9]. By [9, Proposition 4.1], if X is a topological space,
then the operation A → AG = {x ∈ X | x = A ∩ x} on the subsets of X yields a new topology called the
G-topology, where the G-closed subsets are those fixed by this operation. Then by [9, Corollary 4.3] the
notions of strongly dense and G-dense are equivalent. An element of a topological space is called a
generic point if its closure is the whole space, and a topological space is called sober if every nonempty
irreducible closed subspace has a unique generic point. Equivalently, a sober topological space is a T0
space in which every nonempty irreducible closed subspace has a generic point. As we will soon
see, the r-spectrum is a sober space, with a nonempty closed subset Vr(I) irreducible if and only
if rad(I) is prime, in which case rad(I) is the unique generic point of Vr(I). Of course, the only T1
space with a generic point is the space with one element, so one would expect the r-spectrum to
typically be somewhat strange from the point of one who is accustomed to Hausdorff spaces. Indeed,
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since the closed points of the r-spectrum correspond to maximal r-ideals, the r-spectrum is T1 if
and only if dimr(H) = 0. (We will later see that Vr is an inclusion-reversing bijection between the
prime r-ideals and the nonempty irreducible closed subspaces of Specr(H), so dimr(H) is equiva-
lent to the combinatorial dimension of Specr(H), where the (combinatorial) dimension of a topological
space is the supremum of the lengths of properly descending chains X0 � X1 � · · · � Xn of nonempty
irreducible closed subspaces.) It is easy to see that two prime r-ideals are incomparable if and only
if they have disjoint open neighborhoods, so in fact Specr(H) being T1 is equivalent to it being a
Boolean space (also called a Stone space), i.e., quasicompact, Hausdorff, and totally disconnected. To see
that it is totally disconnected, we note that we will later see that Specr(H) always has a basis of open
quasicompact subspaces, and it is well known that a quasicompact subspace of a Hausdorff space is
closed, and any T0 space with a basis of open subsets that are also closed is totally disconnected. To
summarize, we have T2 ⇒ T1 ⇒ T D ⇒ T0 ⇐ sober, and no other implications exist.

Several distinguished subspaces of the d-spectrum of a ring have been studied, and we have al-
ready defined the natural weak ideal system generalizations of two of the most important ones in the
previous section: the r-Jacobson subspace Jacr(H) and the maximal r-ideal space Maxr(H). Recall that
the r-Jacobson subspace consists of the r-Jacobson r-ideals (r- J -ideals), which are the prime r-ideals that
are intersections of maximal r-ideals. Another very important subspace whose d-operation counter-
part has been studied intensively is the r-goldspectrum Goldr(H) whose elements are the r-Goldman
r-ideals (r-G-ideals), which are the prime r-ideals that are not equal to the intersection of the prime
r-ideals properly containing them. We could go about generalizing several different results about the
d-Jacobson subspace and the d-goldspectrum to the r-Jacobson subspace and the r-goldspectrum,
but we will instead do all of this at once by proving that the r-spectrum is always homeomorphic
to the d-spectrum of some reduced ring, which means that any sort of topological property that the
d-spectrum possesses is automatically inherited by the r-spectrum. As it turns out, the r-goldspectrum
and the r-Jacobson subspace can be recovered from the r-spectrum in the exact same purely topolog-
ical way that their counterparts can from the d-spectrum, so these subspaces will also automatically
inherit all the topological properties that their d-operation counterparts possess.

Following [9], we define the Goldman subspace of a topological space X to be the set Gold(X)

of locally closed points. This definition was motivated by a result of Picavet [22] that showed that
Gold(Specd(R)) = Goldd(R) for a ring R . We generalize this to the r-spectrum.

Theorem 5.1. Gold(Specr(H)) = Goldr(H).

Proof. First assume P ∈ Specr(H) is a locally closed point. Then {P } is the intersection of a closed
and an open subset of Specr(H). The former we can take to be Vr(P ), and the latter we can take to
have its complement properly contained in Vr(P ), so {P } = Vr(P ) \ Vr(I) for some r-ideal I properly
containing P . Thus the intersection of the prime r-ideals properly containing P contains I and hence
is not equal to P .

Conversely, for any P ∈ Goldr(H) we have {P } = Vr(P ) \ Vr(
⋂

P�Q ∈Specr(H) Q ). �
Echi [10] defined the Jacobson subspace of a topological space X to be Jac(X) = C(X)G , where

C(X) denotes the closed points of X . A topological space is called a Jacobson space if its set of closed
points is a strongly dense subset, or, equivalently, if Jac(X) = X . As expected, the Jacobson subspace
of a topological space is always a Jacobson space since Jac(Jac(X)) = Jac(X). Picavet [22] proved that
Jac(Specd(R)) = Jacd(R) for a ring R . Again this generalizes to the r-spectrum.

Theorem 5.2. Jac(Specr(H)) = Jacr(H).

