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D A T A B A S E  S Y S T E M S  

RAGHU R A M A K R I S H N A N  AND JEFFREY D. ULLMAN 

The area of deductive databases has matured in recent years, and it now 
seems appropriate  to reflect upon what has been achieved and what  the 
future holds. In this paper, we provide an overview of the area, with a focus 
on implementat ion techniques, and briefly describe a number of projects 
tha t  have led to implemented systems. 

1. I N T R O D U C T I O N  

Deductive database systems are database management  systems whose query lan- 
guage and (usually) storage structure are designed around a logical model of data. 
As relations are naturally thought of as the "value" of a logical predicate, and re- 
lational languages such as SQL are syntactic sugarings of a limited form of logical 
expression, it is easy to see deductive database systems as an advanced form of 
relational systems. 

Deductive systems are not the only class of systems with a claim to being an 
extension of relational systems. The deductive systems do, however, share with the 
relational systems the important  property of being declarative, that  is, of allowing 
the user to query or update  by saying what he or she wants, rather than how to per- 
form the operation. Declarativeness is now being recognized as an important  driver 
of the success of relational systems. As a result, we see deductive database technol- 
ogy, and the declarativeness it engenders, infiltrating other branches of database 
systems, especially the object-oriented world, where it is becoming increasingly 
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important to interface object-oriented and logical paradigms in so-called DOOD 
(Declarative and Object-Oriented Database) systems. The increased power of de- 
ductive languages, in comparison to conventional database query languages such 
as SQL, is important in a variety of application domains, including decision sup- 
port, financial analysis, scientific modeling, various applications of transitive closure 
(e.g., bill-of-materials, path problems), language analysis, and parsing. (See [81] for 
a collection of articles on applications of deductive systems.) Deductive database 
systems are best suited for applications in which a large amount of data must be 
accessed and complex queries must be supported. 

In this survey, we look at the key technological advances that led to the successful 
implementation of deductive database systems. As with the relational systems 
earlier, many of the problems concern code optimization, the ability of the system 
to infer from the declarative statement of what is wanted an efficient plan for 
executing the query or other operations on the data. Another important  thrust  
has been the problem of coping with negation or nonmonotonic reasoning, where 
classical logic does not offer, through the conventional means of logical deduction, 
an adequate definition of what some very natural logical statements "mean" to the 
programmer. 

This survey is not intended to be comprehensive; for example, we have not 
touched upon several important topics that have been explored actively in the 
literature, such as coupling existing Prolog and database systems, integrity con- 
straint checking, parallel evaluation, theoretical results on complexity and decid- 
ability, many extensions of the Horn-clause paradigm (e.g., disjunctive databases, 
object-oriented data models), updates, collaborative answers, and many specialized 
approaches to evaluation of certain classes of programs (e.g., bounded recursion, 
"chain-like" queries, transitive-closure-related queries, semantic query optimiza- 
tion). Several interesting results have been obtained in these areas, but we have 
chosen to limit the focus of this paper. Articles on many of these topics can be 
found in [57]. 

1.1. Logic Programming and Databases 

The current crop of deductive systems drew inspiration from programming language 
research, in particular, logic programming systems such as Prolog. In a sense, de- 
ductive systems are an at tempt to adapt Prolog, which has a "small-data" view of 
the world, to a "large-data" world. (Equally, one could think of deductive systems 
as an a t tempt  to extend relational database systems; indeed, this is the more com- 
mon view.) Prolog implementations have focused, as is typical for programming 
languages, on main-memory execution. There are two points to consider: 

• Prolog's depth-first evaluation strategy leads to infinite loops, even for positive 
programs and even in the absence of function symbols or arithmetic. In 
the presence of large volumes of data, operational reasoning is not desirable, 
and a higher premium is placed upon completeness and termination of the 
evaluation method. 

• In a typical database application, the amount of data is sufficiently large that  
much of it is oil secondary storage. Efficient access to these data  is crucial to 
good performance. 
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The first problem is adequately addressed by memoing extensions to Prolog 
evaluation. For example, one can efficiently extend the widely used Warren abstract 
machine Prolog architecture [133]. 

The second problem turns out to be harder. The key to accessing disk data  
efficiently is to utilize the set-oriented nature of typical database operations, and to 
tailor both the clustering of data on disk and the management of buffers in order to 
minimize the number of pages fetched from disk. Prolog's tuple-at-a-time evaluation 
strategy severely curtails the implementor's ability to minimize disk accesses by 
reordering operations. The situation can thus be summarized as follows: Prolog 
systems evaluate logic programs efficiently in main-memory, but are tuple-at-a-time, 
and therefore inefficient with respect to disk accesses. In contrast, database systems 
implement only a nonrecursive subset of logic programs (essentially described by 
relational algebra), but do so efficiently with respect to disk accesses. 

The goal of deductive databases is to deal with a superset of relational algebra 
that  includes support for recursion in a way that  permits efficient handling of disk 
data. Evaluation strategies should retain Prolog's goal-directed flavor, but be more 
set-at-a-time. There are two aspects to set-orientation: 

• The run-time computation should utilize traditional relational operations such 
as selects, projects, joins, and unions; thus, conventional database processing 
techniques can be utilized. 

• The overall computation should be organized so as to make as many oper- 
ations as possible (logically) concurrent, thereby creating more flexibility in 
terms of reordering operations. In particular, it is desirable to generate and 
process sets of goals, rather than proceed one (sub) goal at a time. 

Handling of disk-resident data can be addressed by building Prolog systems that  
support  persistent data (while retaining the usual evaluation strategy) or by cou- 
pling existing Prolog and database systems. These approaches have the drawback 
that  the interface to the disk data, or database system, becomes a potential tuple- 
at-a-time bottleneck. Alternatively, we can develop new technology and systems to 
deal with the requirements of deductive databases; this is the focus of the present 
paper. 

