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a b s t r a c t

A set of input vectors S is conclusive for a certain functionality if, for every comparator
network, correct functionality for all input vectors is implied by correct functionality
for all vectors in S. We consider four functionalities of comparator networks: sorting,
merging, sorting of bitonic vectors, and halving. For each of these functionalities, we
present two conclusive sets of minimal cardinality. The members of the first set are
restricted to be binary, while the members of the second set are unrestricted. For all the
above functionalities, except halving, the unrestricted conclusive set is much smaller than
the binary one.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The 0–1 principle introduced by Knuth [4] states that a comparator network is a sorting network if and only if it sorts
all binary inputs. Sorting is not the only functionality that comparator networks are useful for. Additional functionalities
include merging two sorted vectors, halving (i.e., separating 2j keys into the j lowest keys and the j highest keys), and
sorting restricted sets of vectors. For each of these functionalities, some variant or another of the 0–1 Principle [4] was
used for proving the correctness of the networks in question.
By the 0–1 Principle and its many variants, comparator networks ‘‘work properly’’ for all valid vectors if and only if they

‘‘work properly’’ for all binary valid vectors. For example, to verify the functionality of a sorting network with n inputs and
outputs, it is suffice to test all 2n binary vectors. Clearly, there is no need to test constant vectors (vectors, all of whose
keys are equal); hence, sorting can be verified by 2n − 2 vectors. Can sorting be verified by fewer binary vectors? A second
question lifts the binary restriction and asks: Can sorting be verified by even fewer vectors? Similar questions can be asked
for other functionalities.
This paper discusses four functionalities: Sorting, merging, bitonic1 sorting and halving. The first three functionalities are

similar — they all require the output to be sorted. The last functionality, halving, is significantly different from the former
ones and this reflects in our proofs and in our results.
We refer to a set of vectors that verifies a specific functionality as a conclusive set. So far, only binary vectors were

considered for conclusive sets. We introduce the usage of unrestricted vectors (e.g., vectors of natural numbers) for
conclusive sets. Interestingly, our main result is that smaller conclusive sets are possible if unrestricted vectors are allowed.
In addition, we prove lower bounds on the size of conclusive sets that imply the optimality of our constructions.
Table 1 summarizes our results. The first column in the table lists the four functionalities in question. (See Section 2.1 for

formal definitions.) The second column lists the minimal sizes of binary conclusive sets. The third column lists the minimal
sizes of unrestricted conclusive sets and the fourth column lists the type of vectors used in our unrestricted conclusive sets
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1 ‘Bitonic sorting’ means sorting all the bitonic vectors of a certain width. The term ‘bitonic’ is defined in Section 2.1.
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Table 1
Summary of results: sizes of conclusive sets for various functionalities.

Minimal size of binary conclusive set Minimal Size of unrestricted conclusive set Type of vectors in our minimal
unrestricted conclusive set

Sorting 2n − 2[4]
( n
dn/2e

)
covering vectors

Merging ( n2 + 1)
2
− 2[12] n

2 + 1 sandwiches
Bitonic Sorting (n− 1) · n[13] n unitonic permutations
Halving

( n
n/2

) ( n
n/2

)
balanced vectors

ofminimal size. In this table, as well as in the rest of this paper, n denotes thewidth of the network in question— the number
of keys processed by the network. In the cases of merging and halving, n is required to be even.
Consider the second column of Table 1. For the first three rows, the corresponding conclusive sets are simply all the valid

binary vectors, except the constant ones. The fact that these sets are conclusive is already known and references are given
in the table. However, the fact that these sets are of minimal size is a contribution of this paper. Note that the last entry in
this column, concerning halving, is significantly different from the first three entries. It is much smaller than the set of all
binary vectors which are valid and non-constant. All the above binary conclusive sets share the following property. They are
minimal in a very strong sense — each of them is a subset of any binary conclusive set for the same functionality.
Note that, unlike the binary case, the unrestricted conclusive sets ofminimal cardinality are not unique; itwill be apparent

that the same functionality may have several conclusive sets of minimal cardinality that are substantially different.
Consider the ratio between the minimal size of binary conclusive set and the minimal size of unrestricted conclusive set.

