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Abstract

For Wishart density functions, there remains a long-time question unsolved. That is whether there exists
the closed-form MLEs of mean matrices over the partially Löwner ordering sets. In this note, we provide an
affirmative answer by demonstrating a unified procedure on exactly how the closed-form MLEs are obtained
for the simple ordering case. Under the Kullback–Leibler loss function, a property of obtained MLEs is
further studied. Some applications of the obtained closed-form MLEs, including the comparison between
our ML estimates and Calvin and Dykstra’s [Maximum likelihood estimation of a set of covariance matrices
under Löwner order restrictions with applications to balanced multivariate variance components models,
Ann. Statist. 19 (1991) 850–869.] which obtained by iterative algorithm, are also made.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ai , i = 1, . . . , k, be k independent p × p matrices which are Wishart distributed with
ni (�p) degrees of freedom and expectation ni�i being positive definite, denoted by Ai ∼
Wp(ni, �i ), i = 1, . . . , k. Let

Gi = n−1
i Ai , i = 1, . . . , k, (1.1)
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then the log-likelihood function of Gi (i = 1, . . . , k) can be expressed as

l(G, �) = 1

2

k∑
i=1

ni{ln |�−1
i Gi | − tr(�−1

i Gi )} + c, (1.2)

where c is a constant in the sense that it is a function of G = (G1, . . . , Gk)
′ but it does not depend

on � = (�1, . . . ,�k)
′ and tr(B) denotes the trace of matrix B. One of the advantages of the way

the objective function presented is that the information of the degrees of freedom associated with
the individual mean square matrices is incorporated.

Let � be a partial order on the index set {1, . . . , k}. The vector � is said to be isotonic with
respect to � if it is order preserving in the Löwner sense. This means that if j�i, then �i − �j

is positive semi-definite (p.s.d.), which is written as �i��j throughout this paper. Define

K = {� = (�1, . . . ,�k)
′ : � is partial order in the sense that there

exists a permutation (i1, . . . , ik) of (1, . . . , k) such that

�ir ��is for every r �s if �ir and �is are comparable}. (1.3)

Obviously, K is a closed and convex cone. The main goal of this note is to find out the maximum
likelihood estimator (MLE) of � which lies in K. Note that if (i) K = {� : �1��2}, (ii) K =
{� : �1��i , i = 2, . . . , k} and (iii) K = {� : �1� · · · ��k}, the results for the problems
can be easily applied to find the corresponding MLEs of unknown covariance matrices under the
multinormal set up for (i) the completely balanced multivariate one-way random effects model, (ii)
the completely balanced multivariate multi-way random effects models without interactions and
(iii) the completely balanced multivariate multi-way random effects nested models, respectively.

The maximum likelihood estimation problems for multivariate random effects models and
their related areas have been extensively studied for a long time. In the literature, beginning with
Anderson [3], Morris and Olkin [11], Klotz and Putter [9], andAmemyia and Fuller [1] had studied
these problems as well. Anderson et al. [2] first successfully obtained the MLEs of covariance
matrices for the completely balanced multivariate one-way random effect model in which only
two matrices are involved, namely for the case (i) above, K = {� : �1��2}.

Calvin and Dykstra [5] pointed out that “it is not obvious what should be done when more
than two covariance matrices are involved’’, and claimed that “this is a difficult optimization
problem which cannot be solved in closed-form’’. Hence, they used the Fenchel duality techniques
to develop a numerical iterative MLEs algorithm for balanced data when the models are with
isotonic covariance structure. Two of the most well-known partially ordering sets in the literature
are detailedly studied in their paper: one is the simple tree ordering set K = {� : �1��i , i =
2, . . . , k} and the other is the simple ordering set K = {� : �1� · · · ��k}. The closed-form MLEs
of mean matrices over the simple tree ordering set had been obtained by Tsai [16], however, it
remains unsolved for the simple ordering case which appears technically more difficult.

