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Branislav Jurčo a, Jan Vysoký b,c,∗

a Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Prague 186 75, Czech Republic
b Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, Prague 115 67, Czech Republic

c Mathematical Sciences Institute, Australian National University, Acton ACT 2601, Australia

Received 18 January 2016; received in revised form 18 April 2016; accepted 23 April 2016

Available online 4 May 2016

Editor: Leonardo Rastelli

Dedicated to Satoshi Watamura on the occasion of his 60th birthday

Abstract

We discuss Levi-Civita connections on Courant algebroids. We define an appropriate generalization of the 
curvature tensor and compute the corresponding scalar curvatures in the exact and heterotic case, leading to 
generalized (bosonic) Einstein–Hilbert type of actions known from supergravity. In particular, we carefully 
analyze the process of the reduction for the generalized metric, connection, curvature tensor and the scalar 
curvature.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

This paper contains a thorough discussion of Riemannian geometry on exact and heterotic 
Courant algebroids, i.e., within the framework of generalized geometry as introduced by Hitchin 
[20] and further developed in [16,18,19]. The discussion here is in some aspects analogous to 
the Kaluza–Klein (KK) theory; See [4] for a nice review of KK. In the KK theory one starts with 
a metric on a principal G-bundle P , with a (compact) Lie group G. A G-invariant metric on P
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determines (and is determined by) a metric on the base manifold M , a principal connection on P
and a G-invariant metric on each fiber Gx , smoothly depending on the base point x. Let us recall, 
to P there is the associated Atiyah algebroid L and the connection A corresponds to a choice 
of splitting of the corresponding Atiyah sequence. One can use the Levi-Civita connection on 
P and compute the Ricci scalar. The resulting Einstein–Hilbert type of action contains among 
others the ordinary Einstein–Hilbert action with the pure Yang–Mills theory. Also, let us recall 
that the KK-reduction naturally incorporates the dilaton.

Here, we modify this in the spirit of the generalized geometry. We can start with the gener-
alized cotangent bundle T P ⊕ T ∗P equipped with the structure of an exact Courant algebroid. 
If the principal action is the so called trivially extended one (and the first Pontryagin class of 
P vanishes), the exact Courant algebroid structure on P can be reduced to a Courant algebroid 
structure. In case of a Lie group G, whose Lie algebra g is equipped with an ad-invariant non-
degenerate bilinear form 〈·, ·〉g (e.g. compact, semisimple), the resulting Courant algebroid E′ is 
not an exact one, it is a so called heterotic Courant algebroid, its underlying vector bundle is the 
Whitney sum of the Atiyah algebroid L and the cotangent bundle T ∗M . Vice versa, each such 
a heterotic Courant algebroid comes as a reduction from an exact Courant algebroid on P [5]. 
Similar statements can be made with respect to the respective generalized metrics. In this paper 
we thoroughly investigate the reduction on the level of Levi-Civita connections and the corre-
sponding generalized Einstein–Hilbert actions. Roughly speaking, starting with an exact Courant 
algebroid (with the Dorfman bracket twisted by a closed 3-form H ), equipped with a generalized 
metric (g, B) we arrive (ignoring the dilaton) at the generalized scalar curvature

R =R(g) − 1

12
H ′

klmH ′ klm

with H ′ = H + dB . Similarly, starting with a heterotic Courant algebroid, we arrive (again in 
the simplest case and ignoring the dilaton and the cosmological constant) at

R =R(g) − 1

12
H ′

klmH ′ klm + 1

4
〈F ′

kl,F
′ kl〉g,

where F ′ is the curvature of a connection which is the sum of the starting principal connection 
A on P and an adjoint bundle valued one form A′ on M entering the parametrization of a gen-
eralized metric (g, B, A′) on a heterotic Courant algebroid, and H ′ = H + dB + . . . . In this 
paper, among other things, we describe in detail, how the two above actions can be related by 
the reduction with respect to the trivially extend action of G. This relation will appear to be less 
straightforward as it might seem at the first glance. Let us note that the constants −1/12 and 1/4
are related to the choice of normalizations of the fields (H , B , A, A′) as these appear naturally 
from the generalized geometry of Courant algebroids. E.g., B is exactly the one entering the sum 
g + B .

The relevance of the heterotic Courant algebroids is due to the condition of the triviality of 
the first Pontryagin class. As noted, e.g., in [15,5], it is exactly the Green–Schwarz anomaly 
cancellation condition when the principal bundle P is a fiber product of a Yang–Mills bundle 
and the (oriented) frame bundle on M . Hence, the structure of a heterotic Courant algebroids 
can be used to naturally incorporate the corresponding α′ correction. Related to this, recently, 
the heterotic effective actions, Green–Schwarz mechanism and the related α′ correction have 
been extensively examined within the double field theory [6,25–27,34].1 It would be interesting 

1 For a general review of double field theory, including discussion of effective action see [23,1].
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to compare the two approaches. Note also the generalized geometry approach to α′ corrections 
published in [12], and generalized connections with applications in DFT in [28,29].

Comparing to other closely related work, let us note the following. Our definition of the tor-
sion operator is suitable for any local (pre-)Leibniz algebroid [31]. In the particular case of a 
Courant algebroid it can be related to the one defined by Gualtieri [17] or equivalently in [2]. 
Similarly, our notion of the curvature operator is suitable for any local (pre-)Leibniz algebroid 
[31].

Efforts to construct a well-defined Riemann-like tensors encoding the low energy actions date 
back to Siegel [37,38]. In the framework of double field theory, generalized Riemann tensors 
were studied extensively in [22] and in [21] for heterotic case. In terms of geometry used in 
the double field theory, the generalized Riemann tensor is defined in [24]. Unfortunately, while 
writing this paper, we were unaware of this work. Its basic idea is very similar to the approach 
we have taken. In this version of the paper, we have added a new section 6 comparing the two 
approaches. We appreciate that the definition of a generalized Riemann tensor in [24] has nicer 
symmetries (algebraic Bianchi identity) and geometrical properties. Also, it applies to a general 
Courant algebroid.

Recall that an important role of Courant algebroids and generalized geometry in the ge-
ometrization of supergravity was conjectured in the talk of Peter Bouwknegt [9]. There are many 
recent developments of similar ideas, see in particular the work of Coimbra, Strickland-Constable 
and Waldram in [13,14].

The paper is organized as follows.
In Section 2, we briefly recall basic definitions related to Courant algebroids, in particular the 

notion of a Courant algebroid connection in 2.1. Note that this is not an ordinary vector bun-
dle connection, as it induces the covariant derivative along a general section of the underlying 
Courant algebroid vector bundle E, not only along a vector field. Moreover, the natural com-
patibility with the Courant metric (pairing) is imposed. We recall the definition of the torsion 
operator, which has to be modified in order to reflect the non-skew-symmetry of the Dorfman 
bracket. The non-skew symmetry of the bracket results in non-tensoriality of the naive torsion 
operator, the proper modification described here fixes this unpleasant feature.

Section 3 is devoted to a thorough examination of the Courant algebroid connections in the 
case of exact Courant algebroids.

In 3.1, we briefly recall all (for our purposes) useful definitions of the generalized metric, in 
particular the one motivated by physics and the string background (g, B) encoded in the met-
ric g and the B-field. Let us note that unlike in some of the published work (e.g., [5,15]), we 
keep working with an arbitrary isotropic splitting of E, not choosing the one by untwisting B
from the generalized metric. We do this to keep the explicit track of the B-field throughout the 
calculations.

In 3.2, we give a novel definition of the curvature operator, suitable for every Courant alge-
broid connection on an exact Courant algebroid. It is based on the more general procedure we 
have described in [31]. Let us note that the idea of fixing the tensoriality of the curvature opera-
tor is not completely new. In, e.g., [40], a vector bundle connection on E is used to modify the 
bracket – and consequently use it in definition of the torsion and the curvature operator.

We classify all Courant algebroid connections on an exact Courant algebroid in 3.3. We are 
aware that a similar thing was done in a more abstract way in [15]. However, we take the more 
pedestrian approach and describe the result in terms of two ordinary tensors on the space–time 
manifold M . We define and calculate two different scalar curvatures of the most general Levi-
Civita connections in 3.4.
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The rest of Section 3 is dedicated to some immediate applications of the previous results. In 
3.5, we compare our definition of the Ricci tensor to the generalized Ricci curvature defined in 
[15]. In 3.6, we show how the scalar field φ can be added due to a special choice of the tensor 
K appearing in our classification, resulting in the scalar curvature containing the terms with 
dilaton. We compare it to a similar consideration in [15]. Finally, one can relate the Levi-Civita 
connection corresponding to the generalized metric parametrized by fields (g, B) to the one 
corresponding to the so called background-independent gauge [35]. The tensorial character of 
the curvature operator allows for a direct relation of the respective scalar curvatures, leading to 
an elegant geometrical explanation of the correspondence of the two various effective theories 
(discussed, e.g., in [7,8]). This is shown in detail in 3.7. Note that this effective theory is closely 
related to the one discussed thoroughly in [3].

Section 4 essentially generalizes the preceding section to a more general class of Courant 
algebroids, which we, in accordance to [5], call heterotic Courant algebroids.

In 4.1, we recall how these heterotic Courant algebroids can be obtained by a reduction from 
exact Courant algebroids over principal bundles. We follow [5] and [11,36]. In 4.2, we first de-
fine a generalized metric on the heterotic Courant algebroid as an involution defining a positive 
definite fiber-wise metric, and show that for compact Lie groups, such generalized metrics are 
one-to-one with those obtained by reduction from the exact Courant algebroids in the most natu-
ral and straightforward way. The result coincides with the one in [5]. We provide the calculation 
for an arbitrary splitting, explicitly tracking the corresponding conditions imposed on the B-field. 
Decomposition of a generalized metric gives us the correct twisting map for the heterotic Courant 
algebroid bracket, an analogue of the B-transform in the exact theory. We calculate the resulting 
twisted bracket in 4.3.

In 4.4, we provide a complete classification of Levi-Civita Courant algebroid connections 
for the heterotic case. Again, this should be compared to [15]. However, as in the exact case, 
we take the more pedestrian approach and describe the result in terms of ordinary tensors on 
the space–time manifold M . The result has more freedom than in the exact case, notably there 
is no canonical choice of a what one could call a “minimal connection”. In 4.5, it turns about 
that the definition of a curvature operator suitable for heterotic Courant algebroids requires a 
modification of the correcting term K, containing a peculiar choice of the factor 1

2 in order for 
the resulting scalar curvatures to contain the field C of the generalized metric only in terms of 
the twisted bracket. This is similar to the exact case, where B appears only as dB in the result. 
We then give an example of the Levi-Civita connection and we calculate its scalar curvatures. 
Similarly to the exact case, we also discuss the addition of the dilaton.