As discussed in Section 5, this ratio cannot exceed n− 1, for all functionalities addressed in this paper. We point to the two
extreme cases of bitonic sorting and halving. In the case of bitonic sorting, this ratio is n − 1. On the other hand, for the
functionality of halving, this ratio is 1; that is, no improvement is achieved by using unrestricted conclusive sets.
The main motivation for compact and elegant conclusive sets is simplification of the design and analysis of comparator

networks. We know of two examples in which conclusive sets were used to construct new networks with useful properties.
The first example concerns fast bitonic sorters of arbitrarywidth (not a power of two)whose depth is atmost dlog(n)e+3.

Such networks are constructed in [8] using the conclusive set of unitonic permutations introduced in Section 4.
The second example we know of concerns merging networks of minimal depth in which several of the outputs are

accelerated. That is, they are generated much faster than the other outputs. Such networks are constructed in [7] using
the elegant and compact conclusive set of sandwiches, presented in Section 4.1. A key lemma of this construction, which is
proved using sandwiches, is the following lemma:

Lemma 1. Let a = 〈a0, a1 . . . , aj−1〉 and b = 〈b0, b1 . . . , bj−1〉 be two sorted sequences of length j; let 0 < k < j and let
c = 〈max(a0, bk−1),max(a1, bk−2) . . .,max(ak−1, b0),min(ak, bj−1),min(ak+1, bj−2), . . . ,min(aj−1, bk)〉. Then the sequence
c is bitonic.

This lemma can be proved using (a variant of) the 0-1 Principle but this leads tomany special caseswhich need to be verified.
On the other hand, as demonstrated in [7], sandwiches provide a compact proof, having only two symmetric cases.
An additional benefit of small conclusive sets concerns Black Box testing of the functionality of a given network. In such

a test, all members of a conclusive set are fed into the network and the resulting vectors are examined. In this context, the
conclusive sets should be as small as possible.

Previous work. The main application of the 0–1 Principle is to simplify the design and proof of correctness of sorting and
merging networks. We review some of the applications of the 0–1 Principle from the literature. Miltarsen et. al. [12] and
Liszka and Batcher [10] used some variant of the 0–1 Principle to prove the correctness of a certainmerging network. Bender
and Williamson [2] used it to prove structure theorems for recursively constructed merging networks. Batcher and Lee [5]
used it to prove the correctness of a k-merger network whose input consists of k sorted vectors of equal length. Nakatani et.
al. [13] used it to prove the correctness of a bitonic sorter.

Organization. This paper is organized as follows. In Section 2, comparator networks are formally defined and various
functionalities of comparator networks are presented. In Section 3 the well-known 0–1 Principle for sorting networks is
presented along with some variants. These variants enable extending the 0–1 Principle to the functionalities presented in
Section 2.1. In Section 4 we present smaller conclusive sets for each of these functionalities. In Section 5 we prove lower
bounds on the sizes of binary and unrestricted conclusive sets. These lower bounds match the upper bounds presented in
Section 4.

2. Comparator networks

A comparator is a combinational device that sorts two keys. Namely, it has two incoming edges and it receives a key from
each one of them. It has two outgoing edges of distinct types; amin edge and amax edge. It transmits the minimal key on
themin edge and the maximal key on themax edge.
A comparator network (a.k.a. a network) is an acyclic network of these devices. See Fig. 1. In this figure, comparators are

denoted by circles, a Min edge is indicated by a hollow arrowhead, a Max edge is indicated by a solid arrowhead and an
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Fig. 1. A merging network of width 4 and depth 2.

input edge is denoted by an open arrowhead. Such a network receives a vector (sequence of keys) via its input edges and
produces a vector on its output edges.
Clearly, a network has the same number of input edges and output edges. To specify how an input sequence should be

fed into the network, the input edges are arranged as a sequence. Similarly, the output edges of a network are arranged as
a sequence to specify how the network’s output is interpreted as a sequence. Sometimes, the order of the input edges and
the order of the output edges are implied from the drawing (e.g., from top to bottom).
These networks are useful for performing operations such as merging or sorting on keys —members of a certain ordered

setK . For most applications, the exact nature of the keys and their number is not important, but this paper is an exception.
For most functionalities in question, a minimal conclusive set, for a network processing n keys, requires |K| ≥ n. A similar
phenomena is shown in [6]. That is, there are some interesting results which are sensitive to the size ofK . For definiteness,
we henceforth assume thatK = Qwhere Q is the set of rational numbers.