2. NOTATION,  DEFINITIONS,  A N D  SOME BASIC C O N C E P T S  

Deductive database systems divide their information into two categories: 

1. Data, or facts, that  are normally represented by a predicate with constant 
arguments (by a ground atom). For example, the fact parent (joe, sue), means 
that  Sue is a parent of Joe. Here, parent is the name of a predicate, and this 
predicate is represented extensionally, that  is, by storing in the database a 
relation of all the true tuples for this predicate. Thus, (joe, sue) would be 
one of the tuples in the stored relation. 

2. Rules, or program, which are normally written in Prolog-style notation as 

P :  - - q l , - . . , q n -  

This rule is read declaratively as "ql and q2 and . . .  and q,~ implies p." Each 
o fp  (the head) and the qis (the subgoals of the body) are atomic formulas (also 
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referred to as literals), consisting of a predicate applied to terms, which are 
either constants,  variables, or function symbols applied to terms. P rograms  in 
which terms are either constants  or variables are often referred to as Datalog 
programs. The  da ta  are often referred to as the E D B ,  and the rules as the 
I D B .  1 Following Prolog convention, we use names beginning with lower- 
case letters for predicates, function symbols, and constants,  while variables 
are names beginning with an upper-case letter. In later sections, we also 
consider programs tha t  contain features like negation and aggregation (e.g., 
sum) operat ions applied to subgoals. 

Example 2.1. Consider the following program. 

s g ( X , Y )  : - f l a t ( X , Y ) .  

sg(X, Y) : - ~p(x,  v),  sg(u, v) ,  down(V, Y). 

Here, sg is a predicate ("same-generat ion") ,  and the head of each of the  two 
rules is the atomic formula p(X,  Y) .  X and Y are variables. The  other  predicates 
found in the rules are fiat, up, and down. These are presumably  stored extensionally, 
while the relation for sg is intensional, tha t  is, defined only by the rules. Intensional  
predicates play a role similar to views in conventional da tabase  systems, a l though 
we expect tha t  in deductive applications, there will be large numbers  of intensional 
predicates and rules defining them, far more than  the number  of views defined in 
typical  database applications. 

The  first rule can be interpreted as saying tha t  individuals X and Y are at the 
same generation if they are related by the predicate fiat, tha t  is, if there is a tuple 
(X, Y) in the relation for fiat. The second rule says tha t  X and Y are also at the 
same generation if there are individuals U and V such tha t  

1. X and U are related by the up predicate 
2. U and V are at the same generation 
3. V and Y are related by the down predicate. 

These rules thus define the notion of being at the same generat ion recursively. 
Since common implementat ions of SQL do not suppor t  general recursions such as 
this example wi thout  going to a host- language program, we see one of the impor-  
tan t  extensions of deductive systems: the ability to suppor t  declarative, recursive 
queries. 

The  opt imizat ion of recursive queries has been an active research area, and has 
often focused on some impor tan t  classes of recursion. We say tha t  a predicate  p 
depends upon a predicate q - - n o t  necessarily distinct from p ~ i f  some rule with p in 
the head has a subgoal whose predicate either is q or (recursively) depends on q. If  
p depends upon q and q depends upon p, p and q are said to be mutually recursive. 
A program is said to be linear recursive if each rule contains at  most  one subgoal 
whose predicate is mutual ly  recursive with the head predicate. 2 

1 Extensional and intensional databases. 
2Sometimes, a more restrictive definition is used, requiring that no two distinct predicates can 

be mutually recursive, or even that there be at most one recursive rule in the program. We shall 
not worry about such distinctions. 
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3. O P T I M I Z A T I O N  T E C H N I Q U E S  

Perhaps the hardest problem in the implementation of deductive database systems 
is designing the query optimizer. While for nonrecursive rules, the optimization 
problem is similar to that  of conventional relational optimization, the presence 
of recursive rules opens up a variety of new options and problems. There is an 
extensive li terature on the subject, and we shall a t tempt  here to give only the most 
basic ideas and motivation. 

3.1. Magic Sets 

The problem addressed by the magic-sets rule rewriting technique is that  frequently 
a query asks not for the entire relation corresponding to an intensional predicate, 
but  for a small subset. An example would be a query like sg (john, Z),  that  is, "who 
is at the same generation as John," asked of the predicate defined in Example 1. It  
is important  tha t  we answer this query by examining only the part  of the database 
tha t  involves individuals somehow connected to John. 

A top-down, or backward-chaining search would start  from the query as a goal 
and use the rules from head to body to create more goals, and none of these goals 
would be irrelevant to the query, although some may cause us to explore paths 
tha t  happen to "dead end" because data  that  would lead to a solution to the query 
happen not to be in the database. Prolog evaluation is the best known example 
of top-down evaluation. However, the Prolog algorithm, like all purely top-down 
approaches, suffers from some problems. It  is prone to recursive loops, it may 
perform repeated computat ion of some subgoals, and it is often hard to tell tha t  
all solutions to the query goal have been found. 

On the other hand, a bot tom-up or forward-chaining search, working from the 
bodies of the rules to the heads, would cause us to infer sg facts tha t  would never 
even be considered in the top-down search. Yet, bot tom-up evaluation is desir- 
able because it avoids the problems of looping and repeated computat ion tha t  are 
inherent in the top-down approach. Also, bot tom-up approaches allow us to use 
set-at-a- t ime operations like relational joins, which may be made efficient for disk- 
resident data,  while the pure top-down methods use tuple-at-a-t ime operations. 

Magic-sets is a technique that  allows us to rewrite the rules for each query form 
(i.e., which arguments of the predicate, are bound to constants, and which are 
variable), so tha t  the advantages of top-down and bot tom-up methods are com- 
bined. Tha t  is, we get the focus inherent in top-down evaluation combined with 
the looping-freedom, easy termination testing, and efficient evaluation of bot tom-up 
evaluation. Magic-sets is a rule-rewriting technique. We shall not give the method, 
of which many  variations are known and used in practice. [119] contains an ex- 
planation of the basic techniques, and the following example should suggest the 
idea. 