Proof. Straight from the definitions we compute

Jac
(
Specr(H)

) = C
(
Specr(H)

)G

= Maxr(H)G
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= {
P ∈ Specr(H)

∣∣ P = Maxr(H) ∩ P
}

=
{

P ∈ Specr(H)
∣∣ Vr(P ) =

⋂{
Vr(I)

∣∣ I ∈ Ir(H), Vr(I) ⊇ Wr(P )
}}

=
{

P ∈ Specr(H)
∣∣ Vr(P ) =

⋂{
Vr(I)

∣∣ I ∈ Ir(H), Jr(I) ⊆ Jr(P )
}}

= {
P ∈ Specr(H)

∣∣ Vr(P ) = Vr
(

Jr(P )
)}

= {
P ∈ Specr(H)

∣∣ P = Jr(P )
}

= Jacr(P ). �
A topological space is called spectral if it is homeomorphic to the d-spectrum of some (reduced)

ring, or, equivalently [17, Proposition 4], is a nonempty quasicompact sober space with a basis of open
quasicompact subspaces that is closed under finite intersections, or, equivalently [17, Proposition 10],
is an inverse limit of finite T0 spaces. If R is a ring and I ∈ Id(R), then Vd(I) is homeomorphic to
Specd(R/I). In particular, any closed subspace of a spectral space is spectral. As we will soon see, the
space Specr(H) is spectral, and hence homeomorphic to the d-spectrum of some reduced ring. This
fact lets us sometimes prove results about weak ideal systems using classical ring theory. Roughly
speaking, we call a statement about monoids and weak ideal systems topologizable if it is equiva-
lent to some purely topological statement about the corresponding Zariski topology. For example, the
statement “dimr(H) = 0” is topologizable because it is equivalent to the purely topological statement
“Specr(H) is T1”. Sometimes we are not concerned about whether a certain statement is topologiz-
able for all monoids and weak ideal systems, but only whether it is topologizable on some proper
subclass. For example, the statement “H has no zero divisors” is not topologizable in general (or even
on the subclass consisting of d-operations on rings) because a ring with a unique prime d-ideal need
not be a field. However, on the proper subclass consisting of pairs (H, r) with {0} ∈ Ir(r)(H) (in par-
ticular, this class includes pairs (R,d) for R a reduced ring), this statement is equivalent to “H has
a unique minimal prime”, which can be topologized as “Specr(H) is irreducible”. Using the previously-
mentioned homeomorphism, we see that to prove any topologizable statement about monoids and
weak ideal systems, it is sufficient to prove it for reduced rings and the d-operation. As it will turn
out, many properties dealing with prime r-ideals, r-pseudo-irreducibles, r-comaximal factorization,
etc. are topologizable, so there are many different situation where this technique will apply. We will
make our comments on this technique somewhat more precise later and give a few examples.

The fact that Specr(H) is spectral is perhaps in the folklore, and in any case is certainly not sur-
prising, but in the interests of completeness and keeping this paper somewhat self-contained, we will
include proofs of this and a few other basic facts. We start by proving some theorems telling us how
we can topologize some ideal-theoretic concepts.

Theorem 5.3.

(1) The closed points of Specr(H) are the maximal r-ideals.
(2) A nonempty closed subspace of Specr(H) is irreducible ⇔ it is of the form Vr(I) for some I ∈ Ir(H) with

prime radical ⇔ it is of the form Vr(P ) for some P ∈ Specr(H).
(3) For I ∈ Ir(H), the map Vr is an inclusion-reversing bijection between the prime r-ideals containing I and

the nonempty closed irreducible subspaces of Vr(I); it takes minimal primes to irreducible components.
(4) Two closed subspaces of Specr(H) are disjoint if and only if they are of the form Vr(I) and Vr( J ) for

I, J ∈ Ir(H) with (I ∪ J )r = H.

Proof. (1) This has already been noted.
(2) Let P ∈ Ir(H) be radical. From the equivalences P ⊇ (I J )r ⇔ P ⊇ rad((I J )r) ⇔ Vr(P ) ⊆

Vr((I J )r) = Vr(I) ∪ Vr( J ) and P ⊇ I ⇔ P ⊇ rad(I) ⇔ Vr(P ) ⊆ Vr(I), we easily see that Vr(P ) is
irreducible if and only if P is prime.

(3) Follows from (2).
(4) This follows from the equivalence (I ∪ J )r = H ⇔ Vr(I)∩ Vr( J ) = Vr((I ∪ J )r) = Vr(H) = ∅. �
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Our chief tool for translating results about r-comaximal factorizations into topological terms will
be the following theorem.

Theorem 5.4. Let I be a proper r-ideal. There is a bijection ψ from the r-comaximal factorizations of I onto
the separations of Vr(I), taking I = (I1 · · · In)r to Vr(I) = Vr(I1) � · · · � Vr(In). If I is radical, then ψ−1 takes
Vr(I) = Vr(I1) � · · · � Vr(In) to I = (rad(I1) · · · rad(In))r .