2.1. Functionality

A vector v = 〈v0, v1, . . . , vn−1〉 is a sequence of keys. The width of v is its length, n, and is denoted by |v|. Such a vector
can be fed into a network if it is of the appropriate width. As said, the input edges of a network are arranged as a sequence;
this specifies how a vector is fed into the network. Similarly, the output edges of a network are also arranged as a sequence;
this specifies how the network’s output is interpreted as a sequence.
This work discusses four functionalities and each of them is associated with a certain set of valid input vectors. To this

end, we define the following type of vectors. A vector w = 〈w0 . . . , wn−1〉 is ascending (a.k.a. sorted) if wi ≤ wj whenever
i ≤ j. Similarly, w is descending if wi ≥ wj whenever i ≤ j. A vector is ascending–descending if it is a concatenation of an
ascending vector and a descending vector. A vector is bitonic2 if it is a rotation of an ascending–descending vector.
Note that valid inputs to merging networks are different from valid inputs of other types of networks; namely, they

naturally consist of two sequences rather than a single one. Hence, we extend the concept of a vector. A vector may be not
only a single sequence but also an ordered pair of sequences. A vector v = 〈a, b〉 is bisorted if the two sequences, a and b, are
of equal width and are sorted. Note that the width of v equals |a| + |b|. Bisorted vectors (of the appropriate width) are the
valid input vectors of a merging network. By our definition, the input of a comparator network is a single sequence rather
than two sequences. To overcome this, a bisorted vector is combined, in a fixed manner, into a single sequence so it can
serve as an input of a comparator network; this can be done, for example, by concatenation.
The four functionalities discussed in this paper are as follows:

sorting: A sorting network is a network that sorts all its input vectors.
bitonic sorting: A bitonic sorter is a network that sorts all its bitonic input vectors.
merging: Amerging network is a network that sorts every bisorted vector.
halving: A halver receives an even number of keys, and separates them into two sets of equal size. One set contains the

lowest keys and the other set contains the highest keys. To this end, the output edges are divided into two (equal
size) sets. For example, this division may conform to the order of the output edges as follows. The initial half of
the output edges transmit the lowest keys, while the second half of the output edges transmit the highest keys.
Following this convention, we say that a vector of even width n is halved if every key in the first n/2 positions is
lower or equal to any key in the last n/2 positions.

3. The 0–1 Principle

A 0–1 vector (binary vector) contains only the keys 0 and 1. The classical 0–1 Principle concerns sorting networks and is
as follows:

Theorem 2 (The 0–1 Principle, [4]). A comparator network is a sorting network if and only if it sorts every 0–1 vector (of the
appropriate width).

2 The term ‘bitonic’ was coined by Batcher [1] and we follow his terminology. We caution the reader that some authors use the same term with other
meanings.
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The next lemma (Lemma 4) is a stronger variant of the 0–1 Principle that concerns a single vector rather than all the
vectors. Namely, it says that a network sorts a vector v if and only if it sorts a certain set of 0–1 vectors associated with v.
The lemma uses the following notation.
Definition 3.

• A vector y is an image of a vector x (or x covers y) if |y| = |x| and xi ≤ xj implies that yi ≤ yj, for every two indexes i and j.
• A set of vectors X covers a set of vectors Y if every member of Y is covered by some member of X .

For example, consider the vectors: a = 〈1, 9, 5〉, b = 〈2, 9, 2〉, c = 〈4, 8, 4〉 and d = 〈7, 7, 7〉. Each of these vectors
covers all the following vectors. Among these vectors there is exactly one pair (b and c) in which every vector covers the
other vector.
The binary relation ‘‘ y is an image of x’’ is reflexive and transitive but is neither symmetric nor antisymmetric, as

demonstrated in the above examples. A vector y is a 0–1 image of x if it is binary and an image of x. Straightforward 0–
1 arguments imply the following two lemmas.
Lemma 4. A comparator network sorts a vector if and only if it sorts all its 0–1 images.
Lemma 5. A comparator network halves a vector if and only if it halves all its 0–1 images.
We now state 0–1 Principles for merging networks, bitonic sorters, and halvers. These results are known, can be proved

by straightforward 0–1 arguments and are used, for example, in [12,13,4].
Theorem 6. 1. A network is a merging network if and only if it sorts every 0–1 bisorted vector.
2. A network is a bitonic sorter if and only if it sorts every 0–1 bitonic vector.
3. A network is a halver if and only if it halves every 0–1 vector.
Theorem 6 is already known; it follows from Lemmas 4, 5 and the following lemma.