Example 3.1. Given the rules of Example 1, together with the query sg(john,  Z), 
a typical magic-sets t ransformation of the rules would be 

sg(X,  Y )  : - magic_sg(X),  f l a t ( X , Y ) .  

sg( X,  Y )  : - magic_sg( X ) , up(X,  U), sg( U, V ), down(V, Y ). 

mayic_sg(V) : -  magic_sg(X) ,up(X ,U) .  

magic_sg(john). 
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Intuitively, the magic_sg facts corresponds to queries or subgoals. The definition 
of the magic_sg predicate mimics how goals are generated in a top-down evaluation. 
The set of magic_sg facts is used as a "filter" in the rules defining sg, to avoid 
generating facts that  are not answers to some subgoal. Thus, a purely bottom- 
up, forward chaining evaluation of the rewritten program achieves a restriction of 
search similar to that  achieved by top-down evaluation of the original program. 

The original paper on magic sets was [7], and its extension to general programs 
was in [14]. Independently, the article [91] described the "Alexander method," 
which is essentially the "generalized supplementary magic sets method" of [14], 
for the case of left-to-right evaluation within rules. There are a number of other 
approaches optimizing rules that  had similar effects without rewriting rules. These 
include Early deduction [76], Query subquery [131, 130], Sygraf [52], and related 
tabulation techniques [29] (see also the survey [132]). Article [18] discusses how 
all of these ideas are related. As shown in [14, 18, 82, 104], the magic sets and 
Alexander methods perform the same set of inferences as corresponding top-down 
methods such as query subquery. 

While the magic-sets technique was originally developed to deal with recursive 
queries, it is clearly applicable to nonrecursive queries as well. Indeed, it has been 
adapted to deal with SQL queries (which contain features such as grouping, aggre- 
gation, arithmetic conditions, and multiset relations that  are not present in pure 
logic queries), and found to be superior to techniques used in commercial database 
systems for nonrecursive "nested" SQL queries [63]. 

Other variations of magic-sets include minimagic [96], variants for propagating 
arithmetic constraints as selections [5, 65, 109], a variant that  can mimic the tail- 
recursion optimization of Prolog systems [93], and magic templates [82], in which 
tuples with variables in them are used to represent related facts succinctly. (Seki 
generalized the Alexander method similarly [104].) This technique or a technique 
from [121] are needed to guarantee that the running time of the transformed rules 
is no greater than that of top-down evaluation of Datalog programs. The results of 
[121], which introduced a detailed cost model for comparing top-down and bottom- 
up evaluation methods, are extended to general programs in [89, 112]. In [112], it 
is shown that  the running time of the transformed rules (using a somewhat refined 
version of the magic templates algorithm) for general logic programs is no more than 
O(tloglogt) where top-down evaluation takes time O(t). (Of course, Prolog-style 
evaluation is likely to be faster in practice for many programs.) 

3. 2. Other Rule-Rewriting Techniques 

There are a number of other approaches to optimization that  sometimes yield bet- 
ter performance than magic-sets. These optimizations include the counting algo- 
rithm [7, 95, 14], the factoring optimization [71, 45], techniques for deleting redun- 
dant rules and literals [72, 99], techniques by which "existential" queries (queries 
for which a single answer--any answer suffices) can be optimized [83], and "en- 
velopes" [107, 98]. A number of researchers [41, 135, 101, 84] have studied how 
to transform a program that  contains nonlinear rules into an equivalent one that  
contains only linear rules. 
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3.3. Iterative Fixpoint Evaluation 

Most rule-rewriting techniques like magic-sets expect implementation of the rewrit- 
ten rules by a bot tom-up technique, where starting with the facts in the database,  
we repeatedly evaluate the bodies of the rules with whatever facts are known (in- 
cluding facts for the intensional predicates) ancl infer what facts we can from the 
heads of the rules. This approach is called naive evaluation. 

We can improve the efficiency of this algorithm by a simple "trick." If in some 
round of the repeated evaluation of the bodies we discover a new fact f ,  then we 
umst have used, for at least one of the subgoals in the utilized rule, a fact that  
was discovered on the previous round. For if not, then f itself would have been 
discovered in a previous round. We may thus reorganize the substitution of facts 
for the subgoals so that  at least one of the subgoals is replaced by a fact tha t  was 
discovered in the previous round. The details of this algorithm are explained in 
[120]. 

Example 3. 2. Consider the same-generation rules of Example 1. The first rule has 
a body, f la t (X,  Y),  that  never changes, so after the first round, it can never yield 
any new s 9 facts. The second rule's body can only have new facts for the sg(U, V) 
subgoal; the up(X, U) and down(V, Y)  subgoals are extensional and do not change 
during the iteration. Thus, we can, on each round, use only the new sg facts from 
the previous round, along with the full up and down relations. Since, in general, 
only a small fraction of the s9 facts will be new on any one round, we significantly 
reduce the amount of work required. 

A number of researchers have independently proposed this evaluation technique. 
[30, 75, 9, 6, 4]. The formulation presented in [4] is probably the most widely used. 
It  is now known widely as seminaive evaluation. Several refinements and variations 
of the basic technique have been studied, e.g., [37, 85, 103, 102]. 

The fixpoint evaluation of a logic program can also be refined by taking certain 
algebraic properties of the program into consideration. Such refinements, and tech- 
niques for detecting when they are applicable, have been investigated by several 
researchers [39, 41, 55, 69, 84]. 