In addition to the previous section, results of the Section 5 could be considered as the main 
achievements of this paper. As the generalized metrics of the heterotic theory are all obtained 
by the reduction of the relevant generalized metrics on the exact Courant algebroid over the cor-
responding principal bundle, one can expect that a similar procedure can be used to reduce the 
Levi-Civita connections. This is indeed true, as we demonstrate in 5.1. However, the correspon-
dence of the tensors parameterizing the respective connections is not straightforward at all. One 
can see it from the provided example. Nevertheless, we were able to find it explicitly for one of 
the “minimal” connections on the heterotic Courant algebroid.

More importantly, the correspondence of the connections provides a relation of their respec-
tive curvature operators, and consequently also of the two scalar curvatures. This calculation is 
the main subject of 5.2, resulting in the Theorem 5.2. We apply this to the example of the two 
corresponding connections of the previous subsection, ending up with an explicit and interesting 
relation (200) of the two scalar curvatures.
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Finally, we discuss the dilaton within the reduction framework, this might be surprisingly a 
bit less straightforward than one would expect.

As we also remark, starting from pre-Courant algebroids, everything can immediately gener-
alized be to more general principal bundles with non-vanishing first Pontryagin class. Also, one 
can include Lorentzian manifolds into all considerations present in the paper.

In 6 we compare in detail the curvature tensor defined here and the one defined in [24] within 
the double field theory.

Although we have focused on principal bundles with semisimple compact structure Lie group, 
one can easily work out very similar results for some other examples, e.g. torus bundles. On the 
other hand, one can consider the class of isotropic trivially extended actions, where exact Courant 
algebroids reduce to exact Courant algebroids. In this case, the reduction procedure requires one 
to take the quotient with respect to an isotropic subspace of the Courant metric, which poses a 
serious problem for the reduction of the positive definite generalized metric. One can thus rightly 
expect similar problems with the reduction of corresponding Levi-Civita connections. Possible 
techniques required to generalize 5.2 would therefore have to be more involved, and we keep it 
for future discussions.

2. Courant algebroids

Let us briefly recall some basic definitions. Let E be a vector bundle over a manifold M . 
Let ρ ∈ Hom(E, T M) be a smooth vector bundle morphism, called the anchor. Let [·, ·]E be an 
R-bilinear bracket on �(E), the module of smooth sections of E. We say that (E, ρ, [·, ·]E) is a 
Leibniz algebroid,2 if the Leibniz rule

[e,f e′]E = f [e, e′]E + (ρ(e).f )e′, (1)

holds for all e, e′ ∈ �(E) and f ∈ C∞(M), and the bracket [·, ·]E defines a Leibniz algebra on 
�(E), i.e.,

[e, [e′, e′′]E]E = [[e, e′]E, e′′]E + [e′, [e, e′′]E]E, (2)

holds for all e, e′, e′′ ∈ �(E). This condition is called the Leibniz identity. It follows from these 
two axioms that the anchor is a bracket homomorphism, that is

ρ([e, e′]E) = [ρ(e), ρ(e′)], (3)

holds for all e, e′ ∈ �(E).
Now, assume that 〈·, ·〉E is a (not necessarily a positive definite) fiber-wise metric on E. One 

says that (E, ρ, 〈·, ·〉E, [·, ·]E) is a Courant algebroid, if (E, ρ, [·, ·]E) is a Leibniz algebroid and 
the following two relations

〈[e, e], e′〉E = 1

2
ρ(e′).〈e, e〉E, (4)

ρ(e).〈e′, e′′〉E = 〈[e, e′]E, e′′〉E + 〈e′, [e, e′′]E〉E, (5)

hold for all e, e′, e′′ ∈ �(E).
In order to understand the first of the above conditions, let gE ∈ Hom(E, E∗) be the vector 

bundle isomorphism induced by 〈·, ·〉E . To start, define the map d : C∞(M) → E∗ as df :=

2 Also known as Loday algebroid in mathematical literature.
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ρT (df ), where ρT ∈ Hom(T ∗M, E) is the natural transpose of the anchor ρ. Then, one can use 
gE to induce the map D : C∞(M) → E defined as Df := g−1

E (df ). Note that this map satisfies 
the usual Leibniz rule in the form

D(fg) = (Df )g + f (Dg), (6)

for all f, g ∈ C∞(M). Using this map, one can rewrite (4) as

[e, e′]E = −[e′, e]E +D〈e, e′〉E, (7)

for all e, e′ ∈ �(E). We see that the combination of ρ and gE is used to control the symmetric 
part of the bracket. The axiom (5) is a compatibility of the pairing 〈·, ·〉E with the bracket [·, ·]E . 
Courant algebroids should thus be considered as a natural algebroid generalization of quadratic 
Lie algebras. In particular, they can be recovered as Courant algebroids over M = {m}.

One says that (E, ρ, 〈·, ·〉E, [·, ·]E) is an exact Courant algebroid, if the sequence

0 T ∗M ρ∗
E

ρ
T M 0, (8)

is exact. Here ρ∗ = g−1
E ◦ ρT , that is ρ∗(df ) = Df . Note that ρ ◦ ρ∗ = 0 holds for a general 

Courant algebroid.
It was proved by Ševera in [42] that exact Courant algebroids over M are classified by 

H 3
dR(M). In particular, every exact Courant algebroid over M has (up to an isomorphism) the 

following form: E := T M ⊕ T ∗M , ρ is the canonical projection onto vector fields, 〈·, ·〉E is the 
canonical pairing of vector fields and 1-forms 〈X + ξ, Y + η〉E := η(X) + ξ(Y ) and [·, ·]E is the 
H -twisted Dorfman bracket

[X + ξ,Y + η]HD := [X,Y ] +LXη − iY dξ − H(X,Y, ·), (9)

for all X + ξ, Y +η ∈ �(E). The form H ∈ �3(M) has to be closed. Let H ′ ∈ �3
closed(M). Then 

[·, ·]HD and [·, ·]H ′
D are isomorphic iff [H ]dR = [H ′]dR .

2.1. Courant algebroid connections

Let (E, ρ, 〈·, ·〉E, [·, ·]E) be a Courant algebroid. We follow the definitions in [2] and [17]. 
Let ∇ : �(E) × �(E) → �(E) be an R-bilinear map. We say that ∇ is a Courant algebroid 
connection on E if

∇f ee
′) = f ∇ee

′, ∇ef e′ = f ∇ee + (ρ(e).f )e′ (10)

holds for all e, e′ ∈ �(E) and f ∈ C∞(M) together with the metric compatibility condition

ρ(e).〈e′, e′′〉E = 〈∇ee
′, e′′〉E + 〈e′,∇ee

′′〉E, (11)

for all e, e′, e′′ ∈ �(E). We have used the conventional notation ∇ee
′ := ∇(e, e′). We say that ∇

is an induced Courant algebroid connection, if there is an ordinary vector bundle connection ∇′
on E, such that ∇e = ∇′

ρ(e). Using the standard procedure, we can extend the covariant derivative 
to the whole tensor algebra T (E) of the vector bundle E. Let gE be a fiber-wise metric on E. 
We say that ∇ is metric compatible with gE , if ∇egE = 0, or equivalently

ρ(e).gE(e′, e′′) = gE(∇ee
′, e′′) + gE(e′,∇ee

′′), (12)

for all e, e′, e′′ ∈ �(E).
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An introduction of torsion operator is less straightforward. We will a definition equivalent to 
those in [2,17]. By a torsion operator we mean a C∞(M)-bilinear map T : �(E) × �(E) →
�(E) defined as

T (e, e′) := ∇ee
′ − ∇e′e − [e, e′]E + 〈∇eλe, e

′〉E · g−1
E (eλ), (13)

for all e, e′ ∈ �(E). Here (eλ)
k
λ=1 is an arbitrary local frame on E, and (eλ)kλ=1 is the corre-

sponding dual frame on E∗. It is straightforward to check the C∞(M)-linearity in both inputs. 
Moreover, T is in skew-symmetric in (e, e′). In fact, there holds even stronger statement. Note 
that the 3-form TG in the following lemma is the original definition of torsion according to 
Gualtieri in [17].

Lemma 2.1. let TG ∈ T 0
3 (E) defined as TG(e, e′, e′′) := 〈T (e, e′), e′′〉E . Then TG is completely 

skew-symmetric, that is TG ∈ �3(E).

3. Exact theory

3.1. Generalized metric

In this section, we assume that (E, ρ, 〈·, ·〉E, [·, ·]E) is an exact Courant algebroid with the 
twisted Dorfman bracket (9). There are several equivalent ways to define a generalized metric in 
this case. Let us start with the following one. We say than τ ∈ End(E) is a generalized metric on 
E, if τ 2 = 1, and the formula

Gτ (e, e
′) := 〈τ(e), e′〉E, (14)

defines a positive definite fiber-wise metric on E. This also implies that τ is symmetric and or-
thogonal with respect to 〈·, ·〉E . For exact E, the signature of 〈·, ·〉E is (n, n). Denote the group of 
orthogonal automorphisms of E as O(E), and the corresponding Lie algebra of skew-symmetric 
maps as o(E). In this case, the ±1 eigenbundles V± of τ define rank n positive and negative 
definite subbundles of E, such that

E = V+ ⊕ V−. (15)

Moreover, one has V− = V ⊥+ . A choice of a maximal rank positive definite subbundle V+ is 
equivalent to a choice of a generalized metric. Given V+, define V− := V ⊥+ , and τ |V± = ±1. Next, 
let L ⊆ E be a maximally isotropic subbundle. One can identify the orthogonal complement 
L⊥ with the dual bundle L∗, hence E = L ⊕ L∗. Because L and L∗ are isotropic, we have 
L ∩ V+ = L∗ ∩ V+ = 0. This implies that V+ is a graph of a unique vector bundle isomorphism 
A ∈ Hom(L, L∗). In other words, V+ has the form

V+ = {ψ + A(ψ) | ψ ∈ L} ⊆ L ⊕ L∗. (16)

We can find a unique decomposition A = g + B , where g ∈ �(S2L∗), and B ∈ �2(L). It fol-
lows that g has to be positive definite fiber-wise metric on L. Using the similar arguments and 
perpendicularity of two subbundles, we get that

V− = {ψ + (−g + B)(ψ) | ψ ∈ L} ⊆ L ⊕ L∗. (17)

Thus, given a maximally isotropic subbundle L, to every generalized metric there exists a unique 
pair (g, B), where g is a positive definite fiber-wise metric on L, and B ∈ �2(L). Conversely, 
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having the data (g, B), set V+ to be as above in order to define a generalized metric. The corre-
sponding fiber-wise metric Gτ on E can be written in the formal block form with respect to the 
splitting E = L ⊕ L∗ as

Gτ =
(

g − Bg−1B Bg−1

−g−1B g−1

)
. (18)

We will drop the subscript τ in the following. Note that G can be decomposed as

G =
(

1 B

0 1

)(
g 0
0 g−1

)(
1 0

−B 1

)
. (19)

For simplicity, we always choose the maximally isotropic subbundle L = T M , but keep in mind 
that everything works in the same way for an arbitrary L.