Lemma 7. A vector is sorted/bitonic/halved if and only if all its 0–1 images are sorted/bitonic/halved.
Proof. The hardest case is the bitonic one and we address only this case. The left to right implication is trivial. To prove the
converse direction, we show that every non-bitonic vector v has a non-bitonic 0–1 image. It is not hard to see that v has
a subsequence v′ of length 4 that is not bitonic. (For example, the minimal key and the maximal key of v are members of
v′; they divide v into two parts which are supposed to be ascending and descending. The other two keys of v′ demonstrate
that one of these parts is not in the correct order.) Next, pick a rational key q which is greater than two members of v′ and
is smaller than the other two.
Using q as a threshold, project the rational numbers into the set {0, 1} as follows. Keys lower then q are mapped to 0

and other keys are mapped to 1. This projection produces a 0–1 image of v which has a subsequence of length 4 that is not
bitonic; therefore, this 0–1 image of v is not bitonic. �

4. Smaller conclusive sets

As said, each functionality is associated with a set of valid input vectors. For example, the bitonic vectors are the valid
inputs of bitonic sorters.
Definition 8. A set of vectors C is conclusive for sorting/merging/bitonic sorting/halving if every network that ‘‘works properly’’
for every input vector of C, ‘‘works properly’’ for every valid input vector.
By definition, for every functionality, the set of all valid input vectors is a conclusive set (e.g., the set of all bitonic vectors

is conclusive for bitonic sorting). Our goal is to present minimal conclusive sets for these functionalities. We now define
several sets of binary vectors, one for each of the first three functionalities.

• Let Bsort be the set of all 0–1 vectors which are non-constant.
• Let Bbitonic ⊂ Bsort be the set of all 0–1 vectors which are non-constant and bitonic.
• Let Bmerge be the set of all non-constant 0–1 bisorted vectors.

In other words, each of the sets Bsort , Bbitonic and Bmerge is the set of all binary non-constant vectors that are valid for the
corresponding functionality. Each of these sets is conclusive for the appropriate functionality. Section 4.3 presents a binary
conclusive set for halving whose definition is substantially different from the above conclusive sets. In Section 5, we show
that each of these four conclusive sets is minimal in a very strong sense — it is a subset of every binary conclusive set for the
corresponding functionality. Lemma 4, and the fact that the above sets are conclusive, imply the following lemma which is
our main tool for constructing even smaller conclusive sets.
Lemma 9. Any set of vectors that covers Bsort / Bmerge/Bbitonic is conclusive for sorting/merging/bitonic sorting.

4.1. Sandwiches for merging

In order to describe a small conclusive set for merging we use the following notation. A non-repeating vector is a vector
in which each key appears at most once. A permutation is a non-repeating vector of length n containing all the keys in the
set {0, 1, . . . , n− 1}. Recall that a bisorted vector is an ordered pair of ascending sequences of equal width. We now define
bisorted vectors of a special form called sandwiches.
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Definition 10. A sandwich is a bisorted vector 〈x, y〉 which is a permutation and in which the range of the x sequence is an
interval.

For example the vector 〈〈1, 2, 3, 4〉, 〈0, 5, 6, 7〉〉 is a sandwich. The term ‘‘sandwich’’ follows from the fact that the vector can
be sorted by inserting the first sequence consecutively in a certain place in the second sequence. Clearly, there are exactly
n/2+ 1 sandwiches of width n. The following lemma is a straightforward observation.

Lemma 11. The set of sandwiches covers Bmerge.

Lemmas 9 and 11 imply the following result:

Lemma 12 (The Sandwich Lemma). The set of sandwiches is conclusive for merging.

4.2. Unitonic vectors for bitonic sorting

Recall that a bitonic sequence is a rotation of an ascending–descending sequence. Similarly, we have the following
definition:

Definition 13. A unitonic vector is a rotation of an ascending sequence.

Clearly, for every n there are n unitonic permutations of width n. The following lemma is a straightforward observation.

Lemma 14. The set of unitonic permutations covers Bbitonic .

Lemmas 9 and 14 imply the following result:

Lemma 15. The set of unitonic permutations is conclusive for bitonic sorting.

4.3. Balanced vectors for halving

Recall that the binary sets Bsort , Bmerge and Bbitonic , were shown to be conclusive for sorting, merging and bitonic sorting.
In this section we present the appropriate binary conclusive set for halving. To this end, we say that a 0–1 vector is balanced
if it contains the same number of zeros and ones.

