
NORTH-HOLLAND

A S U R V E Y O F D E D U C T I V E

D A T A B A S E S Y S T E M S

RAGHU R A M A K R I S H N A N AND JEFFREY D. ULLMAN

The area of deductive databases has matured in recent years, and it now
seems appropriate to reflect upon what has been achieved and what the
future holds. In this paper, we provide an overview of the area, with a focus
on implementat ion techniques, and briefly describe a number of projects
tha t have led to implemented systems.

1. I N T R O D U C T I O N

Deductive database systems are database management systems whose query lan-
guage and (usually) storage structure are designed around a logical model of data.
As relations are naturally thought of as the "value" of a logical predicate, and re-
lational languages such as SQL are syntactic sugarings of a limited form of logical
expression, it is easy to see deductive database systems as an advanced form of
relational systems.

Deductive systems are not the only class of systems with a claim to being an
extension of relational systems. The deductive systems do, however, share with the
relational systems the important property of being declarative, that is, of allowing
the user to query or update by saying what he or she wants, rather than how to per-
form the operation. Declarativeness is now being recognized as an important driver
of the success of relational systems. As a result, we see deductive database technol-
ogy, and the declarativeness it engenders, infiltrating other branches of database
systems, especially the object-oriented world, where it is becoming increasingly

Address correspondence to Raghu Ramakrishnan, Computer Sciences Department, 1210 West
Dayton Street, University of Wisconsin--Madison, Madison, WI 53706 and Jeffrey D. Ullman,
Computer Scmnce Department, Stanford Umversity, Stanford, CA 94305.

Received May 1993; accepted October 1994.

TIIE J O U R N A L OF LOGIC P R O G R A M M I N G

(~)Elsevier Science Inc., 1995
655 Avenue of the Americas, New York, NY 10010

0743-1066/95/$9.50
SSDI 0743-1066(94)00039-9

126 R. R A M A K R I S H N A N A N D J. D U L L M A N

important to interface object-oriented and logical paradigms in so-called DOOD
(Declarative and Object-Oriented Database) systems. The increased power of de-
ductive languages, in comparison to conventional database query languages such
as SQL, is important in a variety of application domains, including decision sup-
port, financial analysis, scientific modeling, various applications of transitive closure
(e.g., bill-of-materials, path problems), language analysis, and parsing. (See [81] for
a collection of articles on applications of deductive systems.) Deductive database
systems are best suited for applications in which a large amount of data must be
accessed and complex queries must be supported.

In this survey, we look at the key technological advances that led to the successful
implementation of deductive database systems. As with the relational systems
earlier, many of the problems concern code optimization, the ability of the system
to infer from the declarative statement of what is wanted an efficient plan for
executing the query or other operations on the data. Another important thrust
has been the problem of coping with negation or nonmonotonic reasoning, where
classical logic does not offer, through the conventional means of logical deduction,
an adequate definition of what some very natural logical statements "mean" to the
programmer.

This survey is not intended to be comprehensive; for example, we have not
touched upon several important topics that have been explored actively in the
literature, such as coupling existing Prolog and database systems, integrity con-
straint checking, parallel evaluation, theoretical results on complexity and decid-
ability, many extensions of the Horn-clause paradigm (e.g., disjunctive databases,
object-oriented data models), updates, collaborative answers, and many specialized
approaches to evaluation of certain classes of programs (e.g., bounded recursion,
"chain-like" queries, transitive-closure-related queries, semantic query optimiza-
tion). Several interesting results have been obtained in these areas, but we have
chosen to limit the focus of this paper. Articles on many of these topics can be
found in [57].

1.1. Logic Programming and Databases

The current crop of deductive systems drew inspiration from programming language
research, in particular, logic programming systems such as Prolog. In a sense, de-
ductive systems are an at tempt to adapt Prolog, which has a "small-data" view of
the world, to a "large-data" world. (Equally, one could think of deductive systems
as an a t tempt to extend relational database systems; indeed, this is the more com-
mon view.) Prolog implementations have focused, as is typical for programming
languages, on main-memory execution. There are two points to consider:

• Prolog's depth-first evaluation strategy leads to infinite loops, even for positive
programs and even in the absence of function symbols or arithmetic. In
the presence of large volumes of data, operational reasoning is not desirable,
and a higher premium is placed upon completeness and termination of the
evaluation method.

• In a typical database application, the amount of data is sufficiently large that
much of it is oil secondary storage. Efficient access to these data is crucial to
good performance.

A SURVEY OF DEDUCTIVE DATABASE SYSTEMS 127

The first problem is adequately addressed by memoing extensions to Prolog
evaluation. For example, one can efficiently extend the widely used Warren abstract
machine Prolog architecture [133].

The second problem turns out to be harder. The key to accessing disk data
efficiently is to utilize the set-oriented nature of typical database operations, and to
tailor both the clustering of data on disk and the management of buffers in order to
minimize the number of pages fetched from disk. Prolog's tuple-at-a-time evaluation
strategy severely curtails the implementor's ability to minimize disk accesses by
reordering operations. The situation can thus be summarized as follows: Prolog
systems evaluate logic programs efficiently in main-memory, but are tuple-at-a-time,
and therefore inefficient with respect to disk accesses. In contrast, database systems
implement only a nonrecursive subset of logic programs (essentially described by
relational algebra), but do so efficiently with respect to disk accesses.

The goal of deductive databases is to deal with a superset of relational algebra
that includes support for recursion in a way that permits efficient handling of disk
data. Evaluation strategies should retain Prolog's goal-directed flavor, but be more
set-at-a-time. There are two aspects to set-orientation:

• The run-time computation should utilize traditional relational operations such
as selects, projects, joins, and unions; thus, conventional database processing
techniques can be utilized.

• The overall computation should be organized so as to make as many oper-
ations as possible (logically) concurrent, thereby creating more flexibility in
terms of reordering operations. In particular, it is desirable to generate and
process sets of goals, rather than proceed one (sub) goal at a time.

Handling of disk-resident data can be addressed by building Prolog systems that
support persistent data (while retaining the usual evaluation strategy) or by cou-
pling existing Prolog and database systems. These approaches have the drawback
that the interface to the disk data, or database system, becomes a potential tuple-
at-a-time bottleneck. Alternatively, we can develop new technology and systems to
deal with the requirements of deductive databases; this is the focus of the present
paper.

2. NOTATION, DEFINITIONS, A N D SOME BASIC C O N C E P T S

Deductive database systems divide their information into two categories:

1. Data, or facts, that are normally represented by a predicate with constant
arguments (by a ground atom). For example, the fact parent (joe, sue), means
that Sue is a parent of Joe. Here, parent is the name of a predicate, and this
predicate is represented extensionally, that is, by storing in the database a
relation of all the true tuples for this predicate. Thus, (joe, sue) would be
one of the tuples in the stored relation.

2. Rules, or program, which are normally written in Prolog-style notation as

P : - - q l , - . . , q n -

This rule is read declaratively as "ql and q2 and . . . and q,~ implies p." Each
o fp (the head) and the qis (the subgoals of the body) are atomic formulas (also

128 R. R A M A K R I S H N A N A N D J. D. U L L M A N

referred to as literals), consisting of a predicate applied to terms, which are
either constants, variables, or function symbols applied to terms. P rograms in
which terms are either constants or variables are often referred to as Datalog
programs. The da ta are often referred to as the E D B , and the rules as the
I D B . 1 Following Prolog convention, we use names beginning with lower-
case letters for predicates, function symbols, and constants, while variables
are names beginning with an upper-case letter. In later sections, we also
consider programs tha t contain features like negation and aggregation (e.g.,
sum) operat ions applied to subgoals.

Example 2.1. Consider the following program.

s g (X , Y) : - f l a t (X , Y) .

sg(X, Y) : - ~p(x, v), sg(u, v) , down(V, Y).

Here, sg is a predicate ("same-generat ion") , and the head of each of the two
rules is the atomic formula p(X, Y) . X and Y are variables. The other predicates
found in the rules are fiat, up, and down. These are presumably stored extensionally,
while the relation for sg is intensional, tha t is, defined only by the rules. Intensional
predicates play a role similar to views in conventional da tabase systems, a l though
we expect tha t in deductive applications, there will be large numbers of intensional
predicates and rules defining them, far more than the number of views defined in
typical database applications.

The first rule can be interpreted as saying tha t individuals X and Y are at the
same generation if they are related by the predicate fiat, tha t is, if there is a tuple
(X, Y) in the relation for fiat. The second rule says tha t X and Y are also at the
same generation if there are individuals U and V such tha t

1. X and U are related by the up predicate
2. U and V are at the same generation
3. V and Y are related by the down predicate.

These rules thus define the notion of being at the same generat ion recursively.
Since common implementat ions of SQL do not suppor t general recursions such as
this example wi thout going to a host- language program, we see one of the impor-
tan t extensions of deductive systems: the ability to suppor t declarative, recursive
queries.

The opt imizat ion of recursive queries has been an active research area, and has
often focused on some impor tan t classes of recursion. We say tha t a predicate p
depends upon a predicate q - - n o t necessarily distinct from p ~ i f some rule with p in
the head has a subgoal whose predicate either is q or (recursively) depends on q. If
p depends upon q and q depends upon p, p and q are said to be mutually recursive.
A program is said to be linear recursive if each rule contains at most one subgoal
whose predicate is mutual ly recursive with the head predicate. 2

1 Extensional and intensional databases.
2Sometimes, a more restrictive definition is used, requiring that no two distinct predicates can

be mutually recursive, or even that there be at most one recursive rule in the program. We shall
not worry about such distinctions.