4. E X T E N S I O N S  O F  H O R N - C L A U S E  P R O G R A M S  

4.1. Negation 

A deductive database query language can be enhanced by permitt ing negated sub- 
goals in the bodies of rules. However, we lose an important  property of our rules. 
When rules have the form introduced in Section 2, there is a unique minimal model 
of the rules and data. A model of a program is a set of facts such tha t  for any rule, 
replacing body literals by facts in the model results in a head fact that  is also in 
the model. Thus, in the context of a model, a rule can be understood as saying, 
essentially, "if the body is true, the head is true." A minimal model is a model such 
tha t  no subset is a model. The existence of a unique minimal model, or least model, 
is clearly a fundamental  and desirable property. Indeed, this least model is the one 
computed by naive or seminaive evaluation, as discussed in Section 3.3. Intuitively, 
we expect tha t  the programmer had in mind the least model when he or site wrote 
the logic program. However, in the presence of negated literals, a program may not 
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have a least model. 

Example 4.1. The program 
p(a) ~-- ~p(b). 

has two minimal models: {p(a)} and {p(b)}. 

The meaning of a program with negation is usually given by some "intended" 
model ([20, 2, 79, 78, 35, 92, 80, 128], among others). 3 The challenge is to develop 
algorithms for choosing an intended model that 

1. Makes sense to the user of the rules, and 
2. Allows us to answer queries about the model efficiently. In particular, it is 

desirable that  it works well with the magic-sets transformation, in the sense 
that  we can modify the rules by some suitable generalization of magic-sets, 
and the resulting rules will allow (only) the relevant portion of the selected 
model to be computed efficiently. (Alternatively, other efficient evaluation 
techniques must be developed.) 

We note that relying upon such an intended model in general results in a treat- 
ment of negation that  differs from classical logic. In Example 1, we just saw that  
choosing one of the two minimal models over the other cannot be justified in terms 
of classical logic since the rule is logically equivalent to p(a) V p(b). One important  
class of negation that has been extensively studied is stratified negation [20, 2, 125, 
66]. A program is stratified if there is no recursion through negation. Programs in 
this class have a very intuitive semantics and can also be efficiently evaluated [12, 
48, 3]. The following example describes a stratified program. 

Example 4.2. Consider the following program P2: 

rl  : anc(X, Y) *-- par(X, Y). 

r 2 :  anc(X, Y) ~ par(X, Z), anc(Z, Y). 

r 3 :  noeyc(X, Y) ~-- anc(X, Y), ~anc(Y, X). 

Intuitively, this program is stratified because the definition of the predicate nocyc 
depends (negatively on) the definition of onc, but the definition of anc does not 
depend on the definition of nocyc at all. 

A bottom-up evaluation of P2 would first compute a fixpoint of rules 7"1 and r2 
(the rules defining anc). Rule r3 is applied only when the all anc facts are known. 

A natural extension of stratified programs is the class of locally stratified pro- 
grams [79]. Intuitively, a program P is locally stratified for a given database if, 
when we substitute constants for variables in all possible ways, the resulting in- 
stantiated rules do not have any reeursion through negation. Local stratification 
has been extended to modular stratification in [92] (see also [17]). A program P is 
said to be modularly stratified if each strongly connected component (SCC) of P is 

3Clark's completed pTvgram and Reiter 's closed world assumption approaches do not fall into 
this category. 
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locally stratified after removing instantiated rules containing literals tha t  are false 
in lower SCCs. 

Example 4.3. Consider the following program: 

r l :  even(O). 

r2 : even(s(X))  even(X). 

This program can be seen to be locally stratified, even though the predicate even 
depends on itself negatively. The reason is that  when we substi tute any value, say 
x0, for X,  rule r2 becomes 

even(s(x0))  even(x0). 

Evidently, the use of even in the body has fewer uses of the fllnction symbol s than  
the use in the head, so no proposition even(s(xo)) can depend negatively on itself. 

Consider the following variant of the above program: 

7"1 :even(O) 

r 2 :  even(X) *-- suee(X, Y), ~even(Y). 

suet(l, 0). suee(2, 1). suce(3, 2). 

Since rule r2 can be instantiated with the same value for X and Y, this program 
is not locally stratified. However, it is modularly stratified. The evaluation of the 
magic-sets t ransformation of this class of programs has also been considered in the 
li terature [17, 92, 46, 86]. 

The well-founded model [128] is a general approach to assigning semantics to a 
logic program tha t  generalizes the approaches based on stratification. The well- 
founded model of a program can be 3-valued, assigning the t ru th  value "unknown" 
to some atoms. However, it coincides with the intended (2-valued) model for modu- 
larly stratified programs. Evaluation of well-founded programs is considered in [23, 
61]. The former is a memoing variation of a top-down evaluation, and the latter 
adapts  the magic-sets method; both rely upon the alternating fixpoint formulation 
[127]. Another approach to negation is the inflationary fixpoint semantics proposed 
in [53], which we do not discuss here. 

4.2. Set- Grouping and Aggregation 

The following example illustrates the use of a grouping or aggregation construct {): 

set_of_grades(Class, (Grade)) ~-- student(Name, Class, Grade). 

We first (conceptually) create a set of tuples for set_of_grades using the rule 

set_of_grades(Class, Grade) ~-- student(Name, Class, Grade). 

Now, for each value of Class (in general, each value of those arguments of the head 
tha t  are not enclosed in the (}), we create a set containing all the corresponding 
values for Grade. For each value of Class, let this set be called ScZass; we then 
create a fact set_of_grades(Class, SClass). 
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Aggregate operations such as count, sum, rain, and max can be combined with 
(): 

max_grade_given(class, max(Grade}) ~-- student(Name, Class, Grade). 

As before, for each value of Class, we create a set. But now we apply the aggregate 
operation max to the set, and create a head fact using this value rather than the 
set itself. 4 A number of important  practical problems, such as bill-of-materials 
(generating various summaries of the contents of a complex part  in a pa r t - subpa r t  
hierarchy) and shortest-paths, involve a combination of aggregation and recursion. 