Proof. We have already noted that if I = (I1 · · · In)r is a comaximal factorization, then Vr(I) = Vr(I1)�
· · · � Vr(In), and each of these sets are nonempty by the fact that r is finitary and each Ii is proper.
Therefore the map is well defined, and Theorem 4.5 part (4) gives us injectivity.

For surjectivity, let Vr(I) = Vr( J1) � · · · � Vr( Jn) be any separation of Vr(I), where each J i is an
r-ideal containing I . Then the J i ’s are pairwise r-comaximal, and I ⊆ J1 ∩ · · · ∩ Jn = ( J1 · · · Jn)r ⊆
rad(( J1 · · · Jn)r) = rad(I), so by Theorem 4.18 there is an r-comaximal factorization I = (I1 · · · In)r

with each J i = (I ∪ Ii)r , hence each Vr( J i) = Vr((I ∪ Ii)r) = Vr(Ii).
Finally, assume I is radical and Vr(I) = Vr(I1) � · · · � Vr(In) is a separation of Vr(I). Then each

Vr(Ii) = Vr(rad(Ii)) and Vr(I) = Vr(rad(I1)) � · · · � Vr(rad(In)) = Vr(rad(I1) ∩ · · · ∩ rad(In)). Because
Vr is one-to-one on radical r-ideals we obtain I = rad(I1)∩ · · · ∩ rad(In) = (rad(I1) · · · rad(In))r , and of
course this is the inverse image of the original separation. �
Corollary 5.5. Let I be a proper r-ideal.

(1) In the following statements we have (a) ⇔ (b) ⇐ (c).
(a) I is r-pseudo-irreducible.
(b) Vr(I) is connected.
(c) Wr(I) is connected.

(2) Vr(I) has at most |Wr(I)| connected components.
(3) Vr is an inclusion-reversing bijection between the radical r-pseudo-irreducibles containing I and the

nonempty connected closed subspaces of Vr(I); it takes the (radicals of ) minimal r-pseudo-irreducibles
to connected components.

Proof. (1) (a) ⇔ (b): Theorem 5.4. (c) ⇒ (b): Because Wr(I) intersects every closed subset of Vr(I),
a nontrivial separation of Vr(I) gives rise to a nontrivial separation of Wr(I).

(2) Each connected component of Vr(I) intersects Wr(I), and the connected components are dis-
joint.

(3) Follows from (1) and the fact that a proper r-ideal is r-pseudo-irreducible if and only if its
radical is. �
Example 5.6. Given n � 1, Example 4.19 constructs a ring R with Vd({0}) connected and Wd({0})
having n connected components.

Corollary 5.7. The following are equivalent for a proper r-ideal I .

(1) I has a complete r-comaximal factorization.
(2) Vr(I) has a separation into connected spaces.
(3) Vr(I) has only finitely many connected components.

In this case, the separation of Vr(I) into connected spaces is the disjoint union of its connected components.

Proof. We have (1) ⇔ (2) by Theorem 5.4. Elementary point-set topology shows that (2) ⇔ (3) is
true with any topological space in place of Vr(I), and the same goes for the last statement. �

Using Corollary 5.5 to translate, it is obvious that there is a strong analogy between Theorem 4.15
and Corollary 5.7, and to some extent one can prove one from the other.
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Theorem 5.8. The following are equivalent for I ∈ Ir(H).

(1) rad(I) ∈ Ir(r), f (H).
(2) Every collection of closed subsets of Specr(H) with intersection contained in Vr(I) has a finite subcollec-

tion whose intersection is contained in Vr(I).
(3) Every collection of closed subsets of Specr(H) whose intersection equals Vr(I) has a finite subcollection

whose intersection equals I .
(4) Specr(H) \ Vr(I) is quasicompact.

Proof. It is simple to see that (2) ⇔ (3) ⇔ (4) holds with any topological space in place of Specr(H)

and any closed subset in place of Vr(I). (1) ⇒ (2): Assume rad(I) ∈ Ir(r), f (H) and let {Iλ}λ∈Λ be
any collection of r-ideals with Vr(I) ⊇ ⋂

λ∈Λ Vr(Iλ) = Vr((
⋃

λ∈Λ Iλ)r). Then rad(I) ⊆ (
⋃

λ∈Λ Iλ)r(r), so
by the fact that rad(I) is r(r)-finitely generated and r(r) is finitary, there is some finite subcollec-
tion Λ0 ⊆ Λ with rad(I) ⊆ (

⋃
λ∈Λ0

Iλ)r(r) . Thus Vr(I) ⊇ Vr((
⋃

λ∈Λ0
Iλ)r) = ⋂

λ∈Λ0
Vr(Iλ), as desired.