A S U R V E Y O F D E D U C T I V E D A T A B A S E S Y S T E M S 129

3. O P T I M I Z A T I O N T E C H N I Q U E S

Perhaps the hardest problem in the implementation of deductive database systems
is designing the query optimizer. While for nonrecursive rules, the optimization
problem is similar to that of conventional relational optimization, the presence
of recursive rules opens up a variety of new options and problems. There is an
extensive li terature on the subject, and we shall a t tempt here to give only the most
basic ideas and motivation.

3.1. Magic Sets

The problem addressed by the magic-sets rule rewriting technique is that frequently
a query asks not for the entire relation corresponding to an intensional predicate,
but for a small subset. An example would be a query like sg (john, Z), that is, "who
is at the same generation as John," asked of the predicate defined in Example 1. It
is important tha t we answer this query by examining only the part of the database
tha t involves individuals somehow connected to John.

A top-down, or backward-chaining search would start from the query as a goal
and use the rules from head to body to create more goals, and none of these goals
would be irrelevant to the query, although some may cause us to explore paths
tha t happen to "dead end" because data that would lead to a solution to the query
happen not to be in the database. Prolog evaluation is the best known example
of top-down evaluation. However, the Prolog algorithm, like all purely top-down
approaches, suffers from some problems. It is prone to recursive loops, it may
perform repeated computat ion of some subgoals, and it is often hard to tell tha t
all solutions to the query goal have been found.

On the other hand, a bot tom-up or forward-chaining search, working from the
bodies of the rules to the heads, would cause us to infer sg facts tha t would never
even be considered in the top-down search. Yet, bot tom-up evaluation is desir-
able because it avoids the problems of looping and repeated computat ion tha t are
inherent in the top-down approach. Also, bot tom-up approaches allow us to use
set-at-a- t ime operations like relational joins, which may be made efficient for disk-
resident data, while the pure top-down methods use tuple-at-a-t ime operations.

Magic-sets is a technique that allows us to rewrite the rules for each query form
(i.e., which arguments of the predicate, are bound to constants, and which are
variable), so tha t the advantages of top-down and bot tom-up methods are com-
bined. Tha t is, we get the focus inherent in top-down evaluation combined with
the looping-freedom, easy termination testing, and efficient evaluation of bot tom-up
evaluation. Magic-sets is a rule-rewriting technique. We shall not give the method,
of which many variations are known and used in practice. [119] contains an ex-
planation of the basic techniques, and the following example should suggest the
idea.

Example 3.1. Given the rules of Example 1, together with the query sg(john, Z),
a typical magic-sets t ransformation of the rules would be

sg(X, Y) : - magic_sg(X), f l a t (X , Y) .

sg(X, Y) : - magic_sg(X) , up(X, U), sg(U, V), down(V, Y).

mayic_sg(V) : - magic_sg(X) ,up(X ,U) .

magic_sg(john).

130 R. R A M A K R I S H N A N AND J. D. U L L M A N

Intuitively, the magic_sg facts corresponds to queries or subgoals. The definition
of the magic_sg predicate mimics how goals are generated in a top-down evaluation.
The set of magic_sg facts is used as a "filter" in the rules defining sg, to avoid
generating facts that are not answers to some subgoal. Thus, a purely bottom-
up, forward chaining evaluation of the rewritten program achieves a restriction of
search similar to that achieved by top-down evaluation of the original program.

The original paper on magic sets was [7], and its extension to general programs
was in [14]. Independently, the article [91] described the "Alexander method,"
which is essentially the "generalized supplementary magic sets method" of [14],
for the case of left-to-right evaluation within rules. There are a number of other
approaches optimizing rules that had similar effects without rewriting rules. These
include Early deduction [76], Query subquery [131, 130], Sygraf [52], and related
tabulation techniques [29] (see also the survey [132]). Article [18] discusses how
all of these ideas are related. As shown in [14, 18, 82, 104], the magic sets and
Alexander methods perform the same set of inferences as corresponding top-down
methods such as query subquery.

While the magic-sets technique was originally developed to deal with recursive
queries, it is clearly applicable to nonrecursive queries as well. Indeed, it has been
adapted to deal with SQL queries (which contain features such as grouping, aggre-
gation, arithmetic conditions, and multiset relations that are not present in pure
logic queries), and found to be superior to techniques used in commercial database
systems for nonrecursive "nested" SQL queries [63].

Other variations of magic-sets include minimagic [96], variants for propagating
arithmetic constraints as selections [5, 65, 109], a variant that can mimic the tail-
recursion optimization of Prolog systems [93], and magic templates [82], in which
tuples with variables in them are used to represent related facts succinctly. (Seki
generalized the Alexander method similarly [104].) This technique or a technique
from [121] are needed to guarantee that the running time of the transformed rules
is no greater than that of top-down evaluation of Datalog programs. The results of
[121], which introduced a detailed cost model for comparing top-down and bottom-
up evaluation methods, are extended to general programs in [89, 112]. In [112], it
is shown that the running time of the transformed rules (using a somewhat refined
version of the magic templates algorithm) for general logic programs is no more than
O(tloglogt) where top-down evaluation takes time O(t). (Of course, Prolog-style
evaluation is likely to be faster in practice for many programs.)

3. 2. Other Rule-Rewriting Techniques

There are a number of other approaches to optimization that sometimes yield bet-
ter performance than magic-sets. These optimizations include the counting algo-
rithm [7, 95, 14], the factoring optimization [71, 45], techniques for deleting redun-
dant rules and literals [72, 99], techniques by which "existential" queries (queries
for which a single answer--any answer suffices) can be optimized [83], and "en-
velopes" [107, 98]. A number of researchers [41, 135, 101, 84] have studied how
to transform a program that contains nonlinear rules into an equivalent one that
contains only linear rules.

A S U R V E Y O F D E D U C T I V E D A T A B A S E S Y S T E M S 131

3.3. Iterative Fixpoint Evaluation

Most rule-rewriting techniques like magic-sets expect implementation of the rewrit-
ten rules by a bot tom-up technique, where starting with the facts in the database,
we repeatedly evaluate the bodies of the rules with whatever facts are known (in-
cluding facts for the intensional predicates) ancl infer what facts we can from the
heads of the rules. This approach is called naive evaluation.

We can improve the efficiency of this algorithm by a simple "trick." If in some
round of the repeated evaluation of the bodies we discover a new fact f , then we
umst have used, for at least one of the subgoals in the utilized rule, a fact that
was discovered on the previous round. For if not, then f itself would have been
discovered in a previous round. We may thus reorganize the substitution of facts
for the subgoals so that at least one of the subgoals is replaced by a fact tha t was
discovered in the previous round. The details of this algorithm are explained in
[120].

Example 3. 2. Consider the same-generation rules of Example 1. The first rule has
a body, f la t (X, Y), that never changes, so after the first round, it can never yield
any new s 9 facts. The second rule's body can only have new facts for the sg(U, V)
subgoal; the up(X, U) and down(V, Y) subgoals are extensional and do not change
during the iteration. Thus, we can, on each round, use only the new sg facts from
the previous round, along with the full up and down relations. Since, in general,
only a small fraction of the s9 facts will be new on any one round, we significantly
reduce the amount of work required.

A number of researchers have independently proposed this evaluation technique.
[30, 75, 9, 6, 4]. The formulation presented in [4] is probably the most widely used.
It is now known widely as seminaive evaluation. Several refinements and variations
of the basic technique have been studied, e.g., [37, 85, 103, 102].

The fixpoint evaluation of a logic program can also be refined by taking certain
algebraic properties of the program into consideration. Such refinements, and tech-
niques for detecting when they are applicable, have been investigated by several
researchers [39, 41, 55, 69, 84].

4. E X T E N S I O N S O F H O R N - C L A U S E P R O G R A M S

4.1. Negation

A deductive database query language can be enhanced by permitt ing negated sub-
goals in the bodies of rules. However, we lose an important property of our rules.
When rules have the form introduced in Section 2, there is a unique minimal model
of the rules and data. A model of a program is a set of facts such tha t for any rule,
replacing body literals by facts in the model results in a head fact that is also in
the model. Thus, in the context of a model, a rule can be understood as saying,
essentially, "if the body is true, the head is true." A minimal model is a model such
tha t no subset is a model. The existence of a unique minimal model, or least model,
is clearly a fundamental and desirable property. Indeed, this least model is the one
computed by naive or seminaive evaluation, as discussed in Section 3.3. Intuitively,
we expect tha t the programmer had in mind the least model when he or site wrote
the logic program. However, in the presence of negated literals, a program may not

132 R. RAMAKRISHNAN AND J. D. ULLMAN

have a least model.

Example 4.1. The program
p(a) ~-- ~p(b).

has two minimal models: {p(a)} and {p(b)}.

The meaning of a program with negation is usually given by some "intended"
model ([20, 2, 79, 78, 35, 92, 80, 128], among others). 3 The challenge is to develop
algorithms for choosing an intended model that

1. Makes sense to the user of the rules, and
2. Allows us to answer queries about the model efficiently. In particular, it is

desirable that it works well with the magic-sets transformation, in the sense
that we can modify the rules by some suitable generalization of magic-sets,
and the resulting rules will allow (only) the relevant portion of the selected
model to be computed efficiently. (Alternatively, other efficient evaluation
techniques must be developed.)