We observe that  before any head fact can be derived, all body facts that  can 
contribute to the multiset created in the head fact must be available. This intro- 
duces a situation that  is very similar to negation, and several approaches used for 
negation carry over to grouping. The first approach was to assume stratification of 
the program [12] (as was discussed for negation). Later approaches allowed weaker 
forms of stratification such as group stratification and magical stratification [64] or 
modular stratification [92] or extended the well-founded and stable models to deal 
with aggregates [47, 11]. 

In general, if a rule contains grouping in the head, the multiset created by group- 
ing must be fully determined before generating a fact using this rule. For example, 
if a rule contains p(X, (Y)) in the head, for a given X value, the complete multiset 
of associated Y values must be known in order to generate a p fact with this X 
value. In certain contexts, it is possible to generate and use p facts in which the 
multiset of Y values is incomplete without affecting the final answer to the user 's 
query. Monotonic programs, where a derivation using an incomplete set does not 
affect the final set of facts computed, were discussed in [27, 25, 64]. Ross and 
Sagiv [94] and Van Gelder [126] examine broader classes of such programs. A gen- 
eralization of the well-founded model semantics that  deals with such programs is 
presented in [113]. 

Ganguly et al. [34] and Sudarshan and Ramakrishnan [111] examine optimiza- 
tions of programs that  use aggregation. 

5. A N  H I S T O R I C A L  O V E R V I E W  O F  D E D U C T I V E  D A T A B A S E S  

The origins of deductive databases can be traced back to work in automated the- 
orem proving and, later, logic programming. In interesting surveys of the early 
development of the field, Gallaire, Minker, and Nicolas [38, 58] suggest that  Green 
and Raphael [36] were the first to recognize the connection between theorem prov- 
ing and deduction in databases. They developed a series of question-answering 
systems that  used a version of Robinson's resolution principle [90], demonstrat ing 
that  deduction could be carried out systematically in a database context. 5 

Other early systems included MRPPS,  SYNTEX, DEDUCE-2,  and DADM. 
MRPPS was an interpretive system developed at Maryland by Minker's group from 
1970 through 1978 that  explored several search procedures, indexing techniques, 

4The 0 construct  is a generalization of SQL's  group-by construct .  It is defined to generate a 
nested set of values in LDL, where it was Originally proposed. Defining it to generate a nested 
multiset of values, as in CORAL, brings it closer to the SQL group-by construct.  

5Cordell Green received a Grace Murray Hopper  award from the ACM for his work. 
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and semantic query optimization. One of the first papers on processing recursiw~' 
queries was [59]; it contained the first description of bounded recursive queries, which 
are recursive queries that  can be replaced by nonreeursive equivalents. SYNTEX 
[73} was another early system for automatic deduction, and provided impetus for 
the organization of the Toulouse workshop (see below). DEDUCE was implemented 
at IBM in the mid-1970s [21], and supported left-linear recursive Horn-clause rules 
using a compiled approach. DADM [44] emphasized the distinction between EDB 
and IDB and studied the representation of the IDB in the form of "connection 
graphs"--closely related to Sickel's interconnectivity graphs [106]--to aid in the; 
development of query plans. 

A landmark workshop on logic and deductive databases was organized by Gallaire, 
Minker, and Nicolas at Toulouse in 1977, and several papers from the proceedings 
appeared in book form [33]. Reiter's influential paper on the closed world assump- 
tion (as well as a paper on compilation of rules) appeared in this book, as did Clark's 
paper on negation-as-failure and a paper by Nicolas and Yazdanian on checking in- 
tegrity constraints. The workshop and the book brought together researchers in the 
area of logic and databases, and gave an identity to the field. (The workshop was 
also organized in subsequent years, with proceedings, and continued to influence 
the field.) 

In 1976, van Emden and Kowalski [123] showed that  the least fixpoint of a Horn- 
clause logic program coincided with its least Herbrand model. This provided a firm 
foundation for the semantics of logic programs, and especially, deductive databases 
since fixpoint computation is the operational semantics associated with deductive 
databases (at least, of those implemented using bottom-up evaluation). 

The early work focused largely on identifying suitable goals for the field, and on 
developing a semantics foundation. The next phase of development saw an increas- 
ing emphasis on the development of efficient query evaluation techniques. Henschen 
and Naqvi proposed one of the earliest efficient techniques for evaluating recursive 
queries in a database context [40]; earlier systems had used either resolution-based 
strategies not well suited to applications with large data  sets, or relatively simple 
techniques (essentially equivalent to naive fixpoint evaluation [22, 105]). Ullman's 
paper on the implementation framework based on "capture rules" [11811 focused 
attention upon the challenges in efficient evaluation of recursive queries, and noted 
that  issues such as nontermination had to be taken into account as well. 

The area of deductive databases, and in particular, recursive query processing, 
became very active in 1984 with the initiation of three major projects, two in the 
U.S.A. and one in Europe. The Nail! project at Stanford, the LDL project at 
MCC in Austin, and the deductive database project at ECRC all led to significant 
research contributions and the construction of prototype systems. The ECRC and 
LDL projects also represented the first major deductive database projects outside 
of universities. Although we do not address this issue, we note that  the use of this 
emerging technology in real-world applications is also progressing (see, e.gl, [116], 
and recent workshops at ICLP, ILPS, and other conferences). 