Let B ∈ �2(M). Let FB ∈ o(E) have the form FB(X + ξ) = B(X). Taking its exponential, 
we get the map eB ∈ O(E), which has the block form

eB =
(

1 0
B 1

)
. (20)

The map eB is usually called the B-transform. We see that G can be written as G =
(e−B)T GEe−B , where GE is the block diagonal fiber-wise metric GE = BlockDiag(g, g−1). 
A significant feature is the behavior of the twisted Dorfman bracket under B-transform. We 
have

eB([e, e′]H+dB
D ) = [eB(e), eB(e′)]HD . (21)

We see that eB is precisely the isomorphism of two twisted Dorfman brackets corresponding to 
3-forms H and H ′ in the same cohomology class.

Remark 3.1. We use the following convention for maps induced by 2-forms and 2-vectors. For 
example, we set B(X) = B(·, X), where on the left-hand side B ∈ Hom(T M, T ∗M), and on 
the right-hand side B ∈ �2(M). Note that the matrix of the map B in any basis coincides with 
components of the 2-form in the same basis, that is 〈ek, B(el)〉 = B(ek, el).

3.2. Definition of the curvature operator

Assume that E is an exact Courant algebroid, E = T M ⊕ T ∗M . We can now proceed to the 
definition of the curvature operator. This is an example of a more general procedure described 
in [31]. The main idea is to correct the naive curvature operator formula to obtain a tensor with 
good properties. Define

R(e, e′)e′′ := ∇e∇e′e′′ − ∇e′∇ee
′′ − ∇[e,e′]Ee′′ + ∇K(e,e′)e

′′, (22)

where K is defined as

K(e, e′) := 〈∇eλe, e
′〉E · pr2(g

−1
E (eλ)). (23)

Observe that K resembles the last term of (13), except for the projection onto T ∗M . This modi-
fication is necessary in order to establish the tensorial property of R.
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Lemma 3.2. The operator R defined by (22) and (23) is C∞(M)-linear3 in e, e′, e′′. In fact, it is 
skew-symmetric in (e, e′): R(e, e′)e′′ = −R(e′, e)e′′. Moreover, R satisfies

〈R(e, e′)f,f ′〉E + 〈R(e, e′)f ′, f 〉E = 0. (24)

Proof. All claims follow by a direct verification using the axioms of Courant algebroids and 
metric compatibility of ∇ and 〈·, ·〉E . �

Having the curvature operator, or equivalently the generalized Riemann tensor, we can define 
the generalized Ricci tensor in a usual way as

Ric(e, e′) := 〈eλ,R(eλ, e
′)e〉. (25)

At this point, one should compare the definition (22) with the one introduced in [17], and sub-
sequently used in [15]. In these papers, instead of fixing the non-tensoriality of R by adding the 
term with K, they note that the naive R(e, e′) is tensorial in e, if and only if 〈e, e′〉E = 0. In 
particular, one can always restrict onto Dirac structure in E. However, our R does not in general 
restrict to the naive R for a pair of orthogonal sections. In [15], they choose e ∈ V+ and e′ ∈ V−, 
where V± ⊆ E are the subbundles induced by a generalized metric. For connections compatible 
with G, those subbundles are invariant, ∇e(V±) ⊆ V±. It follows that in this case K(e, e′) = 0, 
and our R reduces to the one of [17]. Moreover, our tensor Ric ∈ �(E∗ ⊗ E∗) does restrict to 
their GRic ∈ �(V ∗− ⊗V ∗+). However, our curvatures R and RE can be defined in a more straight-
forward way using directly the traces of the Ricci tensor. Interestingly, the resulting curvature 
R coincides with the generalized scalar curvature GS, defined using the spinor bundle and the 
Dirac operator in [17,15].

Another highly relevant approach of [24] will be discussed in detail in 6.

3.3. Levi-Civita connections on E

Assume that E = T M ⊕T ∗M is equipped with an H -twisted Dorfman bracket. Suppose G is 
a generalized metric on E, corresponding to a pair (g, B), or equivalently G = (e−B)T GEe−B , 
where GE = BlockDiag(g, g−1). The main goal of this section is to describe the most general 
torsion-free Courant algebroid connection on E, compatible with the generalized metric G. It 
turns out that such a connection is not unique. Despite of this, we refer to such connections as 
Levi-Civita ones. We start with the following observation.

Lemma 3.3. Connection ∇ is a Levi-Civita connection corresponding to the generalized metric 
G and bracket [·, ·]HD if and only if the connection ∇̂ defined as

∇ee
′ := eB∇̂e−B(e)e

−B(e′), (26)

is a Levi-Civita connection corresponding to GE and the bracket [·, ·]H+dB
D .

3 Here, following the suggestion of an anonymous referee, we clarify this claim. In particular, we refer to two versions 
of the paper [41]. In the first version of [41], an incorrect definition similar to our (22) is given. The key for our version 
to work is the projection pr2 in the definition (23) of the map K. Because of that, it satisfies K(e, f e′) = f K(e, e′), 
K(f e, e′) = 〈e, e′〉E ·Df and ρ(K(e, e′)) = 0, for all e, e′ ∈ �(E) and f ∈ C∞(M). It is precisely the combination of 
these three properties which can easily be used to prove that R is indeed C∞(M)-linear in all inputs. For a more general 
discussion relevant to Leibniz algebroids, we refer to our previous paper [31].
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Proof. Let ∇ be a Levi-Civita connection corresponding to G and [·, ·]HD . It is easy to see that ∇̂
is metric compatible with GE and 〈·, ·〉E . Let T̂ be the torsion operator corresponding to ∇̂ and 
the bracket [·, ·]H+dB

D . It follows from (21) that

T (e, e′) = eB(T̂ (e−B(e), e−B(e′))). (27)

This proves that T = 0 iff T̂ = 0. �
This lemma allows us to simplify our problem to the following one: To find all Levi-Civita 

connections with respect to the block diagonal generalized metric GE′ and the bracket [·, ·]H ′
D , 

where the closed 3-form H ′ is H ′ = H + dB . It is not difficult to see that ∇̂ is metric compatible 
with 〈·, ·〉E and GE , if and only it has have the block form

∇̂X =
( ∇M

X g−1CX(·, g−1(�))

CX(·, �) ∇M
X

)
, ∇̂ξ =

(
Aξ(�) g−1Vξ (·, g−1(�))

Vξ (·, �) −AT
ξ (�)

)
, (28)

where CX, Vξ ∈ �2(M), ∇M is an ordinary linear connection on the manifold M compatible 
with the metric g, and Aξ ∈ End(T M) is skew-symmetric with respect to the metric g:

g(Aξ (Y ),Z) + g(Y,Aξ (Z)) = 0. (29)

All objects are C∞(M)-linear in X, ξ and � indicates the input. Equivalently, we can write

∇̂X(Z + ζ ) = ∇M
X Z + g−1CX(·, g−1(ζ )) + CX(·,Z) + ∇M

X ζ, (30)

∇̂ξ (Z + ζ ) = Aξ(Z) + g−1Vξ (·, g−1(ζ )) + Vξ (·,Z) − AT
ξ (ζ ). (31)

Our goal is to determine C, V, ∇M and A in order to define a torsion-free connection. Plugging 
the expressions (28) into the condition T̂ (e, e′) = 0 gives a set of four independent equations:

∇M
X Y − ∇M

Y X − [X,Y ] + V k(X,Y )∂k = 0, (32)

CX(Z,Y ) − CY (Z,X) − CZ(X,Y ) + H ′(X,Y,Z) = 0, (33)

CX(g−1(ξ), g−1(η)) + 〈Aξ(X),η〉 − 〈Aη(X), ξ 〉 = 0, (34)

Vξ (g
−1(ζ ), g−1(η)) − Vη(g

−1(ζ ), g−1(ξ)) − Vζ (g
−1(ξ), g−1(η)) = 0. (35)

All conditions are supposed to hold for all vector fields and 1-forms on M . To proceed further, 
note that (32) shows that Vξ (X, Y) = 〈T M(X, Y), ξ 〉, where T M is the torsion operator of the 
linear connection ∇M . One can plug this expression into (35) in order to obtain the condition

g(T M(Z,Y ),X) − g(T M(Z,X),Y ) − g(T M(X,Y ),Z) = 0. (36)

Recall that the contortion tensor K for metric compatible connection is defined as

K(X,Y,Z) := 1

2
{g(T M(X,Y ),Z) + g(T M(Z,X),Y ) − g(T M(Y,Z),X)}. (37)

Using the condition (36), this gives K(X, Y, Z) = −g(X, T M(Y, Z)). Rewriting (36) using the 
contortion tensor now gives the equation

K(X,Y,Z) + cyclic(X,Y,Z) = 0. (38)

The contortion tensor is by definition skew-symmetric in last two inputs. The condition (38) thus 
says that complete skew-symmetrization Ka of K vanishes. Now note that we can write
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Vξ (X,Y ) = −K(g−1(ξ),X,Y ), (39)

∇M
X Y = ∇LC

X Y + g−1K(X,Y, ·), (40)

where ∇LC is the Levi-Civita connection on M corresponding to the metric g. The solution to 
the other two equations is similar. Define the tensor Q as

Q(ξ,η, ζ ) := 〈η,Aξ (g
−1(ζ ))〉 = g−1(AT

ξ (η), ζ ). (41)

Because Aξ is supposed to be skew-symmetric with respect to g, Q(ξ, η, ζ ) has to be skew-
symmetric in (η, ζ ). Equation (34) then implies

CX(Y,Z) = Q(g(Z), g(Y ), g(X)) − Q(g(Y ), g(Z), g(X)). (42)

One can now plug this into (33) in order to obtain

Q(g(X),g(Y ), g(Z)) + cyclic(X,Y,Z) = −1

2
H ′(X,Y,Z). (43)

This determines the complete skew-symmetrization of Q. We can thus write

Q(ξ,η, ζ ) = −1

6
H ′(g−1(ξ), g−1(η), g−1(ζ )) + J (ξ, η, ζ ), (44)

where J ∈ X1(M) ⊗ X2(M) satisfies Ja = 0. One can now rewrite the remaining tensor fields 
using H ′ and J to obtain

Aξ(Y ) = 1

6
H ′(g−1(ξ), Y, ·) − J (ξ, g(Y ), ·), (45)

CX(Y,Z) = 1

3
H ′(X,Y,Z) + J (g(X), g(Y ), g(Z)). (46)

We can summarize the above discussion in the form of a theorem

Theorem 3.4. A Courant algebroid connection ∇̂ is a Levi-Civita connection with respect to the 
generalized metric GE and H ′-twisted Dorfman bracket [·, ·]H ′

D , if and only if it has the form

∇̂X =
( ∇LC

X + g−1K(X,�, ·) − 1
3g−1H ′(X,g−1(�), ·) − J (g(X), �, ·)

− 1
3H ′(X, �, ·) − gJ (g(X), g(�), ·) ∇LC

X + K(X,g−1(�), ·)
)

,

(47)

∇̂ξ =
( 1

6g−1H ′(g−1(ξ), �, ·) − J (ξ, g(�), ·) g−1K(g−1(ξ), g−1(�), ·)
K(g−1(ξ), �, ·) 1

6H ′(g−1(ξ), g−1(�), ·) − gJ (ξ, �, ·)
)

,

(48)

where K ∈ �1(M) ⊗ �2(M) and J ∈X(M) ⊗X2(M) satisfy Ka = Ja = 0.