We note that relying upon such an intended model in general results in a treat-
ment of negation that differs from classical logic. In Example 1, we just saw that
choosing one of the two minimal models over the other cannot be justified in terms
of classical logic since the rule is logically equivalent to p(a) V p(b). One important
class of negation that has been extensively studied is stratified negation [20, 2, 125,
66]. A program is stratified if there is no recursion through negation. Programs in
this class have a very intuitive semantics and can also be efficiently evaluated [12,
48, 3]. The following example describes a stratified program.

Example 4.2. Consider the following program P2:

rl : anc(X, Y) *-- par(X, Y).

r 2 : anc(X, Y) ~ par(X, Z), anc(Z, Y).

r 3 : noeyc(X, Y) ~-- anc(X, Y), ~anc(Y, X).

Intuitively, this program is stratified because the definition of the predicate nocyc
depends (negatively on) the definition of onc, but the definition of anc does not
depend on the definition of nocyc at all.

A bottom-up evaluation of P2 would first compute a fixpoint of rules 7"1 and r2
(the rules defining anc). Rule r3 is applied only when the all anc facts are known.

A natural extension of stratified programs is the class of locally stratified pro-
grams [79]. Intuitively, a program P is locally stratified for a given database if,
when we substitute constants for variables in all possible ways, the resulting in-
stantiated rules do not have any reeursion through negation. Local stratification
has been extended to modular stratification in [92] (see also [17]). A program P is
said to be modularly stratified if each strongly connected component (SCC) of P is

3Clark's completed pTvgram and Reiter 's closed world assumption approaches do not fall into
this category.

A SURVEY OF D E D U C T I V E D A T A B A S E SYSTEMS 133

locally stratified after removing instantiated rules containing literals tha t are false
in lower SCCs.

Example 4.3. Consider the following program:

r l : even(O).

r2 : even(s(X)) even(X).

This program can be seen to be locally stratified, even though the predicate even
depends on itself negatively. The reason is that when we substi tute any value, say
x0, for X, rule r2 becomes

even(s(x0)) even(x0).

Evidently, the use of even in the body has fewer uses of the fllnction symbol s than
the use in the head, so no proposition even(s(xo)) can depend negatively on itself.

Consider the following variant of the above program:

7"1 :even(O)

r 2 : even(X) *-- suee(X, Y), ~even(Y).

suet(l, 0). suee(2, 1). suce(3, 2).

Since rule r2 can be instantiated with the same value for X and Y, this program
is not locally stratified. However, it is modularly stratified. The evaluation of the
magic-sets t ransformation of this class of programs has also been considered in the
li terature [17, 92, 46, 86].

The well-founded model [128] is a general approach to assigning semantics to a
logic program tha t generalizes the approaches based on stratification. The well-
founded model of a program can be 3-valued, assigning the t ru th value "unknown"
to some atoms. However, it coincides with the intended (2-valued) model for modu-
larly stratified programs. Evaluation of well-founded programs is considered in [23,
61]. The former is a memoing variation of a top-down evaluation, and the latter
adapts the magic-sets method; both rely upon the alternating fixpoint formulation
[127]. Another approach to negation is the inflationary fixpoint semantics proposed
in [53], which we do not discuss here.

4.2. Set- Grouping and Aggregation

The following example illustrates the use of a grouping or aggregation construct {):

set_of_grades(Class, (Grade)) ~-- student(Name, Class, Grade).

We first (conceptually) create a set of tuples for set_of_grades using the rule

set_of_grades(Class, Grade) ~-- student(Name, Class, Grade).

Now, for each value of Class (in general, each value of those arguments of the head
tha t are not enclosed in the (}), we create a set containing all the corresponding
values for Grade. For each value of Class, let this set be called ScZass; we then
create a fact set_of_grades(Class, SClass).

134 R. RAMAKRISHNAN AND J. D. ULLMAN

Aggregate operations such as count, sum, rain, and max can be combined with
():

max_grade_given(class, max(Grade}) ~-- student(Name, Class, Grade).

As before, for each value of Class, we create a set. But now we apply the aggregate
operation max to the set, and create a head fact using this value rather than the
set itself. 4 A number of important practical problems, such as bill-of-materials
(generating various summaries of the contents of a complex part in a pa r t - subpa r t
hierarchy) and shortest-paths, involve a combination of aggregation and recursion.

We observe that before any head fact can be derived, all body facts that can
contribute to the multiset created in the head fact must be available. This intro-
duces a situation that is very similar to negation, and several approaches used for
negation carry over to grouping. The first approach was to assume stratification of
the program [12] (as was discussed for negation). Later approaches allowed weaker
forms of stratification such as group stratification and magical stratification [64] or
modular stratification [92] or extended the well-founded and stable models to deal
with aggregates [47, 11].

In general, if a rule contains grouping in the head, the multiset created by group-
ing must be fully determined before generating a fact using this rule. For example,
if a rule contains p(X, (Y)) in the head, for a given X value, the complete multiset
of associated Y values must be known in order to generate a p fact with this X
value. In certain contexts, it is possible to generate and use p facts in which the
multiset of Y values is incomplete without affecting the final answer to the user 's
query. Monotonic programs, where a derivation using an incomplete set does not
affect the final set of facts computed, were discussed in [27, 25, 64]. Ross and
Sagiv [94] and Van Gelder [126] examine broader classes of such programs. A gen-
eralization of the well-founded model semantics that deals with such programs is
presented in [113].

Ganguly et al. [34] and Sudarshan and Ramakrishnan [111] examine optimiza-
tions of programs that use aggregation.

5. A N H I S T O R I C A L O V E R V I E W O F D E D U C T I V E D A T A B A S E S

The origins of deductive databases can be traced back to work in automated the-
orem proving and, later, logic programming. In interesting surveys of the early
development of the field, Gallaire, Minker, and Nicolas [38, 58] suggest that Green
and Raphael [36] were the first to recognize the connection between theorem prov-
ing and deduction in databases. They developed a series of question-answering
systems that used a version of Robinson's resolution principle [90], demonstrat ing
that deduction could be carried out systematically in a database context. 5

Other early systems included MRPPS, SYNTEX, DEDUCE-2, and DADM.
MRPPS was an interpretive system developed at Maryland by Minker's group from
1970 through 1978 that explored several search procedures, indexing techniques,

4The 0 construct is a generalization of SQL's group-by construct . It is defined to generate a
nested set of values in LDL, where it was Originally proposed. Defining it to generate a nested
multiset of values, as in CORAL, brings it closer to the SQL group-by construct.

5Cordell Green received a Grace Murray Hopper award from the ACM for his work.

A S U R V E Y O F D E D U C T I V E D A T A B A S E S Y S T E M S 1 3 5

and semantic query optimization. One of the first papers on processing recursiw~'
queries was [59]; it contained the first description of bounded recursive queries, which
are recursive queries that can be replaced by nonreeursive equivalents. SYNTEX
[73} was another early system for automatic deduction, and provided impetus for
the organization of the Toulouse workshop (see below). DEDUCE was implemented
at IBM in the mid-1970s [21], and supported left-linear recursive Horn-clause rules
using a compiled approach. DADM [44] emphasized the distinction between EDB
and IDB and studied the representation of the IDB in the form of "connection
graphs"--closely related to Sickel's interconnectivity graphs [106]--to aid in the;
development of query plans.

A landmark workshop on logic and deductive databases was organized by Gallaire,
Minker, and Nicolas at Toulouse in 1977, and several papers from the proceedings
appeared in book form [33]. Reiter's influential paper on the closed world assump-
tion (as well as a paper on compilation of rules) appeared in this book, as did Clark's
paper on negation-as-failure and a paper by Nicolas and Yazdanian on checking in-
tegrity constraints. The workshop and the book brought together researchers in the
area of logic and databases, and gave an identity to the field. (The workshop was
also organized in subsequent years, with proceedings, and continued to influence
the field.)

In 1976, van Emden and Kowalski [123] showed that the least fixpoint of a Horn-
clause logic program coincided with its least Herbrand model. This provided a firm
foundation for the semantics of logic programs, and especially, deductive databases
since fixpoint computation is the operational semantics associated with deductive
databases (at least, of those implemented using bottom-up evaluation).

The early work focused largely on identifying suitable goals for the field, and on
developing a semantics foundation. The next phase of development saw an increas-
ing emphasis on the development of efficient query evaluation techniques. Henschen
and Naqvi proposed one of the earliest efficient techniques for evaluating recursive
queries in a database context [40]; earlier systems had used either resolution-based
strategies not well suited to applications with large data sets, or relatively simple
techniques (essentially equivalent to naive fixpoint evaluation [22, 105]). Ullman's
paper on the implementation framework based on "capture rules" [11811 focused
attention upon the challenges in efficient evaluation of recursive queries, and noted
that issues such as nontermination had to be taken into account as well.