The approach of Tsai [16] is to simultaneously decompose the mean matrices into feasible
components according to the structure of set K, then make use of the property of concavity for
the log-likelihood function of those matrix components to solve the problem. In this note, his
approach is further incorporated to find the closed-form MLEs for the partially Löwner ordering
set K defined in (1.3). To proceed with this approach, it is sufficient to consider only the simple
ordering case because other cases can be parallelly handled as well. In Section 2, we demonstrate
the unified procedure by working out the closed-form MLEs of mean matrices over the simple
ordering set. Under the Kullback–Leibler loss function, a property of obtained MLEs is studied in
the same section. Some applications and remarks of the results are also made in the final section.
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2. Main results

For each partially Löwner ordering set K defined in (1.3), it is dissected to extract the inside in-
formation. The key idea is that we simultaneously decompose the mean matrices �i , i = 1, . . . , k,
into feasible components according to the structure of K. Let �i = ch(�i�

−1
i−1), i = 2, . . . , k,

where ch(B) denotes the ordered diagonal matrix of eigenvalues of B. Then by Theorem A9.9 of
Muirhead [12], the pair (�i , �i+1) can be written as �i = �i�′

i and �i+1 = �i�i+1�′
i , where

�i ∈ N (p), the group of p × p nonsingular matrices, i = 1, . . . , k − 1. Note that �i+1�′
i+1 =

�i�i+1�′
i , and thus by Theorem A9.5 of Muirhead [12], we have �i+1 = �i�

1/2
i+1Qi+1, ∀i =

1, . . . , k−1, where Q2 = I and Qj ∈ O(p), the group of p×p orthogonal matrices, j = 3, . . . , k.
Therefore, under the simple ordering set, we can simultaneously make the following decom-

positions:

�i = �1

⎛⎝ i∏
j=1

�1/2
j Qj

⎞⎠⎛⎝ i∏
j=1

�1/2
j Qj

⎞⎠′
�′

1, i = 1, . . . , k, (2.1)

where �1 = Q1 = Q2 = I. The dimension of each �i is p(p + 1)/2, i = 1, . . . , k; therefore, the
total dimension of parameters is kp(p+1)/2. The new parameters in (2.1) are �1, Q3, . . . , Qk , and
�2, �3, . . . ,�k . The dimension of �1 is p2; the dimension of each Qi is p(p−1)/2; the dimension
of each �i is p; therefore, the total dimension of the new parameters is p2 +p(p − 1)(k − 2)/2 +
p(k − 1) = kp(p + 1)/2. Thus, we have one-to-one correspondence between {�i , i = 1, . . . , k}
and {(�1, �i , Q3, . . . , Qk), i = 2, . . . , k}. Note that the technique of parameterizations in (2.1)
for �i , i = 1, . . . , k, is different from that of the simple tree ordering case (see Tsai [16]).
Similarly, for the sample counterparts

Gi = W1

⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠′
W′

1, (2.2)

i = 1, . . . , k, where F1 = V1 = V2 = I, Fi = ch(GiG
−1
i−1), i = 2, . . . , k, W1 ∈ N (p) (with

probability one), and Vj ∈ O(p) (with probability one), j = 3, . . . , k.
For the sake of manipulations, we adopt the idea of Anderson et al. [2] to make the following

transformation:

H = �−1
1 W1. (2.3)

Then note that H ∈ N (p) with probability one, �1 and H are one-to-one correspondence with
probability one.

The maximization for this problem can be similarly proceeded as that for the simple tree
ordering case, and hence we present only the necessary steps and the details are omitted. Let
Q = (Q3, . . . , Qk)

′ and � = (�2, . . . ,�k)
′, thus by (1.2) and (2.1)–(2.3) we have

sup
K

k∑
i=1

ni{ln |�−1
i Gi | − tr(�−1

i Gi )} = sup{
�i � I

i=2,...,k
,

Qj ∈O(p)

j=3,...,k
, H∈N (p)

} �0(H, �, Q), (2.4)
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where the log-likelihood function

�0(H, �, Q) =
k∑

i=1

ni

⎧⎨⎩ln |HH′| + ln

∣∣∣∣∣∣
⎛⎝ i∏

j=1

�−1
j Fj

⎞⎠∣∣∣∣∣∣− tr

⎡⎣⎛⎝ i∏
j=1

�−1/2
j Qj

⎞⎠

×
⎛⎝ i∏

j=1

�−1/2
j Qj

⎞⎠′
H

⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠′
H′
⎤⎦⎫⎬⎭ . (2.5)