(3) ⇒ (1): We have
⋂

a∈I Vr({a}r) = Vr(
⋃

a∈I {a}r) = Vr(I), so if (3) holds then there are a1, . . . ,am ∈ I
with Vr(I) = ⋂m

i=1 Vr({ai}r) = Vr({a1, . . . ,am}r) and hence rad(I) = {a1, . . . ,am}r(r) . �
Theorem 5.9. The r-spectrum is a spectral topological space, hence homeomorphic to the d-spectrum of some
reduced ring.

Proof. Recall that we need to prove that Specr(H) is T0 and quasicompact, each of its nonempty
irreducible subspaces contains a generic point, and the collection of its open quasicompact subspaces
is closed under finite intersections and forms a basis of open subsets.

T0: Let P , Q ∈ Specr(H) be distinct, say Q � P . Then Vr(Q ) is a closed subset containing Q but
not P .

Quasicompact: [13, Exercise 6.7].
Generic points: For P ∈ Specr(H), every closed subset containing P contains Vr(P ), and hence P

is a generic point of Vr(P ).
Open quasicompact subspaces: By Theorem 5.8, the open quasicompact subspaces of Specr(H) are

the complements of the closed subsets of the form Vr(I) with rad(I) ∈ Ir(r), f (H). Therefore it will
suffice to show that the collection of closed subsets of this form is closed under finite unions and
forms a basis of closed subsets. The closure under finite unions follows from the equality Vr(I) ∪
Vr( J ) = Vr((I J )r(r)). To show that this collection forms a basis of closed subsets of Specr(H), we
need to show that for each I ∈ Ir(H) and P /∈ Vr(I), there is a J ∈ Ir(r), f (H) with P /∈ Vr( J ) ⊇ Vr(I).
In this setup, there is some a ∈ I \ P , so P /∈ Vr({a}r(r)) ⊇ Vr(I), as desired. �
Theorem 5.10. Let C be a class of pairs (H, r) such that H is a monoid and r is a finitary weak ideal system
on H. Assume that (R,d) ∈ C for each reduced ring R. Let S : C → {true, false} be some statement about pairs
in C , and assume that it is topologizable. More precisely, assume that there is some property T of topological
spaces such that for each (H, r) ∈ C we have S(H, r) if and only if Specr(H) has property T . Then S(H, r) is
true for all (H, r) ∈ C if and only if S(R,d) is true for all reduced rings R.

Proof. Each Specr(H) is spectral and thus homeomorphic to the d-spectrum of some reduced ring.
Thus S(H, r) holds for each (H, r) ∈ C ⇔ T holds for Specr(H) for each (H, r) ∈ C ⇔ T holds for the
d-spectrum of every reduced ring ⇔ S(R,d) holds for all reduced rings R . �

In [8] it is noted that the Zariski topology can be given to the strongly d-irreducible spectrum
of a ring. This remark can be extended to the strongly r-irreducible spectrum. More specifically, for
X ⊆ H we define SVr(X) = {P ∈ SSpecr(H) | P ⊇ X}, and the Zariski topology on SSpecr(H) is ob-
tained by declaring the subsets of the form SVr(I) for I ∈ Ir(H) to be closed. (As was the case
for the r-spectrum, the observation that these subsets do in fact form the closed sets of a topol-
ogy follows from observing that SVr(H) = ∅, SVr({0}r) = SSpecr(H), SVr(I) ∪ SVr( J ) = SVr(I ∩ J )
for I, J ∈ Ir(H), and that

⋂
λ∈Λ SVr(Iλ) = SVr((

⋃
λ∈Λ Iλ)r) for any family {Iλ}λ∈Λ of r-ideals.) The
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topology that Specr(H) inherits as a subspace of SSpecr(H) is its usual Zariski topology. For I ∈ Ir(H),
we define the weak r-radical of I to be wradr(I) = ⋂

I⊆P∈SSpecr(H) P ∈ Ir(H), and we say I is weakly
r-radical if I = wradr(I). In the following theorem we give some elementary properties of strongly
r-irreducible r-ideals and weak r-radicals. This theorem extends and generalizes some work previ-
ously done for the d-operation in [6, Theorems 2.1, 4.1, and 4.2].

Theorem 5.11. Let r be a (not necessarily finitary) weak ideal system on a monoid H, and let I, J ∈ Ir(H).

(1) I ⊆ wradr(I) = wradr(wradr(I)) ⊆ radr(I).
(2) wradr(I ∩ J ) = wradr(I) ∩ wradr( J ).
(3) wradr(I) ⊆ wradr( J ) ⇔ SVr( J ) ⊆ SVr(I).
(4) If I �= H, then the following are equivalent.

(a) wradr(I) is r-irreducible.
(b) wradr(I) is strongly r-irreducible.
(c) SVr(I) is irreducible.
In particular, the notions of r-irreducible and strongly r-irreducible are equivalent for weakly r-radical
proper r-ideals.