5.1. The Work at E C R C  

The research work at ECRC was led by J.-M. Nicolas. The initial phase of research 
(1984-1987) led to the study of algorithms and the development of early proto- 
types (QSQ/SLD-AL/QoSaQ/DedGin by L. Vieille [130, 131)), integrity check- 
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ing (Soundcheck b y  H. Decker) and a system that  explores consistency checking 
(Satchmo by R. Manthey and F. Bry) [16], a combination of deductive and object- 
oriented ideas (KB2 by M. Wallace), persistent Prolog (Educe by J. Bocca), and 
the BANG file system by M. Freeston [31]. A second phase (1988-1990) led to 
more functional prototypes: Megalog (1988 1990) by J. Bocca), DedGin* (1988- 
1989 by Vieille), EKS-V1 (1989-1990, also by Vieille). The EKS system supports 
integrity constraints [129], and also some forms of aggregation through recursion 
[54]. Bry's work on reconciling bottom-up and top-down algorithms [18] and ex- 
tending Magic Sets to programs with negation [17] was also carried out as part of 
the ECRC project. More recently, ECRC has been involved in an ongoing ESPRIT 
project called IDEA, and is developing a temporal deductive database system in its 
ChronoBase project [108]. It is anticipated that ChronoBase will be used for the 
development of a large real-world application from the airline industry, as part of 
a newly commenced ESPRIT project. 

An interesting spinoff of the research at ECRC is a project that  is currently un- 
derway at Groupe Bull to develop a commercial deductive, object-oriented database 
system. The deductive technology derives from the EKS prototype, but it incor- 
porates object-oriented features both at the architectural and language levels. In 
addition to a data model with objects and values not unlike that  of O2, it supports a 
data manipulation language with a Datalog-based declarative component (to write 
deduction rules and integrity constraints) and a more classical imperative compo- 
nent (to write methods and functions). It is built on a storage manager having 
many features in common with object-managers, rather than with more traditional 
relational data stores. 

5.2. The LDL Project 

The LDL project as MCC, also initiated in 1984, led to a number of important 
advances. By 1986, it was recognized that  combining Prolog with a relational 
database was an unsatisfactory solution, and a decision was made to develop a 
deductive database system based on bottom-up evaluation techniques [117]. During 
this period, there were a number of significant research developments including the 
development of evaluation algorithms (work on seminaive evaluation, Magic Sets, 
and Counting [7, 6, 15, 95, 96]), semantics for stratified negation and set-grouping 
[13], research into the issue of safety, or finiteness of answer sets, compilation of 
set-terms, generation of explanations of logic program evaluation, the treatment of 
updates in logical rules, and join order optimization. 

An initial prototype called EVE was developed in Prolog, producing target code 
in an extended relational language. The LDL prototype (also called SALAD), which 
was developed by 1988, and released with refinements from 1989 through 1991, 
was the first deductive database system that  was widely available. It supported 
stratified negation and set-terms, and was a compiled system that  produced C 
code [24]. It has been distributed to universities and to shareholder companies 
in the MCC consortium. A good presentation of the LDL language is in [67]. 
Subsequent research has focused on aggregate operations [34] and nondeterministic 
choice constructs (e.g., [97]). The LDL++ project at MCC is a direct successor to 
LDL, and was initiated in 1990. In addition to adopting a more interpretive style 
of evaluation, nonstratified negation and aggregation features have been explored 
[134], along with support for abstract data types. 
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5.3. The NAIL~ Project 

The NAIL! (Not Another Implementation of Logic!) project was started at Stan- 
ford in 1985. Following the plan laid out in [118], the initial goal was to study the 
optimization of logic using the database-oriented ~'all-solutions" model. In collab- 
oration with the MCC group, the first paper on Magic Sets [7] came out of this 
project, as did the first work on regular recursions [68]. The work on regular recur- 
sions was developed further in [71]. Many of the important contributions to coping 
with negation and aggregation in logical rules were also made by the project. Strat- 
ified negation [124], well-founded negation [128], and modularly stratified negation 
[92] were also developed in connection with this project. 

An initial prototype system [62] was built, but later abandoned because the 
purely declarative paradigm was found to be unworkable for many applications. 
The revised system uses a core language, called Glue, which is essentially single 
logical rules, with the power of SQL statements, wrapped in conventional language 
constructs such as loops, procedures, and modules. The original NAIL language be- 
comes in effect a view mechanism for Glue; it allows fully declarative specifications 
in situations where declarativeness is appropriate [77, 28]. 

5.4. Other Deductive Database Projects 

The Aditi project was initiated in 1988 at the University of Melbourne. The research 
contributions of this project include a formulation of seminaive evaluation that  is 
now widely used [4], adaptation of Magic Sets for stratified programs [3], optimiza- 
tion of right- and left-linear programs [45], parallelization, indexing techniques, and 
optimization of programs with constraints [5]. The work of the Aditi group was 
also driven by the development of their prototype system, which is notable for its 
emphasis on disk-resident relations. All relational operations are performed with 
relations assumed to be disk resident, and join techniques such as sort-merge and 
hash-join are used. An overview is provided in [122]. 6 

The ConceptBase system, developed since 1987 at the Universities of Passau 
and Aachen in jarke's group, seeks to combine deductive rules with a semantic data 
model based on Telos. The language aspects are presented in [43]. The system also 
provides support for integrity constraints; this is described in [42]. ConceptBase 
has been used in a number of applications at various universities in Europe, and is 
now being commercially developed. 

The CORAL project at U. Wisconsin, which was started in 1988, can also be 
traced to LDL. v The original impetus for the project was the development of the 
Magic Templates algorithm [82], which offered the potential to support nonground 
tuples. The research contributions included work on optimizing special classes of 
programs (notably, right- and left-linear programs) [71] (jointly with the Glue-Nail 
group), development of a multiset semantics for logic programs and optimizations 
dealing with duplicate checks [56], the first results on space-efficient bottom-up 
evaluation techniques [70, 1141, refinements of seminaive evaluation for programs 

6LDL.and L D L + +  are memory remdent systems, and CORAL suppor t s  disk-resident relations 
by building upon the EXODUS storage manager, without  providing additional join algori thms 
tailored to disk-resident relations. 