Write H = ((hij )) and let E = diag(�1, . . . , �p) with �i = 1 or −1, according to hii is
nonnegative or negative, ∀i = 1, . . . , p, then ln |EHH′E | = ln |HH′|, EQ3 ∈ O(p) and EAE is
still positive definite if A is positive definite. If H is replaced by EH, what has to be changed for
the log-likelihood function �0(H, �, Q) in (2.5) is that Q3 be replaced by the orthogonal matrix
Q∗

3 (= EQ3). Moreover, �0(H, �, Q) is symmetric in H, and hence without loss of generality
we assume that H ∈ N ∗(p), where N ∗(p) = {H = ((hij )) : H ∈ N (p), |H| > 0 and
hii �0, i = 1, . . . , p}. Further, Tsai [16] used the notion of exterior differential forms to show
the following lemma:

Lemma 1. Let A, B be positive definite matrices, and N ∗(p) = {H = ((hij )) : H ∈ N (p),
|H| > 0, and hii �0, i = 1, . . . , p}, where N (p) is the group of p × p nonsingular matrices.
If H ∈ N ∗(p), then (i) tr(AHBH′) is strictly convex in H, and (ii) |HH′| is strictly logconcave
in HH′.

With similar proof as those in Lemma 1, it can be shown that the log-likelihood function
l(Gi , �i , 1� i�k) defined in (1.2) is continuous and strictly concave in �−1

i , i = 1, . . . , k, on
the space of positive definite matrices, and thus the MLE of each �i , i = 1, . . . , k, is unique
over the convex cone K = {� : �1� · · · ��k}. In passing, we may note that it is one-to-one
correspondence between � and (H, �, Q). The log-likelihood function �0(H, �, Q) attains its
maximum value at (Ĥ, �̂, Q̂) which satisfies the partial differential equations of �0(H, �, Q)

with respect to H, �i , i = 2, . . . , k, and Qj , j = 3, . . . , k, respectively.
Note that when k = 2, the convex cone in (1.3) reduces to the simplest case K = {� : �1��2}.

For this simplest case, Anderson et al. [2] showed that the maximum value of �0(H, �, Q) over the
set K = {� : �1��2} can occur only when H ∈ D(p), where D(p) denotes the group of diagonal
matrices with positive elements. It is believed that the more restricted ordering set (i.e., the more
restricted cone K) is, the more restricted solution of H is. Tsai [16, p. 296] further showed that
the maximum value of the log-likelihood function (�0(H, �, Q)) over the simple tree ordering
set K = {� : �1��i , i = 2, . . . , k} occurs only when H ∈ D(p). With similar arguments as
those in Tsai [16] for the simple tree ordering case, we can also show that the maximum value of
�0(H, �, Q) over the simple ordering set K = {� : �1� · · · ��k} occurs only when H ∈ D(p).
We will adopt another simpler method to claim that H ∈ D(p) is one of the sufficient conditions
of the estimation equations with respect to Q in Proposition 1.

Note that, as H approaches the boundaries while Q and � are fixed, �0(H, �, Q) → −∞. Thus,
in order to maximize �0(H, �, Q) over the set {H : H ∈ N ∗(p)}, one needs to examine the first
derivative equation of �0(H, �, Q) with respect to H. Recall that d tr(HAH′B) = tr[(AH′B +
A′H′B′)(dH)] and d|H| = |H| tr[(H−1)(dH)], and hence the partial differential of �0(H, �, Q)
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with respect to H gives

d�0(H, �, Q) = 2 tr

⎧⎨⎩
⎡⎣nH−1 −

k∑
i=1

ni

⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠′
H′

×
⎛⎝ i∏

j=1

�−1/2
j Qj

⎞⎠⎛⎝ i∏
j=1

�−1/2
j Qj

⎞⎠′⎤⎦ (dH)

⎫⎬⎭ (2.6)

for the exterior product (dH), where n = ∑k
i=1 ni . Thus, after some straightforward manipula-

tions, d�0(H, �, Q) = 0, for the exterior product (dH) 	= 0, leads to

k∑
i=1

ni

⎛⎝ i∏
j=1

�−1/2
j Qj

⎞⎠′
H

⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠′
H′
⎛⎝ i∏

j=1

�−1/2
j Qj

⎞⎠
= nI. (2.7)

This is the corresponding estimation equation with respect to the parameter H (i.e., ��0(H, �, Q)/

�H = 0). Other estimation equations with respect to �i , (i.e., ��0(H, �, Q)/��i = 0), i =
2, . . . , k, and Qj (i.e., ��0(H, �, Q)/�Qj = 0), j = 3, . . . , k, respectively, can be similarly
obtained.