(5) If I �= H, then the following are equivalent.
(a) radr(I) is prime.
(b) radr(I) is r-irreducible.
(c) radr(I) is strongly r-irreducible.
(d) Vr(I) is irreducible.
In particular, the notions of prime and (strongly) r-irreducible are equivalent for r-radical r-ideals.

(6) Every strongly r-irreducible r-ideal containing an r-ideal I can be shrunk to a minimal such strongly
r-irreducible r-ideal, called a minimal strong r-irreducible of I .

(7) The map Q → SVr(Q ) is a one-to-one correspondence between the minimal strong r-irreducibles of I
and the irreducible components of SVr(I).

(8) Assume r is finitary and I �= H. Then there is a bijection θ from the r-comaximal factorizations of I onto the
separations of SVr(I), taking I = (I1 · · · In)r to SVr(I) = SVr(I1)� · · · � SVr(In). Therefore the separations
of SVr(I) and Vr(I) are in one-to-one correspondence. If I is weakly r-radical, then θ−1 takes SVr(I) =
SVr(I1) � · · · � SVr(In) to I = (wradr(I1) · · ·wradr(In))r .

(9) If r is finitary and I �= H, then the following are equivalent.
(a) I is r-pseudo-irreducible.
(b) SVr(I) is connected.
(c) Vr(I) is connected.

Proof. (1)–(3) Simple consequences of the definitions.
(4) Assume I �= H . (b) ⇒ (a): Clear. (a) ⇒ (c): Assume wradr(I) is r-irreducible and SVr(I) =

SVr(I1) ∪ SVr(I2) = SVr(I1 ∩ I2) for some I1, I2 ∈ Ir(H). We have wradr(I) = wradr(I1 ∩ I2) =
wradr(I1) ∩ wradr(I2), so some wradr(Ii) = wradr(I) and hence SVr(Ii) = SVr(I). Therefore SVr(I) is
irreducible. (c) ⇒ (b): Assume SVr(I) is irreducible and wradr(I) ⊇ J1 ∩ J2 for some J1, J2 ∈ Ir(H).
Then wradr(I) ⊇ wradr( J1 ∩ J2), so SVr(I) ⊆ SVr( J1 ∩ J2) = SVr( J1) ∪ SVr( J2). By the irreducibility of
SVr(I), some SVr( J i) ⊇ SVr(I), and hence wradr(I) ⊇ wradr( J i) ⊇ J i , showing that wradr(I) is strongly
r-irreducible.

(5) Assume I �= H . We have (a) ⇔ (d) by Theorem 5.3 part (2) (the proof does not involve the
finitary property), the implication (b) ⇔ (c) follows from part (4), and (a) ⇒ (c) is clear, so all that
remains is (c) ⇒ (a). Assume radr(I) is strongly r-irreducible and radr(I) ⊇ (I1 I2)r . Then radr(I) ⊇
radr((I1 I2)r) = radr(I1) ∩ radr(I2), so some Ii ⊆ radr(Ii) ⊆ radr(I) by strong r-irreducibility, showing
that radr(I) is prime.

(6) It is clear from the definitions that any intersection of a chain of strongly r-irreducible r-ideals
is strongly r-irreducible, so the statement follows by Zorn’s Lemma.

(7) Follows from parts (4) and (6).
(8) Similar to the proof of Theorem 5.4.
(9) Follows from part (8). �
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The inclusions in part (1) can be proper. For example, any d-irreducible d-ideal that is not strongly
d-irreducible is not weakly d-radical by part (4), and any strongly d-irreducible d-ideal that is not
prime is weakly d-radical but not radical by part (5).

Theorem 5.12. The space SSpecr(H) is a spectral topological space, hence homeomorphic to the d-spectrum
of some reduced ring.

Proof. Similar to the proof of Theorem 5.9. �
The above theorem gives rise to the following variant of Theorem 5.10.

Theorem 5.13. Let C be a class of pairs (H, r) such that H is a monoid and r is a finitary weak ideal system
on H, let R be the class of pairs (R,d) with R a reduced ring, and assume R ⊆ C . Let S : C → {true, false}
be some statement about pairs in C , and assume that there is some property T of topological spaces such
that for each (H, r) ∈ C we have S(H, r) if and only if SSpecr(H) has property T . Let S ′ : R → {true, false}
be a statement about pairs in R such that for reduced rings R we have S ′(R,d) if and only if Specd(R) has
property T . Then S(H, r) is true for all (H, r) ∈ C if and only if S ′(R,d) is true for all reduced rings R.

Proof. Similar to the proof of Theorem 5.10. �
In the remainder of the section we will give a (far from exhaustive) collection of several exam-

ples of applications of the topological approach to finitary weak ideal systems. Sometimes translating
a statement into a topological form allows one to instantly prove it by reducing to the d-operation
case as in Theorem 5.10, sometimes this translation suggests a topological generalization, and some-
times this translation allows one to apply topological techniques to more easily construct rings with
a desired property.