7Ramakrishnan,  who initiated the CORAL project, was involved in the LDL project until he 

moved to Wisconsin. 
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with large numbers of rules [85], evaluation of programs with aggregate operations 
[111], arithmetic constraints [109], modular-stratified negation [86], and nonground 
tuples [112]. The result that  bottom-up evaluation asymptotically dominates top- 
down evaluation for all Horn-clause programs was obtained as part  of this project 
[112]. A first prototype of the CORAL system was functional in 1990. The first 
widely available release of the system was in 1993. This version supported non- 
stratified aggregation and negation using an algorithm proposed in [86], provided 
high-level features for controlling evaluation, and provided support for nonground 
tuples. It is available freely, and is being further developed. A language overview 
is provided in [87], and the implementation is described in [88]. The extension to 
support object-oriented features, called Coral++,  is described in [110]. 

The DECLARE project at MAD Intelligent Systems, which ran from 1986 to 
1990 and was led by W. Kiessling, was perhaps the first a t tempt  to commercialize 
deductive databases. Given the focus on commercialization, it is understandable 
that  the research was not widely publicized, but the implemented system was quite 
sophisticated. It supported stratified negation and sets, and was implemented using 
Magic Sets and seminaive evaluation. Many variations of seminaive evaluation were 
implemented and evaluated as part of this work [50]. It also provided conventional 
database facilities such as crash recovery and concurrent transactions. 

The LOGRES project at Politecnico di Milano ran from 1989 to 1992. The 
prototype is built on top of an extended relational system (ALGRES), and is notable 
for its integration of an object-oriented data model with deductive rules. It is one 
of the first of the new family of "DOOD" (deductive, object-oriented database) 
systems. While the LOGRES project did not produce a practical prototype, the 
research has influenced the ongoing IDEA project, which aims to develop efficient 
prototype systems. 

The LOLA project at Technical University Muenchen, led by R. Bayer and 
U. Guentzer, ran from 1988 to 1992, and led to the development of a prototype sys- 
tem that  is used in a number of related projects. This is one of the more complete 
prototypes, and supports stratified negation and aggregation, disk-resident base 
relations, interfaces to commercial databases, integrity constraint maintenance, a 
module mechanism, and an explanation facility. It is available freely, and is being 
further developed. A notable research contribution of the LOLA group is the de- 
velopment of interesting refinements to seminaive evaluation. (Bayer, one of the 
leaders of the LOLA project, was also one of the initial proponents of seminaive 
evaluation [10].) 

The Starburst project at IBM Almaden was primarily involved with extensibility. 
but made important contributions to the development of Magic Sets for programs 
with SQL features like grouping, aggregation, and arithmetic selections [64 i. A 
performance study demonstrated that the techniques developed for dealing with 
recursive queries actually outperformed the techniques used in current relational 
database systems [63]. They have extended SQL with recursive view definitions, 
providing greater expressive power to SQL users, and utilizing the I /O optimiza- 
tion facilities of SQL implementations in a direct manner for recursive applications. 
They have also made contributions to the evaluation of left- and right-linear pro- 
g r a i n s .  

Another substantial implementation of a deductive database, using an evaluation 
strategy similar to QSQ, was carried out at Zurich during 1986-1990. This system, 
(:alted IISProlog, supported linear recursive programs, but was unfortunately never 
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widely known. While the research embodied in it is difficult to evaluate, due to the 
limited literature, it appears to have been a significant early effort [74]. 

Hy+  is an ongoing project at t h e  University of Toronto [26] that  was initiated 
in 1987 by A. Mendelzon, and is a successor to G+/GraphLog  [26]. The focus of 
the project is the class of path queries, and the goal is to develop high-level visual 
interfaces and query languages for this domain. While the project has not been 
focused on deductive databases in general, systems such as LDL and CORAL have 
been used as the underlying inference engine, and interesting results in the area of 
path queries have been developed. 

An interesting ongoing effort is the XSB project as StonyBrook, led by D. S. War- 
ren. They are developing a system that  supports modularly stratified negation and 
aggregation (plus a meta-interpreter for well-founded programs), nonground tuples, 
and disk-resident relations. The implementation is based on OLDT resolution [1151, 
a top-down evaluation with memoing, and is particularly well suited for integration 
with Prolog systems. (This is essentially the Extension Tables technique described 
in [29].) In fact, the WAM, a widely used abstract machine for implementing Prolog 
systems, has been adapted to support the meInoing top-down evahmtion used in 
XSB [133]. This is a tuple-at-a-time approach, but is shown to be faster than cur- 
rent implementations of systems like CORAL for in-memory computations [100]. 
This probably reflects differences in the underlying algorithms, as well as the imple- 
mentation techniques. Top-down evaluation with memoization, as we noted earlier, 
is very close to magic-sets based fixpoint evaluation in many respects. However, 
there are some important  differences. In order to make the computation more set- 
oriented, the magic-sets approach essentially separates the generation of goals from 
the generation of answers, and uses additional join operations to re-establish the 
connection between goals and the corresponding answers. In XSB, this overhead 
is avoided since the computation solves goals in a primarily depth-first manner, as 
in Prolog. For in-memory computations, where set-orientation is not critical, this 
is better. The results also underscore the importance of refining implementation 
techniques for fixpoint evaluation. For example,WAM style optimizations would 
considerably speed up in-memory execution for systems using fixpoint evahmtion. 

We note that  there are other projects, such as the RDL effort at INRIA, that  
have not focused upon deductive databases, but are closely related [49]. 

6. D E D U C T I V E  D A T A B A S E  S Y S T E M  I M P L E M E N T A T I O N S  

There have been a number of implementations of deductive databases. The results 
of a survey conducted by the authors over the Internet, presented below, indicate 
that  the extensive published research on deductive databases was accompanied by 
quite a large number of prototyping efforts, s 

SWe thank  the respondents  of the survey for their detailed comments.  The actual responses 
provide additional information about  the projects, and are available by ftp from ricotta.cs.wisc.edu. 
Since many of these sys tems are not currently distributed, we have not verified the information 
presented b e l o w ~ u r  sum m ary  is based upon mformation provided by the implementors.  
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Path Queries Stratified Stratified 
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Restricted Local Restricted Local 
Inflationary Stratified 
Semantics 
Stratified Computed 

Predicates 
Well-Founded Glue only 
Stratified Stratified 

General Well-Fonnded Modularly 
Stratified 

F I G U R E  1. Summary of prototypes, Part  I. 