The area of deductive databases, and in particular, recursive query processing,
became very active in 1984 with the initiation of three major projects, two in the
U.S.A. and one in Europe. The Nail! project at Stanford, the LDL project at
MCC in Austin, and the deductive database project at ECRC all led to significant
research contributions and the construction of prototype systems. The ECRC and
LDL projects also represented the first major deductive database projects outside
of universities. Although we do not address this issue, we note that the use of this
emerging technology in real-world applications is also progressing (see, e.gl, [116],
and recent workshops at ICLP, ILPS, and other conferences).

5.1. The Work at E C R C

The research work at ECRC was led by J.-M. Nicolas. The initial phase of research
(1984-1987) led to the study of algorithms and the development of early proto-
types (QSQ/SLD-AL/QoSaQ/DedGin by L. Vieille [130, 131)), integrity check-

136 R. R A M A K R I S H N A N AND J. D. U L L M A N

ing (Soundcheck b y H. Decker) and a system that explores consistency checking
(Satchmo by R. Manthey and F. Bry) [16], a combination of deductive and object-
oriented ideas (KB2 by M. Wallace), persistent Prolog (Educe by J. Bocca), and
the BANG file system by M. Freeston [31]. A second phase (1988-1990) led to
more functional prototypes: Megalog (1988 1990) by J. Bocca), DedGin* (1988-
1989 by Vieille), EKS-V1 (1989-1990, also by Vieille). The EKS system supports
integrity constraints [129], and also some forms of aggregation through recursion
[54]. Bry's work on reconciling bottom-up and top-down algorithms [18] and ex-
tending Magic Sets to programs with negation [17] was also carried out as part of
the ECRC project. More recently, ECRC has been involved in an ongoing ESPRIT
project called IDEA, and is developing a temporal deductive database system in its
ChronoBase project [108]. It is anticipated that ChronoBase will be used for the
development of a large real-world application from the airline industry, as part of
a newly commenced ESPRIT project.

An interesting spinoff of the research at ECRC is a project that is currently un-
derway at Groupe Bull to develop a commercial deductive, object-oriented database
system. The deductive technology derives from the EKS prototype, but it incor-
porates object-oriented features both at the architectural and language levels. In
addition to a data model with objects and values not unlike that of O2, it supports a
data manipulation language with a Datalog-based declarative component (to write
deduction rules and integrity constraints) and a more classical imperative compo-
nent (to write methods and functions). It is built on a storage manager having
many features in common with object-managers, rather than with more traditional
relational data stores.

5.2. The LDL Project

The LDL project as MCC, also initiated in 1984, led to a number of important
advances. By 1986, it was recognized that combining Prolog with a relational
database was an unsatisfactory solution, and a decision was made to develop a
deductive database system based on bottom-up evaluation techniques [117]. During
this period, there were a number of significant research developments including the
development of evaluation algorithms (work on seminaive evaluation, Magic Sets,
and Counting [7, 6, 15, 95, 96]), semantics for stratified negation and set-grouping
[13], research into the issue of safety, or finiteness of answer sets, compilation of
set-terms, generation of explanations of logic program evaluation, the treatment of
updates in logical rules, and join order optimization.

An initial prototype called EVE was developed in Prolog, producing target code
in an extended relational language. The LDL prototype (also called SALAD), which
was developed by 1988, and released with refinements from 1989 through 1991,
was the first deductive database system that was widely available. It supported
stratified negation and set-terms, and was a compiled system that produced C
code [24]. It has been distributed to universities and to shareholder companies
in the MCC consortium. A good presentation of the LDL language is in [67].
Subsequent research has focused on aggregate operations [34] and nondeterministic
choice constructs (e.g., [97]). The LDL++ project at MCC is a direct successor to
LDL, and was initiated in 1990. In addition to adopting a more interpretive style
of evaluation, nonstratified negation and aggregation features have been explored
[134], along with support for abstract data types.

A SURVEY OF DEDUCTIVE DATABASE SYSTEMS 137

5.3. The NAIL~ Project

The NAIL! (Not Another Implementation of Logic!) project was started at Stan-
ford in 1985. Following the plan laid out in [118], the initial goal was to study the
optimization of logic using the database-oriented ~'all-solutions" model. In collab-
oration with the MCC group, the first paper on Magic Sets [7] came out of this
project, as did the first work on regular recursions [68]. The work on regular recur-
sions was developed further in [71]. Many of the important contributions to coping
with negation and aggregation in logical rules were also made by the project. Strat-
ified negation [124], well-founded negation [128], and modularly stratified negation
[92] were also developed in connection with this project.

An initial prototype system [62] was built, but later abandoned because the
purely declarative paradigm was found to be unworkable for many applications.
The revised system uses a core language, called Glue, which is essentially single
logical rules, with the power of SQL statements, wrapped in conventional language
constructs such as loops, procedures, and modules. The original NAIL language be-
comes in effect a view mechanism for Glue; it allows fully declarative specifications
in situations where declarativeness is appropriate [77, 28].

5.4. Other Deductive Database Projects

The Aditi project was initiated in 1988 at the University of Melbourne. The research
contributions of this project include a formulation of seminaive evaluation that is
now widely used [4], adaptation of Magic Sets for stratified programs [3], optimiza-
tion of right- and left-linear programs [45], parallelization, indexing techniques, and
optimization of programs with constraints [5]. The work of the Aditi group was
also driven by the development of their prototype system, which is notable for its
emphasis on disk-resident relations. All relational operations are performed with
relations assumed to be disk resident, and join techniques such as sort-merge and
hash-join are used. An overview is provided in [122]. 6

The ConceptBase system, developed since 1987 at the Universities of Passau
and Aachen in jarke's group, seeks to combine deductive rules with a semantic data
model based on Telos. The language aspects are presented in [43]. The system also
provides support for integrity constraints; this is described in [42]. ConceptBase
has been used in a number of applications at various universities in Europe, and is
now being commercially developed.

The CORAL project at U. Wisconsin, which was started in 1988, can also be
traced to LDL. v The original impetus for the project was the development of the
Magic Templates algorithm [82], which offered the potential to support nonground
tuples. The research contributions included work on optimizing special classes of
programs (notably, right- and left-linear programs) [71] (jointly with the Glue-Nail
group), development of a multiset semantics for logic programs and optimizations
dealing with duplicate checks [56], the first results on space-efficient bottom-up
evaluation techniques [70, 1141, refinements of seminaive evaluation for programs

6LDL.and L D L + + are memory remdent systems, and CORAL suppor t s disk-resident relations
by building upon the EXODUS storage manager, without providing additional join algori thms
tailored to disk-resident relations.

7Ramakrishnan, who initiated the CORAL project, was involved in the LDL project until he

moved to Wisconsin.

138 R. RAMAKRISHNAN AND J. D. ULLMAN

with large numbers of rules [85], evaluation of programs with aggregate operations
[111], arithmetic constraints [109], modular-stratified negation [86], and nonground
tuples [112]. The result that bottom-up evaluation asymptotically dominates top-
down evaluation for all Horn-clause programs was obtained as part of this project
[112]. A first prototype of the CORAL system was functional in 1990. The first
widely available release of the system was in 1993. This version supported non-
stratified aggregation and negation using an algorithm proposed in [86], provided
high-level features for controlling evaluation, and provided support for nonground
tuples. It is available freely, and is being further developed. A language overview
is provided in [87], and the implementation is described in [88]. The extension to
support object-oriented features, called Coral++, is described in [110].

The DECLARE project at MAD Intelligent Systems, which ran from 1986 to
1990 and was led by W. Kiessling, was perhaps the first a t tempt to commercialize
deductive databases. Given the focus on commercialization, it is understandable
that the research was not widely publicized, but the implemented system was quite
sophisticated. It supported stratified negation and sets, and was implemented using
Magic Sets and seminaive evaluation. Many variations of seminaive evaluation were
implemented and evaluated as part of this work [50]. It also provided conventional
database facilities such as crash recovery and concurrent transactions.

The LOGRES project at Politecnico di Milano ran from 1989 to 1992. The
prototype is built on top of an extended relational system (ALGRES), and is notable
for its integration of an object-oriented data model with deductive rules. It is one
of the first of the new family of "DOOD" (deductive, object-oriented database)
systems. While the LOGRES project did not produce a practical prototype, the
research has influenced the ongoing IDEA project, which aims to develop efficient
prototype systems.

The LOLA project at Technical University Muenchen, led by R. Bayer and
U. Guentzer, ran from 1988 to 1992, and led to the development of a prototype sys-
tem that is used in a number of related projects. This is one of the more complete
prototypes, and supports stratified negation and aggregation, disk-resident base
relations, interfaces to commercial databases, integrity constraint maintenance, a
module mechanism, and an explanation facility. It is available freely, and is being
further developed. A notable research contribution of the LOLA group is the de-
velopment of interesting refinements to seminaive evaluation. (Bayer, one of the
leaders of the LOLA project, was also one of the initial proponents of seminaive
evaluation [10].)

The Starburst project at IBM Almaden was primarily involved with extensibility.
but made important contributions to the development of Magic Sets for programs
with SQL features like grouping, aggregation, and arithmetic selections [64 i. A
performance study demonstrated that the techniques developed for dealing with
recursive queries actually outperformed the techniques used in current relational
database systems [63]. They have extended SQL with recursive view definitions,
providing greater expressive power to SQL users, and utilizing the I /O optimiza-
tion facilities of SQL implementations in a direct manner for recursive applications.
They have also made contributions to the evaluation of left- and right-linear pro-
g r a i n s .