• Let Bhalf be the set of balanced 0–1 vectors.

This section proves that Bhalf is conclusive for halving. Later on (Section 5), Bhalf is shown to be the minimal binary
conclusive set for halving.

4.3.1. Agreeing vectors
To address the issue of halving we need an additional tool which was not needed for the other functionalities. Namely,

the concept of agreement.

Definition 16. Two vectors, x and y, agree if |x| = |y| and there are no indexes i and j such that xi < xj and yi > yj.

For example, consider the vectors: a = 〈3, 3, 3〉, b = 〈2, 5, 5〉, c = 〈4, 4, 8〉 and d = 〈6, 7, 6〉. Every two of these vectors
agree except c and d. Note that the binary relation ‘‘x and y agree’’ is symmetric and reflexive. By the above examples,
this relation is not transitive. Clearly, if one vector is an image of another vector then the two vectors agree. The inverse
implication is not necessarily true. (E.g., the vectors b and c agree but neither one is an image of the other.) We have the
following lemma.

Lemma 17. Suppose two vectors x and y agree. Let N be a network of width |x| and let x′ and y′ be the vectors produced by N
when receiving x and y, respectively. Then x′ and y′ agree.

Proof. It is not hard to see that the lemma holds when N has a single comparator. By induction on the number of
comparators, the lemma holds for any network N . �

4.3.2. A conclusive set for halvers
In order to construct a small conclusive set for halving, we use the following lemmas whose proofs are straightforward

and, therefore, omitted.

Lemma 18. Every vector of even width agrees with some member of Bhalf .

For any j, let 0j1j be the vector composed of j zeros followed by j ones.

Lemma 19. A vector x, of length n, is halved if and only if x and 0
n
2 1

n
2 agree.



1374 G. Even et al. / Theoretical Computer Science 410 (2009) 1369–1376

The following lemma is the main result of this section.
Theorem 20. The set Bhalf is conclusive for halving.
Proof. LetN be a network that halves all members of Bhalf of width n. Let x be a vector of width n and let x′ denote the output
produced by N , given input x. By Lemma 18, x agrees with some vector y ∈ Bhalf . The network N halves all members of Bhalf ;
in particular, it halves y, producing the output 0

n
2 1

n
2 . Lemma 17 imply that x′ and 0

n
2 1

n
2 agree. By Lemma 19, x′ is halved,

and the lemma follows. �

Theorem 20 and Lemma 5 imply the following result:
Lemma 21. Any set of vectors that covers Bhalf is conclusive for halving.

4.4. Conclusive sets for sorting

This section proves the existence of a conclusive set of size
( n
d n2e

)
for sorting n keys. However, it does not actually

constructs such a set. In fact, we do not know of a canonical and elegant conclusive set, of minimal size, for sorting.
Surprisingly, this section is based on the theory of partially ordered sets and on the seminal theorems of Dilworth [3] and

Sperner [11]. We use the following notations. Let P = (F ,�) denote a partially ordered set (poset). Two elements, a and b
of F , are comparable if a � b or b � a. A chain (antichain) of P is a subset Y ⊂ F such that any two distinct elements of Y are
comparable (not comparable).
Theorem 22 (Dilworth’s Theorem [3]). Let P be a finite partially ordered set. Let K be the cardinality of the largest antichain of
P and let M be the minimal number of chains that cover P. Then K = M.
Recall that, in the context of merging, a vector is an ordered pair of sequences. However, in this section, a vector is always

a single sequence; namely, v = 〈v0, v1 . . . , vn−1〉. A 0–1 vector of width n and a subset of {0, 1, . . . , n− 1} are two aspects
of essentially the same object. In this section we do not distinguish between these aspects. That is, for a vector v, the two
phrases ‘‘vi = 1’’ and ‘‘i ∈ v’’ are equivalent. Similarly, for two 0–1 vectors of the same width, u and v, the phrases ,‘‘u ⊂ v’’
and ‘‘ui ≤ vi for every i’’, are equivalent.
Let n ∈ N be fixed in the following discussion. We focus on the poset Pn = ({0, 1}n,⊂). Let V n be the set of unrestricted