6.1. Summary of Deductive Database Prototypes 

Figures 1 and 2 summarize some of the important  features of current deductive 
systems. In Figure 1, we compare the way these systems handle the following 
issues: 

1. Recursion. Most systems allow the rules to use general recursion. However, a 
new limit recursion to linear recursion or to restricted forms related to graph 
searching, such as transitive closure. 

2. Negation. Most systems allow negated subgoals in rules. When rules involve 
negation, there are normal many minimal fixpoints tha t  could be interpreted 
as the meaning of the rules, and the system has to select from among these 
possibilities one model that  is regarded as the intended model, against which 
queries will be answered. Section 4.1 discusses the principal approaches. 

3. Aggregation. A problem similar to negation comes up when aggregation (sum, 
average, etc.) is allowed in rules. More than one minimal model normally 
exists, and the system must select the appropriate model. See Section 4.2. 

The following issues are summarized in Figure 2. 

1. Updates. Logical rules do not, in principle, involve updating of the database.  
However, most systems have some approach to specifying updates,  either 
through special dictions in the rules or update  facilities outside the rule sys- 
tem. We have identified systems that  support  updates in logical rules by a 
"Yes" in the table. (Some limitations as to the order of evaluation are usually 
enforced with respect to rules containing updates.) 

2. Integrity Constraints. Some deductive systems allow logical rules that  serve as 
integrity constraints. Tha t  is, rather than defining IDB predicates, constraint 
rules express conditions that  cannot be violated by the data. 

3. Optimizations. Deductive systems need to provide some optimization of 
queries. Common techniques include Magic-Sets or similar techniques for 
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Name n up¢ 
Aditi 

COL No 
ConceptBase Yes 
CORAL Yes 

EKS-VI Yes 

I.,ogicBase No 

DECLARE No 

Hy+ No 

LDL, LDL++ Yes 

LOGRES Yes 
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X4 No 

Glu~Nail Glueonly 

Starburst No 
Y~R M~ 

I I Constraints I 
No No Magic sets, SN 

Join-order selection 
EDB, IDB Prolog 

No None Main memory ML 
Yes Magic sets, SN EDB only C,Prolog 
No Magic sets, SN EDB, IDB C, C++, 

Context Factoring Extensible 
Projection pushing 

Yes EDB, IDB Query-subquery, 
left/right linear 

EDB, IDB No "Chain-based 
evaluation" 

Pers~nt  
Prolog 
C, C++, 
SQL 

No Magic sets, SN EDB only C, 
Projection pushing Lisp 

No 

Magic sets, SN 
Left/right linear, 
Projection pushing, 
"Bushy depth-first" 

Main 
memory 
EDB only 

Prolog, LDL, 
CORAL, Smalltalk 
C, C++, 
SQL 

Yes Algebraic, SN EDB, IDB INFORMIX 
Yes Magic Sets, SN EDB TransBase (SQL) 

Projection pushing 
Join-order selection 

Yes None, EDB only Lisp 
Top-down eval. 

No Magic sets, SN EDB only None 
Right-linear 
Join-order selection 

No Magic sets, SN variant EDB, IDB Extensible 
Iml~mmml! 

]~ i G U R E  2. Summary  of prototypes, Part  II. 

4. 

5. 

combining the benefits of both top-down and bot tom-up processing, and sem- 
inaive evaluation for avoiding some redundant processing. A variety of other 
techniques are used by various systems, and we a t tempt  to summarize the 
principal techniques here. Quotation marks around a method indicate that  
the method has not been defined in this survey, and the reader should look 
at the source paper. 
Storage. Most systems allow EDB relations to be stored on disk, but some 
also store IDB relations in secondary storage. Supporting disk-resident data  
efficiently is a significant task. 
Interfaces. Most systems connect to one or more other languages or systems. 
Some of these connections are embedding of calls to the deductive system in 
another language, while other connections allow other languages or systems to 
be invoked from the deductive system. We have not, however, distinguished 
the direction of the call in this brief summary. Some systems use external 
language interfaces to provide ways in which the system can be customized 
for different applications (e.g., by adding new data  types, relation implemen- 
tations, etc.). We refer to this capability as extensibility; it is very useful for 
large applications. 

7. C O N C L U S I O N  

We have reviewed several results in the field of deductive databases, with an empha- 
sis on efficient evaluation techniques, and presented a summary  of several projects 
tha t  led to implemented systems. The main points to note are the following. 
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1. There  exist efficient evaluation methods  tha t  are sound and complete  with 
respect to an intuitive declarative semantics for large classes of programs 
with powerful features like negation and aggregation. 

2. Systems based upon these methods  are being developed, and offer good sup- 
por t  for rule-based applications. 

There  is also ongoing work tha t  seeks to combine the powerful query language ca- 
pabil i ty of deductive databases with features from object-oriented systems, and this 
will likely lead to a new generation of more powerful systems tha t  bring da tabase  
languages and programming languages closer to each other. 

The work of R. Ramakrishnan was supported by a David and Lucile Packard Foundation Fellow- 
ship in Science and Engineering, a Presidential Young Investigator Award, with matching grants 
from Digital Equipment Corporation, Tandem, and Xerox, and NSF Grant IRI-9011563. The work 
of J. D. Ullman was supported by ARO Grant DAAL03-91-G-0177, NSF Grant IRI-90-16358, and 
a grant from Mitsubishi Electric. 
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