Another substantial implementation of a deductive database, using an evaluation
strategy similar to QSQ, was carried out at Zurich during 1986-1990. This system,
(:alted IISProlog, supported linear recursive programs, but was unfortunately never

A SURVEY OF DEDUCTIVE DATABASE SYSTEMS 139

widely known. While the research embodied in it is difficult to evaluate, due to the
limited literature, it appears to have been a significant early effort [74].

Hy+ is an ongoing project at t h e University of Toronto [26] that was initiated
in 1987 by A. Mendelzon, and is a successor to G+/GraphLog [26]. The focus of
the project is the class of path queries, and the goal is to develop high-level visual
interfaces and query languages for this domain. While the project has not been
focused on deductive databases in general, systems such as LDL and CORAL have
been used as the underlying inference engine, and interesting results in the area of
path queries have been developed.

An interesting ongoing effort is the XSB project as StonyBrook, led by D. S. War-
ren. They are developing a system that supports modularly stratified negation and
aggregation (plus a meta-interpreter for well-founded programs), nonground tuples,
and disk-resident relations. The implementation is based on OLDT resolution [1151,
a top-down evaluation with memoing, and is particularly well suited for integration
with Prolog systems. (This is essentially the Extension Tables technique described
in [29].) In fact, the WAM, a widely used abstract machine for implementing Prolog
systems, has been adapted to support the meInoing top-down evahmtion used in
XSB [133]. This is a tuple-at-a-time approach, but is shown to be faster than cur-
rent implementations of systems like CORAL for in-memory computations [100].
This probably reflects differences in the underlying algorithms, as well as the imple-
mentation techniques. Top-down evaluation with memoization, as we noted earlier,
is very close to magic-sets based fixpoint evaluation in many respects. However,
there are some important differences. In order to make the computation more set-
oriented, the magic-sets approach essentially separates the generation of goals from
the generation of answers, and uses additional join operations to re-establish the
connection between goals and the corresponding answers. In XSB, this overhead
is avoided since the computation solves goals in a primarily depth-first manner, as
in Prolog. For in-memory computations, where set-orientation is not critical, this
is better. The results also underscore the importance of refining implementation
techniques for fixpoint evaluation. For example,WAM style optimizations would
considerably speed up in-memory execution for systems using fixpoint evahmtion.

We note that there are other projects, such as the RDL effort at INRIA, that
have not focused upon deductive databases, but are closely related [49].

6. D E D U C T I V E D A T A B A S E S Y S T E M I M P L E M E N T A T I O N S

There have been a number of implementations of deductive databases. The results
of a survey conducted by the authors over the Internet, presented below, indicate
that the extensive published research on deductive databases was accompanied by
quite a large number of prototyping efforts, s

SWe thank the respondents of the survey for their detailed comments. The actual responses
provide additional information about the projects, and are available by ftp from ricotta.cs.wisc.edu.
Since many of these sys tems are not currently distributed, we have not verified the information
presented b e l o w ~ u r sum m ary is based upon mformation provided by the implementors.

140 R. R A M A K R I S H N A N AND J. D. U L L M A N

N~Jne

Aditi
COL
Concept-
Base

U. Melbourne
INRIA
U. A~hen

CORAL U. Wisconsin

EKS-VI F_~P,C
LogicBase Simon Fraser U.

DECLARE MAD Intelligent
Systems

gy+ U. Toronto
X4 U. Karlsrulle

LDL MCC
LDL++
LOG RF_~ Polytechnic of

Milan
LOLA Technical U.

Munich
Glue-Nail Stanford U.
Starburst IBM Almaden
XSB SUNY Stony Brook

I R e ~ I R e a s o n
General

[~3] General

[87] General

[8] General
Lineal r ~ s o m e

n~llnear
[sxl ~ a l

[~]

[241 Geu~ral

[191 Liu~

[32] General

28] C,e~al
s31 Ge~al

Stratified Stratified
Stratified Stratified
Locally No
Stratified
Modularly Modularly
Stratified Stratified

Superset of Stratified Stratified
Stratified

Locally Superset of Stratified
Str~ed

Path Queries Stratified Stratified
Gonexal, but No No
only binary precis.

Stratified Stratified
Restricted Local Restricted Local
Inflationary Stratified
Semantics
Stratified Computed

Predicates
Well-Founded Glue only
Stratified Stratified

General Well-Fonnded Modularly
Stratified

F I G U R E 1. Summary of prototypes, Part I.

6.1. Summary of Deductive Database Prototypes

Figures 1 and 2 summarize some of the important features of current deductive
systems. In Figure 1, we compare the way these systems handle the following
issues:

1. Recursion. Most systems allow the rules to use general recursion. However, a
new limit recursion to linear recursion or to restricted forms related to graph
searching, such as transitive closure.

2. Negation. Most systems allow negated subgoals in rules. When rules involve
negation, there are normal many minimal fixpoints tha t could be interpreted
as the meaning of the rules, and the system has to select from among these
possibilities one model that is regarded as the intended model, against which
queries will be answered. Section 4.1 discusses the principal approaches.

3. Aggregation. A problem similar to negation comes up when aggregation (sum,
average, etc.) is allowed in rules. More than one minimal model normally
exists, and the system must select the appropriate model. See Section 4.2.

The following issues are summarized in Figure 2.

1. Updates. Logical rules do not, in principle, involve updating of the database.
However, most systems have some approach to specifying updates, either
through special dictions in the rules or update facilities outside the rule sys-
tem. We have identified systems that support updates in logical rules by a
"Yes" in the table. (Some limitations as to the order of evaluation are usually
enforced with respect to rules containing updates.)

2. Integrity Constraints. Some deductive systems allow logical rules that serve as
integrity constraints. Tha t is, rather than defining IDB predicates, constraint
rules express conditions that cannot be violated by the data.

3. Optimizations. Deductive systems need to provide some optimization of
queries. Common techniques include Magic-Sets or similar techniques for

A SUR'qEY OF DEDUCTIVE DATABASE SYSTEMS 141

Name n up¢
Aditi

COL No
ConceptBase Yes
CORAL Yes

EKS-VI Yes

I.,ogicBase No

DECLARE No

Hy+ No

LDL, LDL++ Yes

LOGRES Yes
LOLA No

X4 No

Glu~Nail Glueonly

Starburst No
Y~R M~

I I Constraints I
No No Magic sets, SN

Join-order selection
EDB, IDB Prolog

No None Main memory ML
Yes Magic sets, SN EDB only C,Prolog
No Magic sets, SN EDB, IDB C, C++,

Context Factoring Extensible
Projection pushing

Yes EDB, IDB Query-subquery,
left/right linear

EDB, IDB No "Chain-based
evaluation"

Pers~nt
Prolog
C, C++,
SQL

No Magic sets, SN EDB only C,
Projection pushing Lisp

No

Magic sets, SN
Left/right linear,
Projection pushing,
"Bushy depth-first"

Main
memory
EDB only

Prolog, LDL,
CORAL, Smalltalk
C, C++,
SQL

Yes Algebraic, SN EDB, IDB INFORMIX
Yes Magic Sets, SN EDB TransBase (SQL)

Projection pushing
Join-order selection

Yes None, EDB only Lisp
Top-down eval.

No Magic sets, SN EDB only None
Right-linear
Join-order selection

No Magic sets, SN variant EDB, IDB Extensible
Iml~mmml!

]~ i G U R E 2. Summary of prototypes, Part II.

4.

5.

combining the benefits of both top-down and bot tom-up processing, and sem-
inaive evaluation for avoiding some redundant processing. A variety of other
techniques are used by various systems, and we a t tempt to summarize the
principal techniques here. Quotation marks around a method indicate that
the method has not been defined in this survey, and the reader should look
at the source paper.
Storage. Most systems allow EDB relations to be stored on disk, but some
also store IDB relations in secondary storage. Supporting disk-resident data
efficiently is a significant task.
Interfaces. Most systems connect to one or more other languages or systems.
Some of these connections are embedding of calls to the deductive system in
another language, while other connections allow other languages or systems to
be invoked from the deductive system. We have not, however, distinguished
the direction of the call in this brief summary. Some systems use external
language interfaces to provide ways in which the system can be customized
for different applications (e.g., by adding new data types, relation implemen-
tations, etc.). We refer to this capability as extensibility; it is very useful for
large applications.

7. C O N C L U S I O N

We have reviewed several results in the field of deductive databases, with an empha-
sis on efficient evaluation techniques, and presented a summary of several projects
tha t led to implemented systems. The main points to note are the following.

142 R. RAMAKRISHNAN AND J. D. Ut~LMAN

1. There exist efficient evaluation methods tha t are sound and complete with
respect to an intuitive declarative semantics for large classes of programs
with powerful features like negation and aggregation.

2. Systems based upon these methods are being developed, and offer good sup-
por t for rule-based applications.

There is also ongoing work tha t seeks to combine the powerful query language ca-
pabil i ty of deductive databases with features from object-oriented systems, and this
will likely lead to a new generation of more powerful systems tha t bring da tabase
languages and programming languages closer to each other.

The work of R. Ramakrishnan was supported by a David and Lucile Packard Foundation Fellow-
ship in Science and Engineering, a Presidential Young Investigator Award, with matching grants
from Digital Equipment Corporation, Tandem, and Xerox, and NSF Grant IRI-9011563. The work
of J. D. Ullman was supported by ARO Grant DAAL03-91-G-0177, NSF Grant IRI-90-16358, and
a grant from Mitsubishi Electric.