Example 5.14. Consider Corollary 4.7: “Any two r-comaximal factorizations of the same proper r-ideal
have a common refinement (up to order)”. By Theorem 5.4, this statement is topologizable as “Any
two separations of a nonempty closed subspace of Specr(H) have a common refinement (up to
order)”. Hence we can obtain an alternate proof by reducing to the d-operation case, which is
covered by the proof of [19, Theorem 5.1]. Alternatively, it is very easy to prove the topological
statement directly. Indeed, if X1 � · · · � Xm = Y1 � · · · � Yn are separations of a topological space,
then so is (X1 ∩ Y1) � · · · � (Xm ∩ Yn) (ignoring any empty sets in this disjoint union), and each
Xi = (Xi ∩ Y1) � · · · � (Xi ∩ Yn) and each Y j = (X1 ∩ Y j) � · · · � (Xm ∩ Y j).

Example 5.15. Consider the statement “Complete r-comaximal factorizations are unique (up to order)
whenever they exist”. (See Theorem 4.11.) By Theorem 5.4, it is topologizable as “Separations of closed
subspaces of Specr(H) into connected subspaces are unique whenever they exist”. Thus an alternate
proof can be obtained by reducing to the d-operation case, which is covered in [19, Theorem 5.1].
Of course, a different more direct topological proof is available by noting that it is standard that
separations of topological spaces into connected subspaces are unique whenever they exist. (For those
who are keeping track, we have now seen four completely different proofs of this uniqueness fact. The
first used Theorems 2.1 and 4.4, the second used Corollary 4.7, and the last two were given in this
example.)

Example 5.16. We give some alternate topological proofs of some consequences of Theorem 4.13. It
is an elementary topological fact that every connected component of a topological space contains an
irreducible component, so this provides an alternate topological proof of the fact that every mini-
mal r-pseudo-irreducible of a proper r-ideal is contained in a minimal prime. Taking this further, the
number of connected components of a topological space is at most its number of irreducible compo-
nents, so the number of minimal r-pseudo-irreducibles of an r-ideal is at most its number of minimal
primes. Corollary 5.5 part (2) shows that the number of minimal r-pseudo-irreducibles of an r-ideal
is at most the number of maximal r-ideals containing it.
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Example 5.17. Let I be a proper r-ideal. Passing to rad(I) and translating into Zariski topology ter-
minology, we see that I has an r-comaximal factorization into r-ideals with prime radical ⇔ rad(I)
has an r-comaximal factorization into prime r-ideals ⇔ Vr(I) = Vr(rad(I)) has a separation into irre-
ducible subspaces. Using topology, it is easy to see that this last statement is equivalent to saying that
(1) Vr(I) has only finitely many irreducible components, and (2) the irreducible components of Vr(I)
are disjoint. Translating this back into ideal-theoretic terms, we get that I has an r-comaximal fac-
torization into r-ideals with prime radical if and only if (1) it has only finitely many minimal primes,
and (2) its minimal primes are pairwise r-comaximal, recovering Corollary 4.21.

Example 5.18. On a similar note to the previous example, the characterization of r-URM’s in Corol-
lary 4.22 is topologizable. Consider the following statements. (We know these are equivalent by
Corollary 4.22.)

(1) H is an r-URM.
(2) Specr(H) is treed and every r-finitely generated r-ideal has only finitely many minimal primes.
(3) There is a collection C of r(r)-ideals such that (1) C is closed under finite intersections, (2) ev-

ery r(r)-ideal is r(r)-generated by a collection of elements of C , (3) every element of C has
only finitely many minimal primes, and (4) the minimal primes of an element of C are pairwise
r-comaximal.

These are respectively topologizable as follows. (We have omitted the equivalent condition about
1-generated r-ideals because it does not translate into topological terms and is obviously equivalent
to (2) and (3) if those two statements are equivalent.)

(T1) Every closed subspace of Specr(H) whose complement is quasicompact has a (unique) separation
into irreducible subspaces.

(T2) Any two incomparable irreducible closed subspaces of Specr(H) are disjoint, and every closed
subspace of Specr(H) whose complement is quasicompact has only finitely many irreducible
components.

(T3) The topological space Specr(H) has a basis C of closed subsets such that (1) C is closed under
finite unions, (2) every element of C has only finitely many irreducible components, and (3) the
irreducible components of an element of C are disjoint.

Hence we may reduce proving Corollary 4.22 to the d-operation case. Alternatively, it is possible to
directly prove the following generalization of the topological version of the theorem.

Theorem 5.19. Let X be a topological space whose collection of quasicompact open subspaces forms a basis
and is closed under finite intersections. The following are equivalent.

(1) Every closed subspace of X whose complement is quasicompact has a (unique) separation into irreducible
subspaces.

(2) Any two incomparable irreducible closed subspaces of X are disjoint, and every closed subspace of X whose
complement is quasicompact has only finitely many irreducible components.