To directly solve those matrix estimation equations seems to be intractable, one way to overcome
the difficulty is to tactfully impose the compatible conditions so that the log-likelihood function
can be further simplified. Let

Q′
iH

⎛⎝ i∏
j=1

�−1/2
j F1/2

j

⎞⎠ = H

⎛⎝ i∏
j=1

�−1/2
j F1/2

j

⎞⎠V′
i , i = 3, . . . , k. (2.8)

Moreover, we assume that H ∈ D(p), which is the group of diagonal matrices with positive
elements. Note that the dimensions of parameter space will not be reduced when the system of
equations (2.8) and H ∈ D(p) are imposed. The system of equations (2.8) and H ∈ D(p) are
called the compatible conditions if the solutions of (2.4) are not changed when they are imposed.
The main advantage of imposing those compatible conditions is that the optimization procedure
will become much easier. To see that, first note that by the system of equations (2.8) and H ∈ D(p)

we have⎛⎝ 3∏
j=1

�−1/2
j Qj

⎞⎠′
H

⎛⎝ 3∏
j=1

F1/2
j Vj

⎞⎠⎛⎝ 3∏
j=1

F1/2
j Vj

⎞⎠′
H′
⎛⎝ 3∏

j=1

�−1/2
j Qj

⎞⎠
= (Q′

3H�−1/2
2 F1/2

2 �−1/2
3 F1/2

3 V3)(Q′
3H�−1/2

2 F1/2
2 �−1/2

3 F1/2
3 V3)

′

= (H�−1/2
2 F1/2

2 �−1/2
3 F1/2

3 V′
3V3)(H�−1/2

2 F1/2
2 �−1/2

3 F1/2
3 V′

3V3)
′

= H2
3∏

j=1

(�−1
j Fj ). (2.9)
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Assume that (
∏l−1

j=1 �−1/2
j Qj )

′H(
∏l−1

j=1 F1/2
j Vj ) = H(

∏l−1
j=1 �−1/2

j F1/2
j )holds for any l, 4� l� i,

then ⎛⎝ l∏
j=1

�−1/2
j Qj

⎞⎠′
H

⎛⎝ l∏
j=1

F1/2
j Vj

⎞⎠

= Q′
l�

−1/2
l

⎛⎝ l−1∏
j=1

�−1/2
j Qj

⎞⎠′
H

⎛⎝ l−1∏
j=1

F1/2
j Vj

⎞⎠F1/2
l Vl

= Q′
lH

⎛⎝ l∏
j=1

�−1/2
j F1/2

j

⎞⎠Vl

= H

⎛⎝ l∏
j=1

�−1/2
j F1/2

j

⎞⎠ . (2.10)

Thus, by mathematical induction, we may conclude that⎛⎝ i∏
j=1

�−1/2
j Qj

⎞⎠′
H

⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠′
H′
⎛⎝ i∏

j=1

�−1/2
j Qj

⎞⎠

= H2

⎛⎝ i∏
j=1

�−1
j Fj

⎞⎠ , i = 3, . . . , k. (2.11)

Therefore, the matrix estimation equation (2.7) reduces to

H2
k∑

i=1

ni

⎛⎝ i∏
j=1

�−1
j Fj

⎞⎠ = nI. (2.12)

On the other hand, by virtue of (2.11), the log-likelihood function (2.5) can be further simplified
to

�0(H, �, Q) =
k∑

i=1

ni

⎧⎨⎩ln |H2| + ln

∣∣∣∣∣∣
⎛⎝ i∏

j=1

�−1
j Fj

⎞⎠∣∣∣∣∣∣− tr

⎡⎣H2

⎛⎝ i∏
j=1

�−1
j Fj

⎞⎠⎤⎦⎫⎬⎭
= �1(H, �), say, (2.13)

with the solutions should satisfy the conditions that H ∈ D(p) and the system of equations (2.8)
holds. Set the partial derivative of �1(H, �) with respect to H to be zero, then we get the same
matrix estimation equation as in (2.12).
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By the system of equations (2.8), we may note that Qj is the function of (H, �), j = 3, . . . , k.
Thus, we have

��1(H, �)

�H
= ��0(H, �, Q)