R E F E R E N C E S

1. Abiteboul, S. and Grumbach, S., A Rule-Based Language with Functions and Sets,
A CM Transactions on Database Systems 16(1):1-30 (1991).

2. Apt, K. R., Blair, H., and Walker, A., Towards a Theory of Declarative Knowledge,
in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming,
Morgan Kaufmann, San Mateo, CA, 1988, pp. 89 148.

3. Balbin, I., Port, G. S., Ramamohanarao, K., and Meenakshi, K., Efficient Bottom-
Up Computation of Queries of Stratified Databases, Journal of Logic Programming
11:295-345 (1991).

4. Balbin I. and Ramamohanarao, K., A Generalization of the Differential Approach
to Recursive Query Evaluation, Journal of Logic Programming 4(3) (Sept. 1987).

5. Balbin, I., Kemp, D. B., Meenakshi, K., and Ramamohanarao, K., Propagating Con-
straints in Reeursive Deductive Databases, in: Proceedings of the North American
Conferences on Logic Programming, Oct. 1989, pp. 16-20.

6. Bancilhon, F., Naive Evaluation of Recursively Defined Relations, in: X. Brodie
and X. Mylopoulos (eds.), On Knowledge Base Management Systems--Integrating
Database and AI Systems, Springer-Verlag, 1985.

7. Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. D., Magic Sets and Other Strange
Ways to Implement Logic Programs, in: Proceedings of the ACM Symposium on
Principles of Database Systems, Cambridge, MA, Mar. 1986, pp. 1-15.

8. Bayer, P., Lefebvre, A., and Vieille, L., Architecture and Design of the EKS Deduc-
tive Database System, Technical Report, ECRC, Mar. 1993, Personal Communica-
tion.

9. Bayer, R., Query Evaluation and Recursion in Deductive Database Systems, Un-
published Memorandum, 1985.

10. Bayer, R., Query Evaluation and Reeursion in Deductive Database Systems, Tech-
nical Report 18503, Teehnisehe Universitaet Muenchen, Feb. 1985.

11. Beeri, C., Ramakrishnan, R., Srivastava, D., and Sudarshan, S., The Valid Model
Semantics for Logic Programs, in: Proceedings of the ACM Symposium on Principles
on Database Systems, June 1992, pp. 91 104.

12. Beeri, C., Naqvi, S., Ramakrishnan, R., Shmueli, O., and Tsur, S., Sets and Negation
in a Logic Database Language, in: Proceedings of the ACM Symposium on Principles

A SUR'~EY OF DEDUCTIVE DATABASE SYSTEMS 143

of Database Systems, San Diego, CA, Mar. 1987, pp. 21 37.
13. Beeri, C., Naqvi, S., Shmueli, O., and Tsur, S., Set Constructors in a Logic Database

Language, Journal of Logic Programming 10(3&4):181-232 (1991).
114. Beeri, C. and Ramakrishnan, R., On the Power of Magic, in: Proceedings of the

ACM Symposium on Principles of Database Systems, San Diego, CA, Mar. 1987,
pp. 269-283.

15. Beeri, C. and Ramakrishnan, R., On the Power of Magic, Journal of Logic Program-
ming 10(3&4):255-300 (1991).

i6. Bry, F., Decker, H., and Manthey, R., A Uniform Approach to Constraint Satis-
faction and Constraint Satisfiability in Deductive Databases, in: Proceedings of the
International Conference on Extending Database Technology, Feb. 1988.

17. Bry, F., Logic Programming as Constructivism: A Formalization and Its Application
to Databases, in: Proceedings of the ACM SIGACT-SIGART-SIGMOD Symposium
on Principles of Database Systems, Philadelphia, PA, Mar. 1989, pp. 34-50.

18. Bry, F., Query Evaluation in Recursive Databases: Bottom-Up and Top-Down Rec-
onciled, Data and Knowledge Engineering 5:289-312 (1990).

19. Cacace, F., Ceri, S., Crespi-Reghizzi, S., Tanca, L., and Zicari, R., Integrating
Object-Oriented Data Modeling with a Rule-Based Programming Paradigm, in: Pro-
ceedings of the ACM SIGMOD Conference on Management of Data, May 1990.

20. Chandra, A. K. and Harel, D., Horn Clause Queries and Generalizations, J. Logic
Programming 2(1):1-15 (Apr. 1985).

21. Chang, C. L., Deduce 2: Further Investigations of Deduction in Relational
Databases, in: H. Gallaire and J. Minker (eds.), Logic and Databases, Plenum Press,
1978.

-~22. Chang, C. L., On the Evaluation of Queries Containing Derived Relations in a
Relational Data Base, in: H. Gallaire, J. Minker, and J. Nicolas (eds.), Advances m
Data Base Theory, Volume 1, Plenum Press, 1981.

23. Chen, W., and Warren, D. S., Query Evaluation Under the Well-Founded Semantics,
in: Proceedings of the ACM Symposium on Principles of Database Systems, 1993.

24. Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S., Tsur, S., and Zaniolo, C.,
The LDL System Prototype, IEEE Transactions on Knowledge and Data Engineer-
ing 2(1):76-90 (1990).

25. Consens, M. P. and Mendelzon, A. O., Low Complexity Aggregation in Graphlog
and Datalog, in: Proceedings of the International Conference on Database Theory,
Paris, 1990.

26. Consens, M. and Mendelzon, A., Hy: A Hygraph-Based Query and Visualization
System, in: Proceedings of the ACM SIGMOD 1993 Annual Conference on Manage-
ment of Data, 1993, pp. 511 516.

27. Cruz, I. F. and Norvdl, T. S., Aggregative Closure: An Extension of Transitive
Closure, in: Proceedings of the IEEE 5th Int'l. Conf. Data Engineering, 1989, pp.
384-389.

28. Derr, M., Morishita, S., and Phipps, G., Design and Implementation of the Glue-Nail
Database System, in: Proceedings of the ACM SIGMOD International Conference
on Management of Data, Washington, DC, 1993, pp. 147-167.

29. Dietrich, S. W., Extension Tables: Memo Relations in Logic Programming, in: Pro-
ceedings of the Symposium on Logic Programming, 1987, pp. 264-272.

30. Fong, A. C. and Ullman, J. D., Induction Variables in Very High-Level Languages,

144 R. RAMAKRISHNAN AND 3. D. U, LLMAN

in: Proe. Third ACM Symposium on Principles of Programming Languages, 1976,
pp. 104-112.

31. Freeston, M., The Bang File: A New Kind of Grid File, in: Proceedings of the ACM
SIGMOD Conference on Management of Data, 1987.

32. Frietag, B., Schfitz, H., and Specht, G., LOLA--A Logic Language for Deductive
Databases and Its Implementation, in: Proceedings of 2nd International Symposium
on Database Systems for Advanced Applications (DASFAA), 1991.

33. Gallaire, H. and Minker, J. (eds.), Logic and Databases, Plenum Press, 1978.
34. Ganguly, S., Greco, S., and Zaniolo, C., Minimum and Maximum Predicates in Logic

Programming, in: Proceedings of the ACM Symposium on Principles of Database
Systems, 1991.

35. Gelfond, M. and Lifschitz, V., The Stable Model Semantics for Logic Programming,
in: Proceedings of the Fifth International Conference and Symposium on Logic Pro-
gramming, 1988.

36. Green, C. C., and Raphael, B., The Use of Theorem-Proving Techniques in Question-
Answering Systems, in: Proceedings of the 23rd ACM National Conference, Wash-
ington, DC, 1968.

37. Gfintzer, U., Kiessling, W., and Bayer, R., On the Evaluation of Recursion in (De-
ductive) Database Systems by Efficient Differential Fixpoint Iteration, in: Interna-
tional Conference on Data Engineering, 1987, pp. 120-129.

38. Minker, J., Gallaire, H., and Nicolas, J.-M., Logic and Databases: A Deductive
Approach, ACM Computing Surveys 16(2):153-185 (1984).

39. Helm, A. R., Detecting and Eliminating Redundant Derivations in Deductive
Database Systems, Technical Report RC 14244 (#63767), IBM Thomas J. Watson
Research Center, Dec. 1988.

40. Henschen, L. J. and Naqvi, S. A., On Compiling Queries in Recursive First Order
Databases, Journal of the ACM 31(1):47 85 (1984).

41. Ioannidis, Y. E. and Wong, E., Towards an Algebraic Theory of Recursion, Technical
Report 801, Computer Sciences Department, University of Wisconsin Madison,
Oct. 1988.

.42. Jeusfeld, M. and Jarke, M., From Relational to Object-Oriented Integrity Simpli-
fication, in: M. Kifer, C. Delobel, and Y. Masunaga (eds.), Proceedings Deductive
and Object-Oriented Databases 91, Springer-Verlag, 1991.

43. Jeusfeld, M., and Staudt, M., Query Optimization in Deductive Object Bases, in: G.
Vossen J. C. Freytag, and D. Maier (eds.), Query Processing for Advanced Database
Applications, Morgan Kaufmann, 1993.

44. Kellogg, C. and Travis, L., Reasoning with Data in a Deductively Augmented Data
Management System, in: H. Gallaire, J. Minker, and J. Nicolas (eds.), Advances in
Data Base Theory, Volume 1, Plenum Press, 1981.