We see that the space of Levi-Civita connections for a given generalized metric is an infinite-
dimensional affine space over the C∞(M)-module of rank 2

3 (n3 − n). Also note that no Levi-
Civita connection is in general (whenever H ′ �= 0) induced by an ordinary connection on vector 
bundle E, that is always ∇̂ξ �= 0, and consequently also ∇ξ �= 0.
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3.4. Scalar curvatures of Levi-Civita connections

Let ∇ be the Levi-Civita Courant algebroid connection corresponding to the generalized met-
ric G and the bracket [·, ·]HD . We assume that the connection ∇̂ corresponding to ∇ via (26) has 
the form as in Theorem 3.4. We can calculate the curvature operator (22) of ∇ , and the corre-
sponding Ricci tensor (25). The ultimate goal of this section is to arrive to a pair (R, RE) of 
scalar curvatures, defined as

R := Ric(G−1(eλ), eλ), RE = Ric(g−1
E (eλ), eλ). (49)

To start, note that we have

R(e, e′)e′′ = eB [R̂(e−B(e), e−B(e′))(e−B(e′′))], (50)

where the operator R̂ has the form

R̂(e, e′)e′′ := ∇̂e∇̂e′e′′ − ∇̂e′ ∇̂ee
′′ − ∇̂[e,e′]H ′

D
e′′ + ∇̂K̂(e,e′)e

′′. (51)

The map K̂ is defined as

K̂(e, e′) := 〈∇̂eλe, e
′〉E · (e−B ◦ pr2 ◦ eB)(g−1

E (eλ)). (52)

Note that K̂ and consequently also R̂ depend explicitly on B . Define the tensor ̂Ric using R̂ as

R̂ic(e, e′) := 〈eλ, R̂(eλ, e
′)e〉. (53)

From the definition, we obtain Ric(e, e′) = R̂ic(e−B(e), e−B(e′)), and thus

R = R̂ic(G−1
E (eλ), eλ), RE = R̂ic(g−1

E (eλ), eλ). (54)

Explicit formulas for R̂ and ̂Ric can be now calculated from (47), (48). We are interested merely 
in the scalar functions (R, RE). We state the final result in the form of a theorem.

Theorem 3.5. Let ∇ be a Levi-Civita connection corresponding to the generalized metric G and 
the bracket [·, ·]HD . Let H ′ = H + dB , and let ∇̂ be the connection (26) having the explicit form 
(47), (48). Let R and RE be the scalar curvatures (49). Then

R=R(g) − 1

12
H ′

klmH ′ klm + 4 div(K ′) − 4‖K ′‖2
g − 4‖J ′‖2

g, (55)

RE = −4 div(J ′) + 8〈J ′,K ′〉, (56)

where R(g) is the Levi-Civita Ricci scalar of g, J ′ ∈ X(M) is defined as J ′ := J (dyk, g(∂k), ·), 
K ′ ∈ �1(M) is K ′ = K(g−1(dyk), ∂k, ·), ‖·‖g are the g-norms of vector and covector fields, and 
div is a covariant divergence induced by the Levi-Civita connection ∇LC .

Remark 3.6. Let us note that in the entire process, it was not necessary for g to be positive 
definite. The calculation thus works for g of any signature, as long as g is non-degenerate.

3.5. Comparing Ric to GRic of [15]

At this point, we can compare the conditions imposed by the vanishing of the generalized 
Ricci tensor GRic as it was discussed in [15] to the properties of the tensor Ric introduced here. 
Note that GRic ∈ �(V ∗− ⊗ V ∗+), and we get
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GRic(e−, e+) = Ric(e+, e−), (57)

where e− ∈ �(V−) and e+ ∈ �(V+). In the above formula, the interchange of e− with e+ follows 
from the opposite convention to define the Ricci tensor. They prove that GRic = 0 gives the part 
of the equations of motion for type II supergravity. Let us now show that GRic = 0 does not 
imply Ric = 0. We will use the simplest J = K = 0 example. Define the four tensors Ric±± ∈
�1(M) ⊗ �1(M) as

Ric±±(X,Y ) := Ric(�±(X),�±(Y )), (58)

where �± are the generalized metric induced isomorphisms � ∈ Hom(T M, V±) having the 
form

�±(X) = X + (±g + B)(X). (59)

As �± are isomorphisms, the condition GRic = 0 is equivalent to Ric+− = 0. One finds

Ric+−(X,Y ) = RicLC(X,Y ) − 1

4
(H ′ � H ′)(X,Y ) − 1

2
(∇LCH ′)(X,Y ), (60)

Ric−+(X,Y ) = RicLC(X,Y ) − 1

4
(H ′ � H ′)(X,Y ) + 1

2
(∇LCH ′)(X,Y ), (61)

where (H ′ �H ′)(X, Y) := H ′(∂k, ∂l, X)H ′(ek, el, Y), and (∇LCH)(X, Y) = (∇LC
∂k

H)(X, Y, ek), 
and similarly

Ric++(X,Y ) = RicLC(X,Y ) − 1

12
(H ′ � H ′)(X,Y ) + 1

6
(∇LCH ′)(X,Y ) (62)

+ 1

18
H ′(g−1(dyl), ∂k, Y )H ′(g−1B(∂l),X,g−1(dyk)),

Ric−−(X,Y ) = RicLC(X,Y ) − 1

12
(H ′ � H ′)(X,Y ) − 1

6
(∇LCH ′)(X,Y ) (63)

− 1

18
H ′(g−1(dyl), ∂k, Y )H ′(g−1B(∂l),X,g−1(dyk)).

The condition GRic(X, Y) = 0 implies Ric+−(X, Y) = 0 and consequently Ric−+(X, Y) = 0. 
Clearly GRic(X, Y) = 0 is not enough for Ric++ and Ric−− to vanish, as this would give us two 
additional conditions

RicLC(X,Y ) = (H ′ � H ′)(X,Y ) = 0, (64)

H ′(el, ∂k, Y )H ′(g−1B(∂l),X, ek) = 0. (65)

We see that GRic = 0 only implies that Ric is block-diagonal with respect to the decomposition 
E = V+ ⊕ V− induced by the generalized metric G. Finally, note that R and RE use exactly the 
block diagonal components Ric++ and Ric−−. One finds that

R = 1

2
Ric++(g−1(dyk), ∂k) + 1

2
Ric−−(g−1(dyk), ∂k) (66)

RE = 1

2
Ric++(g−1(dyk), ∂k) − 1

2
Ric−−(g−1(dyk), ∂k). (67)
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3.6. Adding the dilaton

In this section, we show how to add the scalar field φ ∈ C∞(M) into the picture. Also, we 
relate it to the procedure used in [15]. First note that to arbitrary 1-form ϕ ∈ �1(M), one can al-
ways find K ∈ �1(M) ⊗�2(M), such that K ′ = 1

6 (1 −dimM) ·ϕ. The prefactor is conventional, 
and shows that we have to assume that dimM > 1. Choose

K(X,Y,Z) := 1

6
〈ϕ,Y 〉 · g(X,Z) − 1

6
〈ϕ,Z〉 · g(X,Y ). (68)

Clearly K(X, Y, Z) = −K(X, Z, Y), and one can check that Ka = 0. It thus has the properties 
sufficient and necessary to be a part of the connection ∇̂ as in Theorem 3.4. It is easy to see that

K ′(Z) = 1

6
(1 − dimM) · 〈ϕ,Z〉. (69)

Let φ ∈ C∞(M), and choose ϕ = 6/(1 − dimM) · dφ. Choosing J = 0 and using Theorem 3.5, 
one obtains the scalar curvatures

R =R(g) − 1

12
H ′

klmH ′ klm + 4�φ − 4‖dφ‖2
g, RE = 0, (70)

where �φ = div(dφ) is the Laplace–Bertrami operator corresponding to g. We have chosen 
the prefactor 1/6 in order to make the relation to [15] as simple as possible. Now we recall 
the construction presented there. Let ∇̂0 be the Levi-Civita connection with respect to GE and 
[·, ·]H+dB

D , where J = K = 0. To each e ∈ �(E), one can assign the skew-symmetric operator 
χ

ϕ
e ∈ o(E) called the Weyl term as

χϕ
e e′ = 〈ρ∗(ϕ), e′〉E · e − 〈e, e′〉E · ρ∗(ϕ), (71)

where ρ∗ : T ∗M → E is the inclusion of 1-forms into E defined by the short exact sequence (8). 
Let P 0± be the two projectors onto the ±1 eigenbundles V 0± of the generalized metric GE , and 
define the maps χ±±±

e := P 0±(χ
ϕ

P 0±(e)
P 0±(e′)). Then, one can show that

∇̂ϕ
e e′ = ∇̂0

e e′ + 1

3
χ+++

e e′ + 1

3
χ−−−

e e′ + χ+−+
e e′ + χ−+−

e e′ (72)

is exactly of the form as in the above Theorem 3.4 with J = 0 and K given by (68).

3.7. Background-independent gauge

Consider now a very special case of a generalized metric G, where B is a non-degenerate 
2-form on M , or equivalently a bijection B ∈ Hom(T M, T ∗M). Let θ ∈ Hom(T ∗M, T M) be the 
corresponding inverse, θ = B−1. It is a well-known fact that θ is a dB-twisted Poisson bivector, 
see [43]. Recall, the Schouten–Nijenhuis bracket [θ, θ ]S of any bivector θ with itself can be 
written as

1

2
[θ, θ ]S(ξ, η, ·) = [θ(ξ), θ(η)] − θ(Lθ(ξ)η − iθ(η)dξ), (73)

for all ξ, η ∈ �1(M). Also, recall that with our conventions we denote by the same character θ
the map and the corresponding bivector, θ(ξ) = θ(·, ξ). Plugging ξ = B(X) and η = B(Z), the 
right-hand side becomes −dB(X, Y, ·), and we thus have



100 B. Jurčo, J. Vysoký / Nuclear Physics B 909 (2016) 86–121
1

2
[θ, θ ]S(ξ, η, ζ ) = −dB(θ(ξ), θ(η), θ(ζ )), (74)

which is exactly a definition of the dB-twisted Poisson manifold. It can be equivalently encoded 
into the Lie algebroid structure on T ∗M as follows. Define the (twisted Koszul) bracket [·, ·]dB

θ

on �1(M) as

[ξ, η]dB
θ := Lθ(ξ)η − iθ(η)dξ + dB(θ(ξ), θ(η), ·). (75)

It is a straightforward calculation using (73) and (74) to show that (T ∗M, θ, [·, ·]dB
θ ) forms a Lie 

algebroid structure. In particular, note that θ has to satisfy

θ([ξ, η]dB
θ ) = [θ(ξ), θ(η)]. (76)