vectors of width n. We next show that every chain is covered by some vector of V n. To this end, we use the following
notations. Let X be a subset of {0, 1}n. For an index i, let X[i] be the subset of X defined by X[i] = {v|i ∈ v ∈ X}. Let X̂ ∈ V n
be defined by X̂i = |X[i]| for every i. For example, let n = 5 and let C = {{3}, {0, 3, 4}, {0, 1, 3, 4}} be a chain of Pn. Then
Ĉ = 〈2, 1, 0, 3, 2〉.
Lemma 23. Every chain C of Pn is covered by Ĉ .
Proof. Let i and j be two indexes and consider the two sets C[i] and C[j]. Since C is a chain, one of these sets contains the
other. Referring to Definition 3 of cover, assume that Ĉi ≤ Ĉj. By the above argument, C[i] ⊂ C[j]. In other words, for every
v ∈ C , vi = 1 implies vj = 1. That is, vi ≤ vj; hence, Ĉ covers v. Since this holds for every v ∈ Ĉ , it follows that Ĉ covers
C . �

Our construction is based on Sperner’s famous theorem.
Theorem 24 (Sperner’s Theorem [11]). The largest antichain of Pn is of size

( n
dn/2e

)
.

The following lemma is the main result of this section.
Theorem 25. There is a conclusive set of size

( n
dn/2e

)
for sorting vectors of width n.

Proof. By the theorems of Dilworth and Sperner, there are
( n
dn/2e

)
chains that cover Pn. By Lemma 23, each of these chain

is covered by a single vector; hence, {0, 1}n is covered by a set of
( n
dn/2e

)
vectors. By Lemma 9, this set is conclusive for

sorting. �

5. Lower bounds for conclusive sets

This section shows that our binary conclusive sets and unrestricted conclusive sets are of minimal sizes. Moreover, it
shows that our binary conclusive sets areminimal in a stronger sense— each of these sets is a subset of any binary conclusive
set for the same functionality. Our main tool is the next lemmawhich provides, for any 0–1 vector, a network that identifies
this vector in the following sense.
Lemma 26 (The Identification Lemma). For every 0–1 vector v which is not constant, there is a network that sorts all the 0–1
vectors of the appropriate width, except v.
Proof. The desired network, N , is depicted in Fig. 2. All squares represent sorting networks of various width. The main idea
behind the construction is as follows. The input vector, let us call it z, is partitioned into two vectors, d and u, such that the
following holds. For most 0–1 vectors, the pair 〈d, u〉 is a separation of z — namely, any key of d is smaller from or equal to
any key of u. In particular, for a 0–1 vector z, the pair 〈d, u〉 is not a separation of z exactly when z = v. We refer to this
functionality as ‘conditional separation’. A network that performs this ‘conditional separation’ can easily be extended to the
desired network by sorting the vector d, to produce the lowest keys, and sorting u to produce the highest keys.
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Fig. 2. A network that sorts all 0–1 vectors except v.

The network N works as follows. Let L and H be the sets of indexes where v equals zero and one, respectively. Namely,
L = {i|vi = 0} and H = {i|vi = 1}. Let x and y be the subvectors of z composed of the keys in the positions of L and
H , respectively. First, N partitions z into the vectors x and y . (Clearly, this is done without any comparators.) The vector x
is separated (by a sorting network) into its highest key, denoted max(x), and all the other keys, denoted x̂. Similarly, y is
separated into its lowest key, denoted min(y), and all the other keys, denoted ŷ.
Next, the n − 2 keys of x̂ and ŷ are combined into a single vector; this vector is separated (by a sorting network) into

〈d′, u′〉where |d′| = |L|−1 and |u′| = |H|−1. Let d be the combined vector of d′ andmin(y); similarly, let u be the combined
vector of u′ and max(x). It remains to show that the partition of z into d and u is a ‘conditional separation’; that is ,〈d, u〉 is
a separation of z if and only if z 6= v. We consider four cases according to the values of max(x) and min(y). It is not hard to
see that the case of max(x) = 0 and min(y) = 1 holds exactly when z = v.