45. Kemp, D., Ramamohanarao, K., and Somogyi, Z., Right-, Left-, and Multi-Linear
Rule Transformations that Maintain Context Information, in: Proceedings of the
International Conference on Very Large Databases, Brisbane, Australia, 1990, pp.
380-391.

46. Kemp, D., Srivastava, D., and Stuckey, P., Magic Sets and Bottom-Up Evaluation
of Well-Founded Models, in: Proceedings of the International Logic Programming
Symposium, San Diego, CA, Oct. 1991, pp. 337-351.

47. Kemp, D. and Stuckey, P., Semantics of Logic Programs with Aggregates, in: Pro-

A SURVEY OF DEDUCTIVE DATABASE SYSTEMS 145

ceedings of the International Logic Programming Symposium, San Diego, CA, Oct.
1991, pp. 387-401.

48. Kerisit, J. M., and Pugin, J. M., Efficient Query Answering on Stratified Databases,
in: Proceedings of the International Conference on Fifth Generation Computer Sys-
tems, Tokyo, Japan, Nov. 1988, pp. 719-725.

49. Kiernan, G., de Maindreville, C., and Simon, E., Making Deductive Database a
Practical Technology: A Step Forward, in: Proceedings of the ACM SIGMOD Con-
ferenee on Management of Data, 1990.

50. Kiessling, W., A Complex Benchmark for Logic Programming and Deductive
Databases, or Who Can Beat the n-Queens?, SIGMOD Record 21(4):28--34 (Dec.
1992).

51. KieBling, W. and Schmidt, H., DECLARE and SDS: Early Efforts to Commercialize
Deductive Database Technology, Submitted, 1993.

52. Kifer, M. and Lozinskii, E. L., A Framework for an Efficient Implementation of
Deductive Databases, in: Proceedings of the Advanced Database Symposium, Tokyo,
Japan, 1986.

53. Kolaitis, P. and Papadimitriou, C., Why Not Negation by Fixpoint?, in: Proceedings
of the ACM Symposium on Principles of Database Systems, 1988, pp. 231 239.

54. Lefebvre, A., Towards an Efficient Evaluation of Recursive Aggregates in Deduc-
tive Databases, in: Proceedings of the International Conference on Fifth Generation
Computer Systems, June 1992.

55. Maher, M. J., Semantics of Logic Programs, Ph.D. thesis, Department of Computer
Science, University of Melbourne, Melbourne, Australia, 1985.

56. Maher, M. J., and Ramakrishnan, R., D~jg Vu in Fixpoints of Logic Programs, in:
Proceedings of the Symposium on Logic Programming, Cleveland, OH, 1989.

57. Minker, J., (ed.), Foundations of Deductive Databases and Logic Programming, Mor-
gan Kaufmann, Los Altos, CA, 1988.

58. Minker, J., Perspectives in Deductive Databases, Journal of Logic Programming
5:33-60 (1988).

59. Minker, J. and Nicolas, J. M., On Recursive Axioms in Deductive Databases, Infor-
mation Systems 8(1) (1982).

60. Moerkotte, G. and Lockemann, P. C., Reactive Consistency Control in Deductive
Databases, ACM Trans. on Database Systems 16(4):670-702 (1991).

61. Morishita, S., An Alternating Fixpoint Tailored to Magic Programs, in: Proceedings
of the ACM Symposium on Principles of Database Systems, 1993.

62. Morris, K., Naughton, J. F., Saraiya, Y., Ullman, J. D., and Van Gelder, A., YAWN!
(Yet Another Window on NAIL!), Database Engineering (Dec. 1987).

63. Mumick, I. S., Finkelstein, S., Pirahesh, H., and Ramakrishnan, R., Magic is Rel-
evant, in: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Atlantic City, N J, May 1990.

64. Mumick, I. S., Pirahesh, H., and Ramakrishnan, R., Duplicates and Aggregates in
Deductive Databases, in: Proceedings of the Sixteenth International Conference on
Very Large Databases, Aug. 1990.

65. Singh Mumick, I., Finkelstein, S. J., Pirahesh, H., and Ramakrishnan, R., Magic
conditions, in: Proceedings of the Ninth ACM Symposium on Principles of Database
Systems, Nashville, TN, Apr. 1990, pp. 314-330.

66. Naqvi, S., A Logic for Negation in Database Systems, in: J. Minker (ed.), Proceedings

146 R. RAMAKRISHNAN AND J. D. UL~LMAN

of the Workshop on Foundations of Deductive Databases and Logic Programming,
1986, pp. 378-387.

67. Naqvi, S. and Tsur, S., A Logical Language for Data and Knowledge Bases, Principles
of Computer Science, Computer Science Press, New York, 1989.

68. Naughton, J. F., One Sided Recursions, in: Proceedings of the ACM Symposium on
Principles of Database Systems, San Diego, CA, Mar. 1987, pp. 340 348.

69. Naughton, J. F., Compiling Separable Recursions, in: Proceedings of the SIGMOD
International Symposium on Management of Data, Chicago, IL, May 1988, pp. 312-
319.

70. Naughton, J. F. and Ramakrishnan, R., How to Forget the Past Without Repeat-
ing It, in: Proceedings of the Sixteenth International Conference on Very Large
Databases, Aug. 1990.

71. Naughton, J. F., Ramakrishnan, R., Sagiv, Y., and Ullman, J. D., Argument Reduc-
tion Through Factoring, in: Proceedings of the Fifteenth International Conference
on Very Large Databases, Amsterdam, The Netherlands, Aug. 1989, pp. 173 182.

72. Naughton, J. F. and Sagiv, Y., Minimizing Expansions of Recursions, in: H. Ait-
Kaci and M. Nivat (eds.), Resolution of Equations in Algebraic Structures, volume
1, San Diego, CA, 1989, pp. 321-349, Academic Press.

73. Nicolas, J.-M. and Syre, J. C., Natural Language Question-Answering and Au-
tomatic Deduction in the System Syntex, in: Proceedings of the IFIP Congress,
North-Holland, New York, 1974, pp. 595-599.

74. Nussbaum, M., Building a Deductive Database, Ablex Publishing Corporation, 1992.
75. Paige, R. and Schwatz, J. T., Reduction in Strength of High Level Operations,

in: Proceedings of the Fourth ACM Symposium on Principles of Programming Lan-
guages, 1977, pp. 58-71.

76. Pereira, F. C. N. and Warren, D. H. D., Parsing as Deduction, in: Proceedings of
the Twenty-First Annual Meeting of the Association for Computational Linguistics,
1983.

77. Phipps, G., Derr, M. A., and Ross, K. A., Glue-NAIL!: A Deductive Database
System, in: Proceedings of the ACM SIGMOD Conference on Management of Data,
1991, pp. 308 317.

78. Przymusinska, H. and Przymusinski, T. C., Weakly Perfect Model Semantics for
Logic Programs, in: Proceedings of the Fifth International Conference/Symposium
on Logic Programming, 1988.

79. Przymusinski, T. C., On the Declarative Semantics of Stratified Deductive Databases
in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming,
1988, pp. 193-216.

80. Przymusinski, T. C., Extended Stable-Semantics for Normal and Disjunctive Pro-
grams, in: Seventh International Conference on Logic Programming, 1990, pp. 459-
477.

81. Ramakrishnan, R., (ed.), Applications of Logic Databases, Kluwer Academic Pub-
lishers 1994.

82. Ramakrishnan, R., Magic Templates: A Spellbinding Approach to Logic Programs,
in: Proceedings of the International Conference on Logic Programming, Seattle, WA,
Aug. 1988, pp. 140-159.

83. Ramakrishnan, R., Beeri, C., and Krishnamurthy, R., Optimizing Existential Dat-
alog Queries, in: Proceedings of the ACM Symposium on Principles of Database

A SURVEY OF DEDUCTIVE DATABASE SYSTEMS 147

Systems, Austin~ TX, Mar. 1988, pp. 89-102.
84. Ramakrishnan, R., Sagiv, Y., Ullman, J. D., and Vardi, M., Proof-Tree Transforma-

tion Theorems and Their Applications, in: Proceedings of the ACM Symposium on
Principles of Database Systems, Philadelphia, PA, Mar. 1989.

85. Ramakrishnan, R., Srivastava, D., and Sudarshan, S., Rule Ordering in Bottom-Up
Fixpoint Evaluation of Logic Programs, in: Proceedings of the Sixteenth Interna-
tional Conference on Very Large Databases, Aug. 1990.

86. Ramakrishnan, R., Srivastava, D., and Sudarshan, S., Controlling the Search in
Bottom-Up Evaluation, in: Proceedings of the Joint International Conference and
Symposium on Logic Programming, 1992.

87. Ramakrishnan, R., Srivastava, D., and Sudarshan, S., CORAL: Control, Relations
and Logic, in: Proceedings of the International Conference on Very Large Databases,
1922.

88. Ramakrishnan, R., Srivastava, D., Sudarshan, S., and Seshadri, P., Implementation
of the CAROL Deductive Database System, in: Proceedings of the ACM SIGMOD
Conference on Management of Data, 1993.

89. Ramakrishnan, R. and Sudarshan, S., Top-Down vs. Bottom-Up Revisited, in: Pro-
ceedings of the International Logic Programming Symposium, 1991.