(3) The topological space X has a basis C of closed subsets such that (1) C is closed under finite unions,
(2) every element of C has only finitely many irreducible components, and (3) the irreducible components
of an element of C are disjoint.

Proof. First we observe that a nonempty topological space has a (unique) separation into irreducible
subspaces if and only if it has only finitely many irreducible components and its irreducible com-
ponents are disjoint. From this observation we obtain (2) ⇒ (1), and we also note that we can
get (1) ⇒ (3) by taking C to be the collection of nonempty closed subspaces of X with quasi-
compact complement. (3) ⇒ (2): Assume (3). Now let Y1 and Y2 be any incomparable irreducible
closed subspaces of X . We can observe that Y1 and Y2 are the intersections of the elements of C
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that contain them, so there are Z1, Z2 ∈ C with Z1 � Y2, Z2 � Y1, and each Zi ⊇ Yi . The subspace
Z1 ∪ Z2 ∈ C has a unique separation into irreducible closed subspaces, say Z1 ∪ Z2 = W1 � · · · � Wn .
Then Y1 ∪ Y2 ⊆ Z1 ∪ Z2 = W1 � · · · � Wn , so some W i ⊇ Y1 and W j ⊇ Y2. If i = j, then Z1 ∪ Z2 ⊇ W i ,
so some Zk ⊇ W i ⊇ Y1 ∪ Y2, a contradiction. Therefore i �= j, so Y1 ∩ Y2 ⊆ W i ∩ W j = ∅. Now that we
have shown that any two incomparable irreducible closed subspaces of X are disjoint, we show that
every nonempty closed subspace of X whose complement is quasicompact has only finitely many ir-
reducible components. Any subspace Y of the latter type can be written in the form Y = Z1 ∩· · ·∩ Zn ,
where each Zi ∈ C . To show that Y has only finitely many irreducible components, it will suffice
to show that an irreducible component W of Y is an irreducible component of some Zi . For each
i = 1, . . . ,n, enlarge W to an irreducible component W i of Zi . Because any two incomparable ir-
reducible closed subspaces of X are disjoint, we may reorder so that W1 ⊇ · · · ⊇ Wn ⊇ W . Thus
W ⊆ Wn ⊆ Y , and by the maximality of W we get W = Wn . �
Example 5.20. A particularly interesting example of the topological approach concerns the relationship
between the ascending chain condition on radical r-ideals and each r-ideal having only finitely many
minimal primes. In [13, Lemma 7.8.1] it is shown that H is r(r)-Noetherian if and only if (1) it satisfies
the ascending chain condition on prime r-ideals, and (2) every r-ideal has only finitely many minimal
primes.

Using the idea of Noetherian topological spaces, this theorem is topologizable. Recall that a Noethe-
rian topological space is defined by one of the following equivalent statements: (1) the open subsets
satisfy the ascending chain condition, (2) the closed subsets satisfy the descending chain condition,
(3) every nonempty collection of open subsets has a maximal element, (4) every nonempty collection
of closed subsets has a minimal element, or (5) every subspace is quasicompact. By (5) we see that
every subspace of a Noetherian topological space is Noetherian. Using equivalent condition (2), we
see that Specr(H) is Noetherian if and only if H is r(r)-Noetherian.

Thus the above theorem is topologizable as “Specr(H) is Noetherian if and only if (1) it satisfies the
descending chain condition on irreducible closed subspaces, and (2) every closed subspace has only
finitely many irreducible components”, and therefore may be immediately deduced from the well-
known d-operation special case. Alternatively, there is a direct proof of a more general topological
statement.

Theorem 5.21. A topological space is Noetherian if and only if (1) it satisfies the descending chain condition on
irreducible closed subspaces, and (2) every (closed) subspace has only finitely many irreducible components. In
particular, a finite-dimensional topological space is Noetherian if and only if every (closed) subspace has only
finitely many irreducible components.

Proof. (⇒): (This direction is well known.) Because every subspace of a Noetherian space is Noethe-
rian, it will suffice to show that every Noetherian space has only finitely many irreducible compo-
nents. Suppose to the contrary that there is a Noetherian space X with infinitely many irreducible
components. Using the Noetherian property, the nonempty collection of closed subspaces of X with
infinitely many irreducible components has a minimal element Y . Since Y is not irreducible, it may be
written as a union of two proper closed subspaces. However, by minimality each of these closed sub-
spaces must have only finitely many irreducible components, so we may write Y as a union of finitely
many irreducible subspaces, and it follows that Y has only finitely many irreducible components,
a contradiction. (⇐): By contradiction. Suppose that there is a topological space satisfying (1) and the
weaker version of (2), and that there is a properly descending chain X1 � X2 � · · · of closed subsets.
For each i let Yi,1, . . . , Yi,ni be the irreducible components of Xi that are not contained in the closed
subspace X = ⋂∞