�H
+

k∑
j=3

��0(H, �, Q)

�Qj

�Qj

�H
(2.14)

and

��1(H, �)

��i

= ��0(H, �, Q)

��i

+
k∑

j=3

��0(H, �, Q)

�Qj

�Qj

��i

, i = 2, . . . , k. (2.15)

Furthermore, as mentioned earlier that under the conditions that H ∈ D(p) and the system of
equations (2.8) holds, the log-likelihood function �0(H, �, Q) in (2.5) can be reduced to the form
in (2.13) which is free of Q, and hence it is obvious to see that ��0(H, �, Q)/�Qj = 0, j =
3, . . . , k. Thus, we may conclude that H ∈ D(p) and the system of equations (2.8) holds are the
sufficient conditions of estimation equations ��0(H, �, Q)/�Qj = 0, j = 3, . . . , k. Therefore,
by (2.14) and (2.15), we have the following.

Proposition 1. Let �0(H, �, Q) and �1(H, �) be defined as in (2.5) and (2.13), respectively. Also
let D(p) denote the group of diagonal matrices with positive elements. If the systems of equations
(2.8), ��1(H, �)/�H = 0, ��1(H, �)/��i = 0, i = 2, . . . , k, and the condition that H ∈ D(p)

hold, then the systems of equations ��0(H, �, Q)/�H = 0, ��0(H, �, Q)/��i = 0, i = 2, . . . , k,
and ��0(H, �, Q)/�Qj = 0, j = 3, . . . , k, hold.

Due to the unique solution (Ĥ, �̂, Q̂)of the systems of estimation equations��0(H, �, Q)/�H =
0, ��0(H, �, Q)/��i = 0, i = 2, . . . , k, and ��0(H, �, Q)/�Qj = 0, j = 3, . . . , k, we may con-
clude that the original problem of maximizing the log-likelihood function �0(H, �, Q) under the
set { �i � I

i=2,...,k
,

Qj ∈O(p)

j=3,...,k
, H ∈ N (p)} can be performed through the problem of maximizing the

log-likelihood function �1(H, �) under the conditions that H ∈ D(p), �i �I, i = 2, . . . , k, and
Qj ∈ O(p), j = 3, . . . , k, such that the system of equations (2.8) holds.

Now, we start to proceed the maximization problem under the new setup with the help of the
system of equations (2.8) and H ∈ D(p). Substitute (2.12) into (2.13), thus �1(H, �) becomes

n ln n − np +
k∑

i=2

ni ln

∣∣∣∣∣∣
⎛⎝ i∏

j=1

�−1
j Fj

⎞⎠∣∣∣∣∣∣− n ln

∣∣∣∣∣∣
k∑

i=1

ni

⎛⎝ i∏
j=1

�−1
j Fj

⎞⎠∣∣∣∣∣∣ = �2(�), say.

(2.16)

Rewrite �2(�) as

n ln n − np +
k−2∑
i=1

⎛⎝ i∑
j=1

nj

⎞⎠ ln |�i+1F−1
i+1| + nk ln |�−1

k Fk|

−n ln

∣∣∣∣∣∣
k−2∑
i=1

ni

⎛⎝ k−1∏
j=i+1

�j F−1
j

⎞⎠+ nk−1I + nk�
−1
k Fk

∣∣∣∣∣∣ = �3(�), say. (2.17)
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We then maximize�3(�) subject to the conditions that�i�I, i = 2, . . . , k. Let T = (T2, . . . , Tk)
′,

where Ti = diag(ti1, . . . , tip) with Ti�0 and Ti (�i−I) = 0, i = 2, . . . , k. Define the Lagrangian
function

�4(�, T) = −�3(�) −
k∑

i=2

tr[Ti (�i − I)]. (2.18)

Then set the partial derivatives of �4(�, T) with respect to �i and Ti , i = 2, . . . , k, to be zero,
we obtain that

Tk�k = nkI − nnk�
−1
k Fk

⎡⎣k−2∑
i=1

ni

⎛⎝ k−1∏
j=i+1

�j F−1
j

⎞⎠+ nk−1I + nk�
−1
k Fk

⎤⎦−1

(2.19)

and

Ti�i = −
⎛⎝ i−1∑

j=1

nj

⎞⎠ I + n

i−1∑
j=1

nj

⎛⎝ k−1∏
m=j+1

�mF−1
m

⎞⎠⎡⎣k−2∑
i=1

ni

⎛⎝ k−1∏
j=i+1

�j F−1
j

⎞⎠
+nk−1I + nk�

−1
k Fk

]−1
, i = 2, . . . , k − 1. (2.20)