90. Robinson, J. A., A Machine-Oriented Logic Based on the Resolution Principle, Jour-
hal of the ACM 12:23-41 (1965).

91. Rohmer, J., Lescoeur, R., and Kerisit, J. M., The Alexander Method--A Tech-
nique for the Processing of Recursive Axioms in Deductive Database Queries, New
Generation Computing 4:522-528 (1986).

92. Ross, K., Modular Stratification and Magic Sets for DATALOG Programs with
Negation, in: Proceedings of the ACM Symposium on Principles of Database Sys-
terns, 1990, pp. 161-171.

93. Ross, K., Modular Acyclicity and Tail Recursion in Logic Programs, in: Proceedings
of the ACM Symposium on Principles of Database Systems, 1991.

94. Ross, K. and Sagiv, Y., Monotonic Aggregation in Deductive Databases, in: Proceed-
ings of the ACM Symposium on Principles on Database Systems, 1992, pp. 114 126.

95. Sacca, D. and Zaniolo, C., The Generalized Counting Methods for Recursive Logic
Queries, in: Proceedings of the First International Conference on Database Theory,
1986.

96. Sacca, D. and Zaniolo, C., Magic Counting Methods, in: Proceedings of the ACM
SIGMOD Symposium on the Management of Data, San Francisco, CA, June 1987,
pp. 49-59.

97. Sacca, D. and Zaniolo, C., Stable Models and Non-Determinism in Logic Programs
with Negation, in: Proceedings of the ACM Symposium on Principles of Database
Systems, 1990, pp. 205-217.

98. Sagiv, Y., Is There Anything Better than Magic?, in: Proceedings of the North
American Conference on Logic Programming, Austin, TX, 1990, pp. 235-254.

99. Sagiv, Y., Optimizing Datalog Programs, in: J. Minker (ed.), Foundations of Deduc-
tive Databases and Logic Programming, Los Altos, CA, Morgan Kaufmann, 1988,
pp. 659-698.

100. Sagonas, K., Swift, T., and Warren, D. S., Xsb as an Efficient Deductive Database
Engine, in: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Minneapolis, MN, May 1994, pp. 442-453.

148 R. RAMAKRISHNAN AND J. D. UI~MAN

101. Saraiya, Y., Linearizing Nonlinear Recursions in Polynomial Time, in: Proceedings
of the ACM SIGACT-SIGART-SIGMOD Symposium on Principles of Database
Systems, Philadelphia, PA, Mar. 1989, pp. 182-189.

102. Schmidt, H., Kiessling, W., Giintzer, U., and Bayer, R., Compiling Exploratory
and Goal-Directed Deduction into Sloppy Delta Iteration, in: IEEE International
Symposium on Logic Programming, 1987, pp. 234-243.

103. Schmidt, H., Meta-Level Control for Deductive Database Systems, Lecture Notes in
Computer Science, Number 479, Springer-Verlag, 1991.

104. Seki, H., On the Power on Alexander Templates, in: Proceedings of the ACM Sym-
posium on Principles of Database Systems, 1989, pp. 150-159.

105. Shapiro, S. E. and McKay, D. P., Inference with Recursive Rules, in: Proceedings of
the 1st Annual National Conference on Artificial Intelligence, 1980.

106. Sickel, S., A Search Technique for Clause Interconnectivity Graphs, IEEE Transac-
tions on Computers C-25(8):823-835 (1976).

107. Sippu, S. and Soisalon-Soinen, E., An Optimization Strategy for Recursive Queries
in Logic Databases, in: Proceedings of the Fourth International Conference on Data
Engineering, Los Angeles, CA, 1988.

108. Sripada, S. M., Design of the Chronobase Temporal Deductive Database System, in:
Proceedings International Workshop on the Infrastructure for Temporal Databases
1993.

109. Srivastava, D. and Ramakrishnan, R., Pushing Constraint Selections, in: Proceedings
of the Eleventh ACM Symposium on Principles of Database Systems, San Diego, CA,
June 1992.

ll0. Srivastava, D., Ramakrishnan, R., Sudarshan, S., and Seshadri, P., Coral++:
Adding Object-Orientation to a Logic Database Language, in: Proceedings of the
International Conference on Very Large Databases, 1993.

111. Sudarshan, S. and Ramakrishnan, R., Aggregation and Relevance in Deductive
Databases, in: Proceedings of the Seventeenth International Conference on Very
Large Databases, Sept. 1991.

112. Sudarshan, S. and Ramakrishnan, R., Optimizations of Bottom-Up Evaluation with
Non-Ground Terms, in: Proceedings of the International Logic Programming Sym-
posium, 1993.

113. Sudarshan, S., Srivasta,~a, D., Ramakrishnan, R., and Beeri, C., Extending the
Well-Founded and Valid Model Semantics for Aggregation, in: Proceedings of the
International Logic Programming Symposium, 1993.

114. Sudarshan, S., Srivastava, D., Ramakrishnan, R., and Naughton, J., Space Opti-
mization in the Bottom-Up Evaluation of Logic Programs, in: Proceedings of the
ACM SIGMOD Conference on Management of Data, 1991.

115. Tamaki, H. and Sato, T., OLD Resolution with Tabulation, in: Proceedings of the
Third International Conference on Logic Programming, 1986, pp. 84-98. (Lecture
Notes in Computer Science 225, Springer-Verlag).

116. Tsur, S., Deductive Databases in Action, in: Proceedings of the Tenth ACM Sympo-
sium on Principles of Database Systems, 1991, pp. 142-153.

117. Tsur S. and Zaniolo, C., LDL: A Logic-Based Data-Language, in: Proceedings of the
Twelfth International Conference on Very Large Data Bases, Kyoto, Japan, Aug.
1986, pp. 33-41.

118. Ullman, J. D., Implementation of Logic Query Languages for Databases, ACM

A SUR~JEY OF DEDUCTIVE DATABASE SYSTEMS 149

Transactions on Database Systems 10(4):289-321 (Sept. 1985).
119. Ullman, J. D., Principles of Database and Knowledge-Base Systems, volume 2, Com-

puter Science Press, 1988.
120. Ullman, J. D., Principles of Database and Knowledge-Base Systems, volume 1, Com-

puter Science Press, 1988.
121. Ullman, J. D., Bottom-Up Beats Top-Down for Datalog, in: Proceedings of the

Eighth CM Symposium on Principles of Database Systems, Philadelphia, PA, Mar.
1989, pp. 140 149.

122. Vaghani, J., Ramamohanarao, K., Kemp. D. B., Somogyi, Z., and Stucky, P. J.,
Design Overview of the Aditi Deductive Database System, in: Proceedings of the
Seventh International Conference on Data Engineering, Apr. 1991, pp. 240 247.

123. van Emden, M. H. and Kowalski, R. A., The Semantics of Predicate Logic as a
Programming Language, Journal of the ACM 23(4):733 742 (Oct. 1976).

124. Van Gelder, A., Negation as Failure Using Tight Derivations for General Logic
Programs, in: Proceedings of the Symposium on Logic Programming, 1986, pp. 127-
139.

L25. Van Gelder, A., Negation as Failure Using Tight Derivations for General Logic
Programs, Journal of Logic Programming 6(1):109-133 (1989).

126. Van Gelder, A., The Well-Founded Semantics of Aggregation, in: Proceedings of the
ACM Symposium on Principles of Database Systems, 1992, pp. 127-138.

127. Van Gelder, A., The Alternating Fixpoint of Logic Programs with Negation, Journal
of Computer and System Sciences 41(1):185 221 (1993).

128. Van Gelder, A., Ross, K., and Schlipf, J. S., The Well-Founded Semantics for General
Logic Programs, Journal of he ACM 38(3):620 650 (1991).

129. Vieille, L., Bayer, P., and Kiichenhoff, V., Integrity Checking' and Materialized
Views Handling by Update Propagation in the EKS-V1 System! Techn!cal Report,
CERMICS--Ecole Nationale Des Ponts Et Chaussees, France, June 1991, Rapport
de Recherche, CERMICS 91.1. ' "

130. Vieille, L., Recursive Axioms in Deductive Databases: The Query-Subquery Ap-
proach, in: Proceedings of the First International Conference on Export Database
Systems, Charleston, SC, 1986, pp. 179 193.

131. Vieille, L., Database Complete Proof Procedures Based on SLD-Resolution, in: Pro-
ceedings of the Fourth International Conference on Logic Programming, 1987, pp.
74-103.

132. Warren, D. S., Memoing for Logic Programs, Communzcations of the ACM35(3):93-
111 (Mar. 1992).

133. Warren, D. S., The XWAM: A Machine that Integrates Prolog and Deductive
Database Query Evaluation, Technical Report 89/25, Department of Computer Sci-
ence, SUNY at Stony Brook, Oct. 1989.

134. Zaniolo, C., Arni, N., and Ong, K., Negation and Aggregates in Recursive Rules: The
ldl++ Approach, in: Proc. Intl. Conf. on Deductive and Object-Oriented Databases,
Phoenix, AZ, 1993.

135. Zhang, W., Yu, C. T., and Troy, D., A Necessary and Sufficient Condition to Lin-
earize Doubly Recursive Programs in Logic Databases, Unpublished Manuscript,
Department of EECS, University of Illinois at Chicago, 1988.