This structure appeared independently in several papers on symplectic and Poisson geometry in 
1980’s, and was set into the framework of Courant algebroids in [43]. Now, recall the observation 
of [30], that the Seiberg–Witten open–closed relations of [35] can be interpreted as an orthog-
onal transformation of the generalized metric. Let θ ∈ X2(M). Let (G, �) be the pair of fields 
parameterizing the generalized metric Gθ = (eθ )T Geθ , where eθ (X + ξ) = X + θ(ξ) + ξ . Then 
(g, B) and (G, �) are related by open–closed relations

(g + B)−1 = (G + �)−1 + θ. (77)

For θ = B−1, and given (g, B), there is a unique solution

G = −Bg−1B, � = −B, (78)

called the background-independent gauge.4 We will now show that Levi-Civita connections with 
respect to G and [·, ·]HD can be related to Levi-Civita connections for Gθ on the θ -twisted Courant 
algebroid, which will turn out to be equipped with the twisted Dorfman bracket corresponding 
to the Lie algebroid bracket [·, ·]dB

θ .
We have G = (e−B)T GEe−B , Gθ = (eB)T Gθ

EeB , where Gθ
E = BlockDiag(G, G−1). Hence 

Gθ
E = σT GEσ , where σ = e−Beθe−B . The map σ has the block form

σ =
(

0 θ

−B 0

)
. (79)

Before we can proceed to the discussion of connections, it is clear that we have to calculate the 
twist of the bracket [·, ·]H ′

D by the map σ . Recall that H ′ = H + dB . Define the new Courant 
algebroid bracket [·, ·]σD as

[e, e′]σD := σ−1([σ(e), σ (e′)]H ′
D ). (80)

Note that the inverse map is simply σ−1 = −σ . We find, suggestively writing the sections of E
in the opposite order, that

[ξ + X,η + Y ]σD = [ξ, η]dB
θ +Lθ

ξ Y − iηdθX − H ′(θ(ξ), θ(η), θ(·)) (81)

where Lθ and dθ are the Lie derivative and exterior differentials on X•(M) induced by the Lie 
algebroid [·, ·]dB

θ . Define the three-vector H ′
θ ∈ X3(M) as H ′

θ (ξ, η, ζ ) := H ′(θ(ξ), θ(η), θ(ζ ). 
Hence, we have proved that the twisted bracket [·, ·]σD is the H ′

θ -twisted Dorfman bracket on 

4 See [35] for the origin of this name.
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E = T ∗M ⊕ T M corresponding to the Lie algebroid (T ∗M, θ, [·, ·]dB
θ ). Also note that H ′

θ can 
be written as

H ′
θ = −1

2
[θ, θ ]S + Hθ, (82)

where Hθ is defined using the original 3-form H ∈ �3(M) similarly to H ′
θ . Note that the anchor 

map ρσ corresponding to [·, ·]σD is ρσ (ξ +X) = θ(ξ). It follows that 3-vector H ′
θ is automatically 

dθ -closed, which can also be shown directly.
Let us now focus on connections. Let ∇ be a Levi-Civita connection with respect to the gen-

eralized metric G, and ∇̂ be the corresponding untwisted Levi-Civita connection with respect to 
the block diagonal generalized metric GE . Define the new connection ∇̂θ as the σ -twist:

∇̂ee
′ := σ(∇̂θ

σ−1(e)
σ−1(e′)). (83)

It follows from the definition of the map σ that ∇̂θ is the Courant algebroid connection on E
compatible with the metric Gθ

E , and torsion-free with respect to the bracket [·, ·]σD.
Now note that such connections can be classified in the completely the same manner as the 

Levi-Civita connection for ordinary twisted Dorfman bracket. We can thus employ Theorem 3.4
to find the most general form of the connection ∇̂θ , observing that it is parametrized by two 
tensor fields Kθ ∈ X1(M) ⊗ X2(M) and Jθ ∈ �1(M) ⊗ �2(M), such that (Kθ )a = (Jθ )a = 0. 
Note the exchanged role of the tangent and the cotangent bundle. It is straightforward to show 
that the two parameterizations are related as

Kθ(ξ, η, ζ ) = K(θ(ξ), θ(η), θ(ζ )), Jθ (θ(ξ), θ(η), θ(ζ )) = J (ξ, η, ζ ). (84)

Now, let us focus on the curvature operator. Define the curvature operator R̂θ of ̂∇θ as the σ -twist 
of the curvature operator R̂ for ∇̂:

R̂(e, e′)e′′ := σ(R̂θ (σ−1(e), σ−1(e′))σ−1(e′′)). (85)

Recall that ∇̂ has the form (51). It follows that R̂θ can be written as

R̂θ (e, e′)e′′ = ∇̂θ
e ∇̂θ

e′e′′ − ∇̂θ
e′ ∇̂θ

e e′′ − ∇̂θ
[e,e′]σDe′′ + ∇̂θ

K̂θ (e,e′)e
′′, (86)

where K̂θ has the form K̂θ (e, e′) = 〈∇̂θ
eλ

e, e′〉E · (σ−1e−B ◦ pr2 ◦ eBσ)(g−1
E (eλ)). But this can 

be rewritten, using the block form (79), as

K̂θ (e, e
′) = 〈∇̂θ

eλ
e, e′〉E · (eθ ◦ pr1 ◦ e−θ )(g−1

E (eλ). (87)

But this means that the formula for R̂θ is completely the same as for the ordinary twisted Dorf-
man bracket, just with the role of vector fields and one-forms interchanged. We can now define 
the corresponding Ricci tensor and scalar curvatures Rθ and Rθ

E using the generalized metric 
Gθ

E and the Courant metric gE . They can now be calculated by Theorem 3.5 using Jθ and Kθ . 
One obtains

Rθ =Rθ (G−1) − 1

12
(H ′

θ )
klm(H ′

θ )klm + 4 divθ (K
′) − 4‖K ′

θ‖2
G − 4‖J ′

θ‖2
G, (88)

Rθ
E = −4 divθ (J

′
θ ) + 8〈J ′

θ ,K
′
θ 〉, (89)

where Rθ (G−1) is the scalar curvature of the Levi-Civita connection with respect to the fiber-
wise metric G−1 on T ∗M , torsion-free with respect to the Lie algebroid [·, ·]dB , and divθ is the 
θ



102 B. Jurčo, J. Vysoký / Nuclear Physics B 909 (2016) 86–121
divergence using this Levi-Civita connection. We define J ′
θ ∈ �1(M) and K ′ ∈ X1(M) as the 

partial traces using G, that is

J ′
θ (X) := Jθ (G

−1(dyk), ∂k,X), K ′
θ (ξ) := Kθ(G(∂k), dyk, ξ). (90)

The main goal of the entire construction was to define the connection ∇̂θ so that its scalar cur-
vature coincides with the scalar curvature of the original connection ∇ . This is indeed true and 
straightforward to see this from (85). We conclude that

R=Rθ , RE =Rθ
E. (91)

Let us finish this section with an example of such equality:

Example 3.7. Take the trivial twist H = 0, and set the tensors parameterizing the connection ∇̂
to J = 0, and K defining the dilaton as in (68). Then H ′

θ = − 1
2 [θ, θ ]S ≡ �, an example of the 

R-flux in the string theory. The tensor Kθ is now

Kθ(ξ, η, ζ ) = 1

6
〈ϕ, θ(η)〉 · G−1(ξ, ζ ) − 1

6
〈ϕ, θ(ζ )〉 · G−1(ξ, η). (92)

Hence the partial trace K ′
θ is K ′

θ = − 1
6 (1 −dimM) · θ(ϕ), and for ϕ = 6/(1 −dimM)dφ, we get 

K ′
θ = −θ(dφ) = dθφ. Plugging this into (88) and using the relation (91) gives the final equality

R(g) − 1

12
dBijkdBijk + 4�(φ) − 4‖dφ‖2

g

=Rθ (G−1) − 1

12
�ijk�ijk + 4�θ(φ) − 4‖dθφ‖2

G.

(93)

Here �θφ = divθ (dθφ) is the Laplace–Bertrami operator corresponding to the Levi-Civita con-
nection of the fiber-wise metric G−1 and the Lie algebroid [·, ·]dB

θ on T ∗M . This is precisely the 
relation of the low energy effective actions of the closed string and the “non-geometric” string 
theory as it was derived on the Lie algebroid level in [7,8].

4. Heterotic theory

4.1. Heterotic Courant algebroids and reduction

Let us now consider a more general class of Courant algebroids. The concept of a heterotic 
Courant algebroid was introduced in [5] as a subclass of transitive Courant algebroids. It was 
shown that such a Courant algebroid can always be obtained by a reduction from an exact Courant 
algebroid over a principal G-bundle with vanishing first Pontryagin class. This reduction is a 
special example of Courant algebroid reductions described in [11,36]. Finally, recall that the first 
Pontryagin class and its relation to Courant algebroids also appeared in [10].

We start with recalling some definitions. Let (L, l, [·, ·]L) be a transitive Lie algebroid over M , 
that is l : L → T M be surjective. The kernel K := ker l is naturally endowed with a totally 
intransitive Lie algebroid structure. We denote the corresponding bracket as [·, ·]K (in fact K
is always a Lie algebra bundle, see [33]). Let 〈·, ·〉K be a non-degenerate symmetric bilinear 
fiber-wise form on K . One says that (L, l, [·, ·]L, 〈·, ·〉K) is a quadratic Lie algebroid, if for all 
k, k′ ∈ �(K) and ψ ∈ �(L)

l(ψ).〈k, k′〉K = 〈[ψ,k]L, k′〉K + 〈k, [ψ,k′]L〉K (94)

holds. Note that this equation makes sense as K is an ideal in L.



B. Jurčo, J. Vysoký / Nuclear Physics B 909 (2016) 86–121 103
Let π : P → M be a principal G-bundle, with G being a semi-simple Lie algebra. Let L be 
the Atiyah algebroid of P . The kernel K of its anchor can naturally be identified with the adjoint 
bundle gP = P ×Ad g, it comes equipped with the fiber-wise metric induced by the Killing form 
c = 〈·, ·〉g of g (and denoted by the same symbol). Then (L, l, [·, ·]L, 〈·, ·〉g) is a quadratic Lie 
algebroid.

A Courant algebroid (E, ρ, 〈·, ·〉E, [·, ·]E) is called transitive, if its anchor ρ ∈ Hom(E, T M)

is surjective. In this case E/ρ∗(T ∗M) is naturally endowed with a quadratic Lie algebroid struc-
ture L. One says that E is the heterotic Courant algebroid, if L is isomorphic to the Atiyah 
algebroid of some principal G-bundle P over M .