A Kuhn–Tucker–Lagrange (KTL) point is any point (�∗, T∗) which satisfies the following
conditions: (i) Ti�0, (ii) �i�I, (iii) tr[Ti (�i − I)] = 0, and (iv) the system of equations (2.19)
and (2.20). Let A = ((aij )) and B = ((bij )) be any two matrices, and denote max{A, B} =
((max(aij , bij ))). Then after some algebraic manipulations, by KTL point formula theorem
(Hadley [6]) the MLE of �k is

�̂k = max{Fk, I}. (2.21)

Substitute (2.21) back into (2.17) and repeat the above processes until k = 2, we finally obtain
the following recurrence formula:

�̂k−i = max

⎧⎪⎨⎪⎩
⎛⎝ k∑

j=k−i

nj

⎞⎠−1

Fk−i

⎡⎣nk−iI +
k∑

j=k−i+1

nj

⎛⎝ j∏
m=k−i+1

�̂
−1
m Fm

⎞⎠⎤⎦ , I

⎫⎪⎬⎪⎭ ,

i = 1, . . . , k − 2. (2.22)

By Lemma 1 and the fact that H ∈ D(p), it is obvious to see that �1(H, �) is continuous and
strictly concave in H on the space D(p), and hence, the MLE of H is unique. Substitute (2.21)
and (2.22) into (2.12), we then have

Ĥ = n1/2

⎡⎣n1I +
k∑

i=2

ni

⎛⎝ i∏
j=2

�̂
−1
j Fj

⎞⎠⎤⎦−1/2

. (2.23)

By the system of matrix equations (2.8) and the results of (2.21)–(2.23), then

Q̂′
i = Ĥ

⎛⎝ i∏
j=1

�̂
−1/2
j F1/2

j

⎞⎠V′
i

⎛⎝ i∏
j=1

�̂
1/2
j F−1/2

j

⎞⎠ Ĥ−1, i = 3, . . . , k. (2.24)
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Therefore, by virtue of (2.1), (2.3) and (2.24), the MLEs of �i over the simple ordering set are of
the forms

�̂i = W1

⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠ Ĥ−1

⎛⎝ i∏
j=2

�̂j F−1
j

⎞⎠ Ĥ−1

⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠′
W′

1,

i = 1, . . . , k. (2.25)

It is easy to note that (i) when k = 2,

�̂1 = �̂1�̂
′
1 = W1[n−1(n1I + n2 min{F2, I})]W′

1

and

�̂2 = �̂1�̂2�̂
′
1 = W1[n−1(n1 max{F2, I} + n2F2)]W′

1, (2.26)

as expected they are exactly the same MLEs as obtained by Anderson et al. [2], and (ii) when

Fi�I, ∀i = 2, . . . , k, then �̂i = Fi , i = 2, . . . , k, and hence Ĥ = I. Thus, the obtained MLEs of
�i reduce to the unrestricted ones Gi , i = 1, . . . , k.

We summarize the main results of this section in the following:

Theorem 1. Let Ai , i = 1, . . . , k, be k independent p×p matrices which are Wishart distributed
with ni (�p) degrees of freedom and expectation ni�i , where each �i is positive definite. Let Gi =
n−1

i Ai and make the decompositions Gi = W1(
∏i

j=1 F1/2
j Vj )(

∏i
j=1 F1/2

j Vj )
′W′

1, i = 1, . . . , k,
where F1 = V1 = V2 = I, W1 ∈ N (p), the group of nonsingular matrices, with probability
one, Vj ∈ O(p), the group of orthogonal matrices, with probability one, j = 3, . . . , k, and
Fi = ch(GiG

−1
1 ), i = 2, . . . , k, with ch(B) denoting the ordered diagonal matrix of eigenvalues

of B. Then the MLEs of �i , i = 1, . . . , k, over the simple ordering set K = {� : �1� · · · ��k}
are of the forms

�̂i = W1

⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠ Ĥ−1

⎛⎝ i∏
j=2

�̂j F−1
j

⎞⎠ Ĥ−1

⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠′
W′

1, i = 1, . . . , k,

where Ĥ = n1/2[n1I +∑k
i=2 ni(

∏i
j=2 �̂

−1
j Fj )]−1/2 with n = ∑k

i=1 nk, �̂k = max{Fk, I} and

�̂k−i = max{(∑k
j=k−i nj )

−1Fk−i[nk−iI + ∑k
j=k−i+1 nj (

∏j
m=k−i+1 �̂

−1
m Fm)], I}, i = 1, . . . ,

k − 2.