n=1 Xn , noting that each ni � 1 since no Xi = X . Let Y1, . . . , Yn be the irreducible
components of X , and note that X = Y1 ∪ · · · ∪ Yn and each Xi = X ∪ Yi,1 ∪ · · · ∪ Yi,ni . Take any i � 2
and any ki ∈ {1, . . . ,ni}. Then Y1 ∪· · ·∪Yn ∪Yi−1,1 ∪· · ·∪Yi−1,ni−1 = Xi−1 � Xi ⊇ Yi,ki . In this case, each
Y j � Yi,ki since X � Yi,ki , so by the irreducibility of Yi,ki we have some Yi−1,ki−1 ⊇ Yi,ki . Repeating this
process, we obtain a finite sequence {k j}i

j=1 of positive integers so that Y1,k1 ⊇ · · · ⊇ Yi,ki . We wish to
construct a sequence {v j}∞j=1 of positive integers with each v j ∈ {1, . . . ,n j} and Y1,v1 ⊇ Y2,v2 ⊇ · · · .
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By the above argument, we can construct such sequences of arbitrarily long finite length. Given n � 0
and v1, . . . , vn such that there are arbitrarily long finite sequences of the desired form starting with
v1, . . . , vn , there are only a finite number of choices for the next entry in the sequence, so we can
choose some vn+1 so that there are arbitrarily long finite sequences of the desired type starting with
v1, . . . , vn+1. This recursively constructs an infinite sequence of the desired form, and we have a de-
scending chain Y1,v1 ⊇ Y2,v2 ⊇ · · · , which by hypothesis stabilizes. Thus X = ⋂∞

n=1 Xn ⊇ ⋂∞
n=1 Yn,vn =

Y N,V N for some N , a contradiction. �
Example 5.22. We give one example of an application of Theorem 5.13. We return to the well-known
theorem that a ring is r(d)-Noetherian if and only if it satisfies the ascending chain condition on prime
d-ideals and every d-ideal has only finitely many minimal primes. Translating this into an equivalent
purely topological statement T about the d-spectrum, then finding a statement equivalent to T hold-
ing for SSpecr(H) yields the following theorem: H satisfies the ascending chain condition on weakly
r-radical r-ideals if and only if it satisfies the ascending chain condition on strongly r-irreducible
r-ideals and every r-ideal has only finitely many minimal strong r-irreducibles. We can similarly apply
this method to any other topologizable theorem to get a corresponding theorem relating to strongly
r-irreducible notions.

We end this paper by filling in the details for the facts alluded to in Example 4.17 in the last
section. For any I ∈ Ir(H) whose minimal primes are maximal r-ideals, we have Vr(I) a Boolean
space, so such an r-ideal has a complete r-comaximal factorization if and only if it is contained in
only finitely many prime r-ideals. In particular, a ring of d-dimension 0 is connected if and only if it
has a unique prime d-ideal. However, we give an example of a connected ring of d-dimension 1 with
infinitely many minimal primes and infinitely many maximal d-ideals.

Example 5.23. (There is a connected ring of d-dimension 1 with infinitely many minimal primes
and infinitely many maximal d-ideals.) There are undoubtedly many different ways to construct such
a ring, but we find it interesting to proceed by topological methods. That is, we show that there is
a 1-dimensional connected spectral space with infinitely many irreducible components and infinitely
many closed points, and we do this by a very general construction where we “glue together” spectral
spaces. Let Y and Z be disjoint spectral spaces and X = Y � Z . We can topologize X so that the given
topologies of Y and Z correspond with their topologies as subspaces of X by declaring the closed
subsets of X to be the closed subsets of Z and the subsets of the form C � Z for closed C ⊆ Y .
The nonempty irreducible closed subspaces of X are precisely those of the forms C � Z = {y} and
D = {z} for nonempty closed irreducible subspaces C of Y and D of Z with unique generic points
y and z, respectively. Since X is clearly T0, this proves that it is sober. The quasicompactness of X
follows easily from that of Z . Let C1 (resp., C2, C3) denote the collection of closed subsets of X
(resp., Y , Z ) with quasicompact complement in X (resp., Y , Z ). Then C1 = {C � Z | C ∈ C2} ∪ C3. The
fact that C1 forms a basis of closed subsets of X and is closed under finite unions follows from the
corresponding properties of C2 and C3. We have now shown that X is a spectral space. Since any two
closed subsets of X whose union is X must contain Z , we see that X is connected. Furthermore, any
maximal chain of nonempty irreducible closed subspaces of X must be of the form C0 � Z � · · · �
Cm � Z � D0 � · · · � Dn , where C0 � · · · � Cm and D0 � · · · � Dn are chains of nonempty irreducible
closed subspaces of Y and Z , respectively. Thus dim(X) = dim(Y )+ dim(Z)+ 1. Taking Y and Z to be
infinite 0-dimensional spectral spaces, we get X to be a 1-dimensional connected spectral space with
infinitely many irreducible components (namely {y} � Z for y ∈ Y ) and infinitely many closed points
(namely the points of Z ).
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