Similarly to an exact Courant algebroids, every heterotic Courant algebroid is isomorphic to 
the “model example” which is defined as follows. Let π : P → M be a principal G-bundle, where 
G is semi-simple with the non-degenerate Killing form c = 〈·, ·〉g. Define the vector bundle 
E′ := T M ⊕ gP ⊕ T ∗P , ρ′ ∈ End(E′, T M) as projection onto the first factor, and the pairing 
〈·, ·〉E′ as

〈(X,�, ξ), (Y,�′, η)〉E′ := η(X) + ξ(Y ) + 〈�,�′〉g, (95)

where X, Y ∈ X(M), ξ, η ∈ �1(M) and �, �′ ∈ �(gP ). We identify the sections of �(gP ) with 
G-equivariant functions from P to g. Let A ∈ �1(P, g) be a connection on P , and let F ∈
�2(M, gP ) its curvature. As always, we assume the convention F(X) := F(·, X). Let H0 ∈
�3(M). Finally, let ∇ denote the vector bundle connection on �(gP ) induced by A, that is 
∇X� = Xh.�, Xh being the horizontal lift of the vector field X on the base manifold. The 
bracket [·, ·]E′ is defined as

[(X,�, ξ), (Y,�′, η)]E′ := ([X,Y ],∇X�′ − ∇Y � − F(X,Y ) − [�,�′]g,
LXη − iY dξ − H0(X,Y, ·) (96)

− 〈F(X),�′〉g + 〈F(Y ),�〉g + 〈∇�,�′〉g
)
.

This bracket satisfies the Leibniz identity (2) if and only if

dH0 + 1

2
〈F ∧ F 〉g = 0, (97)

i.e. in particular, the first Pontryagin class of P has to vanish. It is easy to see that (E′, ρ′, 〈·, ·〉E′ ,
[·, ·]E′) defines a heterotic Courant algebroid, as the first two components of the bracket [·, ·]E′ is 
nothing but the Atiyah algebroid, where the connection A was used to split the Atiyah sequence 
of P .

The bracket described above can always be obtained by a reduction of an exact Courant alge-
broid on E = T P ⊕ T ∗P , as we will now recall. Assume that E is equipped with the H -twisted 
Dorfman bracket [·, ·]HD defined as in (9), where H will be specified below. For details, see [5]. 
Let # : g → X(P ) denote the infinitesimal version of the action of G on P . A trivially extended 
action of g on E is a bracket morphism R : g → �(E), such that the diagram

g
R

#

�(E)

ρ

X(P )

(98)

commutes, and the induced action x � e = [R(x), e]H integrates to the G-action on E.
D
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Consider the following setup. Take H ∈ �3(P ) as

H := π∗(H0) + 1

2
CS3(A), (99)

where CS3(A) = 〈F ∧ A〉g − 1
3! 〈A ∧ [A ∧ A]g〉g is the Chern–Simons 3-form corresponding 

to A, and F = dA + 1
2 [A ∧ A]g. It is obviously defined so that dH = 0 if and only if (97) holds. 

Define the map R as

R(x) := #x − ξ(x), (100)

where ξ(x) = 1
2 〈A, x〉g is a G-equivariant map from g to �1(P ). Note that ξ and H satisfy the 

condition

d(ξ(x)) − i#xH = 0. (101)

The map ξ is intentionally defined so that the splitting T P ⊕T ∗P of E is g-invariant with respect 
to the action of g induced by R. Indeed, one gets

[R(x),Y + η]HD = [#x,Y ] +L#xη + iY d(ξ(x)) − H(#x,Y, ·) = [#x,Y ] +L#xη. (102)

This shows that the induced action of g on �(E) is just the canonical action of g on T P ⊕ T ∗P
which can always be integrated. One easily checks that [R(x), R(y)]HD = R([x, y]), and R is 
thus the trivially extended action of g on E. Moreover, observe that

〈R(x),R(x)〉g = −2i#x(ξ(x)) = −〈x, x〉g = −2c(x), (103)

where c(x) is the quadratic form corresponding to the bilinear form c = 〈·, ·〉g. This in particular 
means that H + ξ can be viewed as 3-cochain in the Cartan model of G-equivariant cohomology 
of P , satisfying the condition dG(H + ξ) = −c, where dG is the equivariant differential. This 
can be in fact achieved for any trivially extended action of a compact G (in general, c does not 
have to be non-degenerate) on the exact Courant algebroid on P , see [11].

The reduction procedure is now following. Define the subbundle K to be generated by R(g), 
and K⊥ its orthogonal complement. For any trivially extended action, these are well-defined 
G-invariant subbundles of E. The reduced Courant algebroid Ered is defined as the quotient

Ered := K⊥/G

(K ∩ K⊥)/G
, (104)

so that �(Ered) = �G(K⊥)/�G(K ∩ K⊥). However, note that for our example (103) hold and 
thus K ∩K⊥ = {0}. Of course, the claim is that E′ ∼= Ered . But this is easy to see as follows. Let 
� : �(E′) → �G(K⊥) be the C∞(M)-linear map defined as

�(X,�, ξ) := Xh + j (�) + π∗(ξ) + 1

2
〈A,�〉g, (105)

for all (X, �, ξ) ∈ �(E′), where j : �(gP ) → �G(T P ) maps � to the vector field [j (�)](p) =
#[�(p)](p). It is easy to see that � is a bijection. The bracket on �G(K⊥) induced from E is 
the bracket (96) on E′. The calculation is straightforward and can be found explicitly done in 
[5]. Note that we do not have to assume that G is compact during this entire construction, except 
that for a non-compact G, the assumed form of R is not necessarily the most general trivially 
extended action.

To conclude this section, note that �G(K) ∼= �(gP ), where the isomorphism is given by a map 
R, defined as
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R(�) := j (�) − 1

2
〈A,�〉g, (106)

which we denote by the same letter as the extended action R : g → �(E) defined above. Thus, 
we can decompose �G(E) as �G(E) ∼= �(E′) ⊕ �(gP ). The twisted Dorfman bracket [·, ·]HD
restricted to �G(E) can be now written as

[(ψ,�), (ψ ′,�′)]HD = ([ψ,ψ ′]E′ − [I (�), I (�′)]E′ ,

π2([ψ,I (�′)]E′) − π2([ψ ′, I (�)]E) − 2[�,�′]g),
(107)

where I : gP → E′ is the inclusion, and π2 : E′ → gP the projection onto the second factor of 
E′ = T M ⊕ gP ⊕ T ∗M .

4.2. Generalized metric and reduction

As generalized metrics form the central point of this paper, we will now briefly discuss how 
a generalized metric is defined on the vector bundle E′, and how it can be obtained via the 
reduction of a generalized metric on the exact Courant algebroid E. For a general G, it can be in 
fact defined a little bit more generally that in [5], but for the sake of clarity we will stick to the 
compact case.

The first of the equivalent formulations we have given in the Section 3.1 can now be easily 
generalized to the heterotic Courant algebroid E′. Indeed, we say that τ ′ ∈ End(E′) defines a 
generalized metric on E′, if τ ′ 2 = 1 and the formula

G′(ψ,ψ ′) = 〈ψ,τ ′(ψ ′)〉E′ (108)

defines a positive definite fiber-wise metric on E′. Equivalently, we can say that general-
ized metric is a positive definite fiber-wise metric G′ on E′, such that viewed as a map 
G′ ∈ Hom(E′, E′ ∗), it is orthogonal. As G′ is positive definite, it can always be uniquely de-
composed as

G′ =
⎛⎝1 A′ T CT

0 1 B ′ T
0 0 1

⎞⎠⎛⎝g0 0 0
0 h 0
0 0 h−1

0

⎞⎠⎛⎝ 1 0 0
A′ 1 0
C B ′ 1

⎞⎠ , (109)

with g0, h0 being metric tensors on M , h being a positive definite fiber-wise metric on gP , 
C ∈ Hom(T M, T ∗M), A′ ∈ �1(M, gP ) and B ′ ∈ Hom(gP , T ∗M). A careful analysis of the or-
thogonality conditions shows that G′ is a generalized metric if and only if h0 = g0, B ′ = −A′ T c, 
C = −B0 − 1

2A′ T cA′ for some B0 ∈ �2(M) and h is compatible with c, i.e. hc−1h = c. Thus, 
every generalized metric has the block form

G′ =
⎛⎝1 A′ T B − 1

2A′cA′ T
0 1 −cA′
0 0 1

⎞⎠⎛⎝g0 0 0
0 h 0
0 0 g−1

0

⎞⎠⎛⎝ 1 0 0
A′ 1 0

−B0 − 1
2A′ T cA′ −A′ T c 1

⎞⎠ ,

(110)

i.e. G′ = (e−C)T GE′e−C with C ∈ o(E′) being skew-symmetric with respect to the pairing gE′ =
〈·, ·〉E′ and

GE′ =
⎛⎝g0 0 0

0 h 0
0 0 g−1

⎞⎠ , C =
⎛⎝ 0 0 0

−A′ 0 0
B A′ T c 0

⎞⎠ (111)
0 0
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For compact G, there is in fact only possible choice for h.

Lemma 4.1. For G compact, the only h compatible with c is h = −c.

Proof. For compact Lie group, −c is positive definite. Let us work in the fixed fiber of gP which 
is just the Lie algebra g. As both −c and h are positive definite, their matrices can simultaneously 
be diagonalized, −c = diag(eλ1, . . . , eλk ), h = diag(eα1 , . . . , eαk ). Plugging into the compatibil-
ity condition hc−1h = c then forces 2αi −λi = λi . That is αi = λi and consequently h = −c. �

Return now to the Courant algebroid E = T P ⊕ T ∗P and describe how G′ can be obtained 
by reducing a generalized metric G on P . Let τ ∈ End(E) be a generalized metric on E. We say 
that τ is relevant for reduction if

[R(x), τ (e)]HD = τ([R(x), e]HD) and τ(K⊥) ⊆ K⊥. (112)

The first condition is sufficient and necessary in order for τ to preserve G-invariant sections. It 
is clear that τ ′ = τ |�G(K⊥) will be (using the isomorphism (105)) a generalized metric on E′
according to the above definition.