• max(x) = 0,min(y) = 1 : By our construction, max(x) is a member of u and min(y) is a member of d. This implies that
〈d, u〉 is not a separation.
• max(x) = 1,min(y) = 0 : These values, combined with the fact that 〈d′, u′〉 is a separation, imply that 〈d, u〉 is a
separation of z.
• max(x) = 1,min(y) = 1 : Since min(y) = 1, it follows that ŷ is all ones and, therefore, u′ is all ones. Since max(x) = 1,
it follows that u is all ones, implying that 〈d, u〉 is a separation.
• max(x) = 0,min(y) = 0 : This case is similar to the previous one. �

Lemma 26 was sometimes mistaken [14] as proven by Rice [15]. Rice’s result does not refer to comparator networks but
to a certain set of functions defined by topological means. As shown in [9, Section 3.1], Rice’s result is strictly weaker than
Lemma 26.
Recall that, by our convention, a halved vector of width n has the n2 lowest keys in the first positions and the

n
2 highest

keys in the last ones. Therefore, every sorted vector is halved. Furthermore, a 0–1 balanced vector is halved if and only if it
is sorted. Hence, Lemma 26 has the following corollary.

Lemma 27. For every 0–1 balanced vector v, there is a network that halves every 0–1 vector except v.

Sections 3 and 4.3.2 show that the sets Bsort /Bmerge/Bbitonic /Bhalf are conclusive for the corresponding functionality.
Lemmas 26 and 27 imply that they are minimal in a very strong sense as follows:

Lemma 28. A set of 0–1 vectors is conclusive for sorting/merging/bitonic sorting/halving if and only if it contains
Bsort /Bmerge/Bbitonic /Bhalf .

We now consider unrestricted conclusive sets. The following lemma states necessary and sufficient conditions for a set
to be conclusive for each of the considered functionalities.

Lemma 29. A set is conclusive for sorting/merging/bitonic sorting/halving if and only if it covers Bsort /Bmerge/Bbitonic /Bhalf .

Proof. Lemmas 9 and 21 provide the left to right implication. Consider the other direction. We focus on the bitonic
functionality and the proofs for the other functionalities are similar.
Assume that some 0–1 vector z ∈ Bbitonic is not covered by a set of vectors C . By Lemma 26, there exists a network, N , that

sorts all the 0–1 vector except z. Hence, it sorts all 0–1 vectors covered by C . By Lemma 4, N sorts all vectors in C; however,
N does not sort z and therefore, N is not a bitonic sorter. This implies that C is not a conclusive set for bitonic sorting.
The proof for halving is similar and is based on Lemma 27 rather than Lemma 26. �

Clearly, any vector of length n covers atmost n−1 non-constant 0–1 vectors. This fact and Lemma 29 imply a trivial lower
bound on the size of an unrestricted conclusive set. However, these lower bounds are usually not tight, as shown shortly.
We next apply Lemma 29 to show that the unrestricted conclusive sets presented in Section 4 are ofminimal size. Clearly,

a vector can cover a number of 0–1 vectors; however, there is a class of 0–1 vectors such that every vector covers at most
one member of this class. To this end, we extend the term ‘balanced’ to vectors of odd width as follows. A 0–1 vector of
odd width, v, is balanced if it has exactly d|v|/2e ones. Clearly, every vector (of odd or even width) covers at most one 0–1
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balanced vector. It is not hard to see that:

Lemma 30. For every appropriate3 n, the sets Bsort , Bmerge, Bbitonic and Bhalf have
( n
dn/2e

)
, n/2+ 1, n and

( n
n/2

)
balanced vectors of

width n, respectively.

Section 4 presents, for every functionality and for every width n, a conclusive set as follows.

• Sorting: a set of
( n
dn/2e

)
vectors.

• Merging: the set of n/2+ 1 sandwiches.
• Bitonic sorting: the set of n unitonic permutations.
• Halving: the set of

( n
n/2

)
balanced 0–1 vectors.

Note that, in the case of sorting, a conclusive set was not constructed; only its existence was proven. In the case of halving
the unrestricted conclusive set is, in fact, binary.
Lemmas 29 and 30, and the fact that any vector covers at most one balanced 0–1 vector, imply the following theorem:

Theorem 31. Each of the unrestricted conclusive sets in the above list, for the functionalities of sorting/merging/bitonic
sorting/halving, is of minimal cardinality.

By Lemma 28, all the functionalities considered in this work have unique 0–1 conclusive sets of minimal cardinality.
However, this is not the case for unrestricted conclusive sets. Namely, the same functionality may have several unrestricted
conclusive sets of minimal cardinality that are substantially different. For example, consider the functionality of bitonic
sorting. As said, the set of unitonic permutations is conclusive for this functionality. Next consider the set of rotations of
descending permutations. This set covers Bbitonic and, by Lemma 9, it is conclusive for bitonic sorting.
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