Next, we study a property of MLEs �̂i , i = 1, . . . , k, over the simple ordering set K = {� :
�1� · · · ��k}. Consider the Kullback–Leibler loss function

L(�̂
∗
, �) =

k∑
i=1

ni{tr(�̂∗
i �

−1
i ) − ln |�̂∗

i �
−1
i | − p}, (2.27)

where �̂
∗ = (�̂

∗
1, . . . , �̂

∗
k)

′. When k = 1, then (2.27) reduces to the Stein [14] loss function, and
it also reduces to the loss function considered by Loh [10] when k = 2. The Kullback–Leibler
loss function can be derived from the Kullback–Leibler distance for the joint density function of
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Ai , i = 1, . . . , k. Let E�∈KL(�̂
∗
, �) be the Kullback–Leibler risk over the simple ordering set

K. Note that

E�∈KL(�̂
∗
, �)�E�∈K

[
inf
�∈K

L(�̂
∗
, �)

]
. (2.28)

Then take �̂
∗
i = ai�̂i , ai > 0, ∀i = 1, . . . , k, by similar arguments as those of maximization in

the proof of Theorem 1, we obtain that

inf
�∈K

L(�̂
∗
, �) =

k∑
i=1

ni{tr(aiI) − ln |aiI| − p}

=
k∑

i=1

ni{pai − p ln ai − p}

� 0. (2.29)

The minimum value of the right-hand side of (2.29) occurs when ai = 1, ∀i = 1, . . . , k. Therefore,
we have the following.

Theorem 2. Under the same set-up as in Theorem 1, the Kullback–Leibler risk of (a1�̂1, . . . ,

ak�̂k)
′ is minimized at ai = 1, ∀i = 1, . . . , k over the simple ordering set K = {� : �1� · · · ��k}.

Theorem 2 generalizes the results presented in Theorem 7.8.1 of Anderson [4], which deals
with the one-sample problem. When k = 2, Srivastava and Kubokawa [13] studied the risk
dominance problems of the MLEs with respect to the unbiased estimators and to some of Stein-
type improved estimators (for details see Haff [8], Loh [10] and the references therein) relative
to the Kullback–Leibler loss (2.27). However, being different from the unrestricted case which
was studied by Loh [10], the minimax problem of estimation over the set K = {� : �1��2}
still remains open in the literature. For the risk dominance problems when k�3, some further
techniques, such as extending the Stein–Haff Wishart identity for one-sample and two-sample
problems (Stein [15], Haff [7] and Loh [10]) to k-sample problems that involve more than three
matrices under the partially ordering sets, are needed to be developed. However, this turns out to
be a quite challenging problem.

3. Applications

For the directly applications of Theorem 1, first we note that it can be applied to find the MLEs
of covariance matrices for the completely balanced multivariate random effects nested models.
Calvin and Dykstra [5] used the completely balanced multivariate two-way random effects nested
model to analyze the data set of patterns care studies, and gave the numerical ML estimates via
their iterated algorithm as

�̂c dA =
[

512.24 343.25
343.25 230.01

]
, �̂c dB =

[
58.76 66.96
66.96 449.96

]
and

�̂c dE =
[

255.57 47.96
47.96 63.49

]
,

respectively. The numerical computations for exact MLEs of �i , i = 1, 2, 3, in Theorem 1
are easily implemented. Incorporating the computational algorithm in Tsai [16] by using the
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MATHEMATICA, it is easy to see that

F2 =
[

19.9798 0
0 1.42723

]
, F3 =

[
6.57006 0

0 0.613848

]
,

W1 =
[

0.713791 −15.9706
7.50831 −2.66744

]
and

V3 =
[−0.292128 −0.95638

0.95638 −0.292128

]
, �̂2 =

[
19.9798 0

0 1.17286

]
,

�̂3 =
[

6.57006 0
0 1

]
, Ĥ = I.