Let us now examine the above conditions in terms of the fields (g, B) parameterizing the 
generalized metric G corresponding to τ on P . For, consider sections in the special form e =
�±(X) for X ∈ X(P ), where �± were defined in (59). We obtain the conditions

±[R(x),�±(X)]HD = τ([R(x),�±(X)]HD). (113)

Hence, [R(x), �±(X)]HD ∈ V±. Consequently

[R(x),�±(X)]HD = �±(ρ([R(x),�±(X)]HD)) = �±([#x,X]). (114)

This gives the condition L#x((±g +B)(X)) = (±g +B)([#x, X]). Adding and subtracting these 
two condition gives, no so surprisingly,

L#xg = 0, L#xB = 0. (115)

Thus, g and B have to be G-invariant 2-tensors on P . Equivalently, they define maps from 
�G(T P ) to �G(T ∗P). Further, note that the connection A induces the isomorphisms

�G(T P ) ∼=X(M) ⊕ �(gP ), �G(T ∗P) ∼= �1(M) ⊕ �(g∗
P ). (116)

Hence, we can decompose g and B with respect to these direct sums, and write them in the 
following block form

g =
(

1 A′ T
0 1

)(
g0 0
0 h

)(
1 0
A′ 1

)
, B =

(
B0 −B ′ T
B ′ b

)
. (117)

Let us now examine the second condition imposed on τ . With respect to the decomposition 
E = K⊥ ⊕ K , the map τ and the pairing gE have the block form

τ =
(

τ ′ τ1
0 τK

)
, gE =

(
gE′ 0
0 −c

)
. (118)

The condition τ 2 = 1 and the orthogonality τT gEτ = gE imply τ1 = 0. Similarly to Lemma 4.1, 
it follows that for a compact G necessarily τK = 1. In particular, we have τ(R(x)) = R(x). This 
requires R(x) ∈ V+ and therefore necessarily R(x) = �+(#x). It follows that
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ξ(x) = −(g + B)(#x). (119)

Using the explicit form of ξ and (g, B) decomposed as in (117) leads to

B ′ = hA′, h+ b= −1

2
c. (120)

Hence, b = 0, h = − 1
2c and B ′ = − 1

2cA′. It follows that g and B have the form

g =
(

1 A′ T
0 1

)(
g0 0
0 − 1

2c

)(
1 0
A′ 1

)
, B =

(
B0

1
2A′ T c

− 1
2cA′ 0

)
. (121)

There are no other conditions imposed on the fields in g and B , as the condition τ(R(x)) = R(x)

already implies τ(K⊥) ⊆ K⊥. We have

〈τ(e),R(x)〉E = −〈e, τ (R(x))〉E = −〈e,R(x)〉E,

and thus e ∈ K⊥ if and only if τ(e) ∈ K⊥.
The easiest way how to show that G′ in the form (110) with h = −c is indeed obtained by the 

reduction from G is to write G as 4 × 4 block matrix with respect to the isomorphism �G(E) ∼=
X(M) ⊕�(gP ) ⊕�1(M) ⊕�(g∗

P ). Note that � : E′ → E can be, using this isomorphism, written 
in the block form

� =

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1
0 1

2c 0

⎞⎟⎟⎠ (122)

It is then an easy calculation to check that in fact G′ = �T G� , which proves our assertion.
To finish this section, note that we already know that the generalized metric G can be written 

as product G = (e−B)GEe−B . However, it is not the most convenient form for the purpose of 
reduction. Instead, note that one can write g = [eA′ ]T g′eA′

, where

g′ =
(

g0 0
0 − 1

2c

)
, eA′ =

(
1 0
A′ 1

)
. (123)

Moreover, one has B = [e−A′ ]T Be−A′
. It follows that generalized metric G can be written as 

G = (eA
′
)T (e−B)T G′

Ee−BeA
′
, where eA

′
is defined as eA

′
(X + ξ) := eA′

(X) + (e−A′
)T (ξ) and 

G′
E has 4 × 4 block diagonal form

G′
E =

⎛⎜⎜⎝
g0 0 0 0
0 − 1

2c 0 0
0 0 g−1

0 0
0 0 0 −2c−1

⎞⎟⎟⎠ (124)

Define a new map e−B := e−BeA
′
. Using this, we find its block form to be

e−B =

⎛⎜⎜⎝
1 0 0 0
A′ 1 0 0

−B0 − 1
2A′ T cA − 1

2A′ T c 1 −A′ T
1
2cA′ 0 0 1

⎞⎟⎟⎠ (125)

It is a very useful observation that e−B is block diagonal with respect to the decomposition 
�G(E) ∼= �(E′) ⊕ �(gP ). Moreover, we claim that
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G′
E =

(
GE′ 0
0 −c

)
, e−B =

(
e−C 0

0 1

)
, (126)

where GE′ and C ∈ End(E′) are the maps in (111). We know that any G-invariant section of 
E corresponds to a 4-tuple (X, �, ξ, �), where X ∈ X(M), ξ ∈ �1(M), � ∈ �(gP ), and � ∈
�(g∗

P ). The decomposition of this 4-tuple with respect to �G(E) = �G(K⊥) ⊕ �G(K) is

(X,�, ξ,�) = �(X,
1

2
� + c−1�,ξ) + R(

1

2
� − c−1�). (127)

Using this decomposition, it is now straightforward to prove that

e−B(�(X,�, ξ)) = �(e−C(X,�, ξ)), e−B(R(�)) = R(�). (128)

Note that (126) can be used to prove once more that G reduces to G′ on �G(K⊥) ∼= �(E′).

4.3. Twisting of the heterotic bracket

In order to proceed to the reduction of connections, we need to discuss the twisting of the 
bracket [·, ·]E′ defined by (96) by the map eC ∈ Aut(E′) with C defined as in (111). Put

[ψ,ψ ′]′E′ = e−C[eC(ψ), eC(ψ ′)]E′ , (129)

for all ψ, ψ ′ ∈ �(E′). Note that eC is orthogonal with respect to the pairing 〈·, ·〉E′ and ρ′ =
ρ′ ◦ eC . This shows that eC is an isomorphism of Courant algebroids (E′, ρ′, 〈·, ·〉E′ , [·, ·]E′) and 
(E′, ρ′, 〈·, ·〉E′ , [·, ·]′

E′). We will assume the twisted bracket to take the form

[ψ,ψ ′]′E′ = [ψ,ψ]E′ − dC(ψ,ψ ′), (130)

where dC : �(E′) × �(E′) → �(E′) is to be determined.
Before we write down the result, let us introduce some further notation. We start by noting 

that a covariant derivative ∇ corresponding to the connection A induces a differential d∇ on 
�(gP )-valued 1-forms. Explicitly,

(d∇A′)(X,Y ) = ∇X(A′(Y )) − ∇Y (A′(X)) − A′([X,Y ]). (131)

Moreover, we can use the fiber-wise bracket [·, ·]g on �(gP ) to define a “covariant differential” 
as

D∇A′ := d∇A′ + 1

2
[A′ ∧ A′]g (132)

and a 3-form

C̃3(A
′) := 〈D∇A′ ∧ A′〉g − 1

3! 〈[A
′ ∧ A′]g ∧ A′〉g. (133)

Also, one can define a 3-form dC ∈ �3(E′) using the Courant pairing 〈·, ·〉E′ :

dC(ψ,ψ ′,ψ ′′) = 〈dC(ψ,ψ ′),ψ ′′〉E′ . (134)

The complete skew-symmetry of the right-hand side follows from the Courant algebroid axioms 
(for both brackets) and the fact that the respective Courant algebroids share the pairing and the 
anchor. The result can be summarized as follows:
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dC(X,Y,Z) = (dB0 − 1

2
C̃3(A

′) − 〈F ∧ A′〉g)(X,Y,Z), (135)

dC(�,X,Y ) = 〈�, [D∇A′](X,Y )〉g, (136)

dC(�,�′,X) = 〈[�,�′]g,A′(X)〉g, (137)

with all other components being zero. The twisted bracket [·, ·]′
E′ can be now written as

[ψ,ψ ′]′E′ = [ψ,ψ ′]E′ − g−1
E′ dC(ψ,ψ ′, ·) (138)

To understand the result of the twisting better, note that A′ is the difference of the connection 
A and the connection induced by the G-invariant metric g on P . The resulting twisting is thus 
nothing else but a change of splitting in the Atiyah sequence accompanied by a relevant change 
of the 3-form H0. Define

F ′ := F +D∇A′, ∇′
X = ∇X + [A′(X), ·]g, and H ′

0 := H0 − 1

2
C̃3(A

′) − 〈F ∧ A′〉g. (139)

The twisted bracket [·, ·]′
E′ then takes the form

[(X,�, ξ), (Y,�′, η)]′E′ = ([X,Y ],∇′
X�′ − ∇′

Y � − F ′(X,Y ) − [�,�′]g,
LXη − iY dξ − H ′

0(X,Y, ·) − dB0(X,Y, ·) (140)

− 〈F ′(X),�′〉g + 〈F ′(Y ),�〉g + 〈∇′�,�′〉g
)
.

Note that H ′
0 must obey the equation

dH ′
0 + 1

2
〈F ′ ∧ F ′〉g = 0. (141)

This is in accordance with the fact that if the Pontryagin class vanishes for one connection, it has 
to vanish for any other connection. From equations (97) and (141) we find

〈F ′ ∧ F ′〉g = 〈F ∧ F 〉g + d(C̃3(A
′) + 2〈F ∧ A′〉g). (142)

Note that this relation in fact holds on a general principal bundle P .

4.4. Heterotic Levi-Civita connections

Consider now the heterotic Courant algebroid (E′, ρ′, 〈·, ·〉E′ , [·, ·]E′). Let G′ be a generalized 
metric on E′, which can be written as G′ = (e−C)T GE′e−C . One can take the approach similar 
to the one of Section 3.3, but now working with 3 × 3 block matrices. Let ∇′ be a Levi-Civita 
connection with respect to the generalized metric G′. Define a new connection ∇̂′:

∇′
ψψ ′ = eC(∇̂′

e−C(ψ)
e−C(ψ ′)). (143)

It follows that ∇̂′ is a Levi-Civita connection on E′ with respect to the generalized metric GE′
and the twisted heterotic bracket [·, ·]′

E′ .
It is a straightforward derivation to show that the most general connection ∇̂′ metric compat-

ible with both GE′ and gE′ has the following block form

∇̂′
X =

⎛⎝ ∇M
X g−1

0 c(AX(·), �) g−1
0 CX(·, g−1

0 (�))

AX(�) ∇g

X −AX(g−1
0 (�))

C (·, �) −c(A (·), �) ∇M

⎞⎠ , (144)
X X X



110 B. Jurčo, J. Vysoký / Nuclear Physics B 909 (2016) 86–121
∇̂′
� =

⎛⎝ N�(�) g−1
0 c(B ′

�(·), �) g−1
0 B�(·, g−1

0 (�))

B ′
�(�) Q�(�) −B ′

�(g−1
0 (�))

B�(·, �) −c(B ′
�(·), �) −NT

�(�)

⎞⎠ , (145)

∇̂′
ξ =

⎛⎜⎝ N ′
ξ (�) g−1

0 c(B ′′
ξ (·), �) g−1

0 Vξ (·, g−1
0 (�))

B ′′
ξ (�) Q′

ξ (�) −B ′′
ξ (g−1

0 (�))

Vξ (·, �) −c(B ′′
ξ (·), �) −N ′T

ξ (�)

⎞⎟⎠ , (146)

where ∇M has to be a connection on M metric compatible with g0, and ∇g has to be a connection 
on the vector bundle gP metric compatible with 〈·, ·〉g. Next, all bottom-left corners are induced 
by 2-forms on M , that is CX, B�, Vξ ∈ �2(M). Finally, N� and N ′

ξ have to be skew-symmetric 
with respect to g0, and Q�, Q′

ξ ∈ End(gP ) skew-symmetric with respect to the Killing form 
〈·, ·〉g.