By Theorem 1, we then have

�̂1 =
[

255.57 47.96
47.96 63.49

]
, �̂2 =

[
373.076 181.891
181.891 963.394

]
and

�̂3 =
[

2422.01 1554.86
1554.86 1883.4

]
,

respectively. Thus, the ML estimates of three unknown covariance matrices (the strata effect
�A = (�3 − �2)/4, the facility effect �B = (�2 − �1)/2 and the random error �E = �1) are

�̂A =
[

512.233 343.242
343.242 230.003

]
, �̂B =

[
58.7531 66.9653
66.9653 449.952

]
and

�̂E =
[

255.57 47.96
47.96 63.49

]
,

respectively. Compute the values of the log-likelihood function, the expression in (1.2) after
ignoring the constant c, the result is −27.188159 based on our estimates and it is −27.188161
based on Calvin and Dykstra’s. Note that |�̂A| = −3.13091×10−11 ≈ 0 but |�̂cdA| = −0.2401,
it is obvious that the ML estimates obtained by Calvin and Dykstra’s numerical algorithm are
slightly out of the restricted parameter space.

Theorem 1 can also be directly applied to obtain the likelihood ratio test statistic for the problem
of testing H0 : �1 = · · · = �k against H1 : �1� · · · ��k under the setup of Theorem 1. Under
the null hypothesis, the log-likelihood function is maximized with respect to �, and the MLE of
� is �̂ = n−1∑k

i=1 niGi . By virtue of (1.2) and Theorem 1, the maximum of the log-likelihood
functions under H0 and H1 are

1

2

⎧⎨⎩
k∑

i=1

ni ln

∣∣∣∣∣∣
(

k∑
i=1

niGi

)−1

Gi

∣∣∣∣∣∣+ n ln n − np

⎫⎬⎭+ c, (3.1)

and

1

2

⎧⎨⎩
k∑

i=1

ni ln

∣∣∣∣∣∣
⎛⎝ i∏

j=2

�̂
−1
j Fj

⎞⎠∣∣∣∣∣∣− n ln

∣∣∣∣∣∣n1I +
k∑

i=2

ni

⎛⎝ i∏
j=2

�̂
−1
j Fj

⎞⎠∣∣∣∣∣∣ + n ln n − np

⎫⎬⎭+ c,

(3.2)
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respectively. Thus the likelihood ratio criterion for testing H0 against H1 is based on L = e− 1
2 �,

where

� =
k∑

i=1

ni

⎧⎨⎩ln

∣∣∣∣∣∣
⎛⎝ i∏

j=2

�̂
−1
j Fj

⎞⎠∣∣∣∣∣∣− ln

∣∣∣∣∣∣
(

k∑
i=1

niGi

)−1

Gi

∣∣∣∣∣∣
⎫⎬⎭

−n ln

∣∣∣∣∣∣n1I +
k∑

i=2

ni

⎛⎝ i∏
j=2

�̂
−1
j Fj

⎞⎠∣∣∣∣∣∣
=

k∑
i=1

ni ln

∣∣∣∣∣∣
⎡⎣n1I +

k∑
i=2

ni

⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠⎛⎝ i∏
j=1

F1/2
j Vj

⎞⎠′⎤⎦ i∏
j=1

�̂
−1
j

∣∣∣∣∣∣
−n ln

∣∣∣∣∣∣n1I +
k∑

i=2

ni

⎛⎝ i∏
j=2

�̂
−1
j Fj

⎞⎠∣∣∣∣∣∣ . (3.3)

The critical region is

����, (3.4)

where �� is defined so that (3.4) holds with probability � when H0 is true. To find the value
of critical point ��, it involves (k − 2)-fold integral over orthogonal groups with respect to the
normalized Haar invariant measure on the space of orthogonal p ×p matrices, and then the zonal
polynomials as well as the invariant polynomials with matrix arguments might play important
roles for finding out the (asymptotic) distribution theories of �.

The techniques developed in Section 2 can be applied to obtain the closed-form (restricted)
MLEs for factor analysis models. And it can also be parallelly applied to obtain the closed-form
least estimators by minimizing the quadratic-type loss

∑k
i=1 ni tr(�−1

i Gi − I)2 over the partially
Löwner ordering sets.
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