We will not analyze the torsion-freeness condition in detail, as it is analogous to Section 3.3. 
Let us summarize the result in the form of a theorem. Denote by H ′′

0 the 3-form on M defined as

H ′′
0 = H ′

0 + dB0 = H0 − 1

2
C̃3(A

′) − 〈F ∧ A′〉g + dB0. (147)

Theorem 4.2. Let ∇̂′ be a Courant algebroid connection on E′ metric compatible with the gen-
eralized metric GE′ , parametrized as in (144)–(146). Then ∇̂′ is torsion-free with respect to the 
twisted heterotic bracket [·, ·]′

E′ , if and only if

∇M
X Y = ∇0

XY + g−1
0 K ′(X,Y, ·), (148)

Vξ (X,Y ) = −K ′(g−1
0 (ξ),X,Y ), (149)

N ′
ξ (Y ) = 1

6
H ′′

0 (g−1
0 (ξ), Y, ·) − J ′(ξ, g0(Y ), ·), (150)

CX(Y,Z) = 1

3
H ′′

0 (X,Y,Z) + J ′(g0(X), g0(Y ), g0(Z)), (151)

Q�(�′) = −1

3
[�,�′]g + c−1j(�,�′, ·), (152)

AX(Y ) = 1

2
(h0 + C′

0)(X,Y ), (153)

B ′′
ξ (Y ) = −1

2
(h0 + C′

0 + F ′)(g−1
0 (ξ), Y ), (154)

B�(X,Y ) = 〈(C′
0 + F ′)(X,Y ),�〉g, (155)

N�(X) = g−1
0 〈(C′

0 + 1

2
F ′)(X, ·),�〉g, (156)

〈∇g

X�,�′〉g = 〈∇′
X�,�′〉g + 〈c0(�,�′),X〉, (157)

〈Q′
ξ (�),�′〉g = −〈c0(�,�′), g−1

0 (ξ)〉, (158)

〈B ′
�(X),�′〉g = 1

2
〈(h0 + c0)(�,�′),X〉, (159)

where the fields on the right-hand side are subject to the following conditions:

1. ∇0 is the Levi-Civita connection corresponding to g0.
2. K ′ ∈ �1(M) ⊗ �2(M), such that K ′

a = 0,
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3. J ′ ∈ X(M) ⊗X2(M), such that J ′
a = 0,

4. j ∈ �1(gP ) ⊗ �2(gP ), such that ja = 0,
5. h0 ∈ �(S2T ∗M) ⊗ �(g∗

P ), and C′
0 ∈ �2(M) ⊗ �(g∗

P ), otherwise arbitrary,
6. h0 ∈ �(S2g∗

P ) ⊗X(M), c0 ∈ �2(g∗
P ) ⊗X(M), otherwise arbitrary.

Example 4.3. Unlike in the exact case, we will not proceed with the general case. Instead, we 
will consider only the “minimal connection”, where we put most of the parameterizing fields to 
zero. We will comment on our choice of relating fields C′

0 and F ′ later. Also, we postpone the 
discussion of the dilaton for now. We put

K ′ = J ′ = j= h0 = h0 = c0 = 0, C0 = −F ′. (160)

Let us now write the resulting connection ∇̂′. We get

∇̂′
X =

⎛⎝ ∇0
X

1
2g−1

0 〈F ′(X), �〉g − 1
3g−1

0 H ′′
0 (X,g−1

0 (�), ·)
− 1

2F ′(X, �) ∇′
X

1
2F ′(X,g−1

0 (�))

− 1
3H ′′

0 (X, �, ·) − 1
2 〈F ′(X), �〉g ∇0

X

⎞⎠ , (161)

∇̂′
� =

⎛⎝ 1
2g−1

0 〈F ′(�),�〉g 0 0
0 − 1

3 [�,�]g 0
0 0 1

2 〈F ′(g−1
0 (�)),�〉g

⎞⎠ , (162)

∇̂′
ξ =

⎛⎝ 1
6g−1

0 H ′′
0 (g−1

0 (ξ), �, ·) 0 0
0 0 0
0 0 1

6H ′′
0 (g−1

0 (ξ), g−1
0 (�), ·)

⎞⎠ . (163)

4.5. Heterotic curvature tensor, scalar curvature

Let us now define a version of the curvature operator suitable for Courant algebroid connec-
tions on heterotic Courant algebroids. Define

R′(ψ,ψ ′)ψ ′′ := ∇′
ψ∇′

ψ ′ψ ′′ − ∇′
ψ ′∇′

ψψ ′′ − ∇′
[ψ,ψ ′]E′ ψ

′′ + ∇′
K′(ψ,ψ ′)ψ

′′, (164)

where the map K′ is defined as

K′(ψ,ψ ′) := 〈∇′
ψλ

ψ,ψ ′〉E′ ·F0(g
−1
E′ (ψλ)), (165)

with (ψλ)λ being some local frame for E′, and F0(X, �, ξ) = (0, 12�, ξ) is the projection onto 
the last two factors of E′, followed by the multiplication by 1

2 in the gP component. As ρ′ ◦
K′ = 0, it is easy to check that R′ so defined is C∞(M)-linear in all inputs. Moreover, it is 
straightforward to see that Lemma 3.2 holds also in the heterotic case. The reason for the strange 
1
2 in F0, which is tricky part of the definition of curvature, will be elucidated in Section 5.2. The 
Ricci tensor Ric′ corresponding to R′ is now defined by the formula (25). As in the exact case, 
introduce the two scalar curvatures R′ and R′

E′ as

R′ = Ric′(G′ −1(ψλ),ψλ), R′
E′ = Ric′(g−1

E′ (ψλ),ψλ). (166)

We will now proceed with the above scalar curvatures. We will consider the case of the “un-
twisted” Levi-Civita connection ∇̂′ of the form (161)–(163). We will do it in a way analogous to 
the exact case. For, note that an analogue of formula (50) holds:
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R′(ψ,ψ ′)ψ ′′ = eC[R̂′(e−C(ψ), e−C(ψ ′))e−C(ψ ′′)] (167)

with R̂′ is defined as

R̂′(ψ,ψ ′)ψ ′′ = ∇̂′
ψ ∇̂′

ψ ′ψ ′′ − ∇̂′
ψ ′ ∇̂ ′

ψψ ′′ − ∇̂′
[ψ,ψ ′]′

E′ ψ
′′ + ∇̂′̂

K′(ψ,ψ ′)ψ
′′. (168)

Note that [·, ·]′
E′ is the twisted heterotic bracket (140), and the corresponding map K̂′ has the 

form

K̂′(ψ,ψ ′) = 〈∇̂′
ψλ

ψ,ψ ′〉E′ ·FC(g−1
E′ (ψλ)), (169)

where FC = e−C ◦F0 ◦ eC . Let ̂Ric′ be the Ricci tensor defined using R̂′. From the definition, R′
and R′

E′ can now be calculated as

R′ = R̂ic′(G−1
E′ (ψλ),ψλ), R′

E′ = R̂ic′(g−1
E′ (ψλ),ψλ). (170)

It is interesting that although C appears explicitly in the map K̂′, it cancels out in the curvatures. 
It appears implicitly only in the fields of the twisted heterotic bracket [·, ·]′

E′ . Note that this 
significant property is due to the correct choice of the map F0 in the definition of K′. For example, 
the naive choice F0(X, �, ξ) = (0, �, ξ) would destroy this property. As in the exact case, we 
write down only the result in the form of a theorem. The calculation is straightforward, yet too 
long to be presented here in detail. The result can be summarized as follows:

Theorem 4.4. Let ∇ be the Levi-Civita connection corresponding to the generalized metric G′, 
such that the corresponding connection ∇̂′ has the form (161)–(163). The scalar curvatures R′
and R′

E′ defined above have the explicit form

R′ =R(g0) + 1

4
〈F ′

kl,F
′ kl〉g − 1

12
(H ′′

0 )klm(H ′′
0 )klm + 1

6
dimg, (171)

R′
E′ = −1

6
dimg, (172)

where R(g0) is the Ricci scalar of the metric g0, H ′′
0 is given by (147), and F ′ = F +D∇A′. The 

notation is the one of Section 4.3.

There is one important remark – the constant proportional to dimg comes from the fact that 
〈·, ·〉g is the Killing form, i.e., we can use the equality

〈�,�′〉g = 〈�a, [�, [�′,�a]g]g〉, (173)

where (�a)
dim g

a=1 is some local frame on gP . It is the right-hand side which appears in the cur-
vature operator, and the trace using GE′ or gE′ then gives the respective multiples of the number 
dimg.

Remark 4.5. In Example 4.3, we have chosen C0 = −F ′. However, one can show that any other 
choice C0 = λ · F ′ for general λ ∈ R leads to the same scalar curvatures as in Theorem 4.4. In 
particular, this means that the prefactor 1/4 in front of the term quadratic in F ′ is in fact quite 
rigid, it cannot be changed by choosing a different “minimal” connection.
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Remark 4.6. There is a straightforward way to introduce the dilation, completely analogous to 
Section 3.6. Let φ0 ∈ C∞(M) be the scalar function on M , and let ϕ0 = 6/(1 − dimM) · dφ0. 
Define the tensor K ′ ∈ �1(M) ⊗ �2(M) as

K ′(X,Y,Z) = 1

6
〈ϕ0, Y 〉 · g0(X,Z) − 1

6
〈ϕ0,Z〉 · g0(X,Y ). (174)

Let ∇′ be the heterotic Levi-Civita connection as in Example 4.3, modified by choosing a non-
trivial tensor K ′ defined in Theorem 4.2 to take the form (174). The resulting curvatures get the 
same dilaton terms as in Section 3.6, that is

R′ =R′|K ′=0 + 4�0φ0 − 4‖dφ0‖2
g0

, R′
E =R′

E |K ′=0. (175)

Remark 4.7. Similarly as in the exact case, we could now compare our Ricci tensor Ric to GRic
of [15]. Since this analogous to Section 3.5, we leave this to the reader.

5. Reduction from exact to heterotic

5.1. Connections relevant for reduction

We have seen in Section 4.1 that any heterotic Courant algebroid E′ is obtained by the reduc-
tion of an exact Courant algebroid E over a principal bundle P . Also, in Section 4.2 we have 
seen that any generalized metric G′ on E′ is obtained by the reduction of a relevant general-
ized metric G on E. This suggests that a similar relation can be found on the level of Courant 
algebroid connections.

Let G be a generalized metric on E relevant for reduction. See Section 4.2 for the implications 
of this assumption. Let ∇ be a Levi-Civita connection corresponding to this generalized metric. 
The necessary condition for the reduction is the compatibility with the group action. We say that 
∇ is G-equivariant if

[R(x),∇ee
′]HD = ∇[R(x),e]HD e′ + ∇e[R(x), e′]HD . (176)

This condition is C∞(P )-linear in e, e′, and it is sufficient and necessary to ensure that ∇
can be restricted onto �G(E). It can be checked directly that a Levi-Civita connection ∇ is 
G-equivariant if and only if the tensors J and K of Theorem 3.4 are G-invariant.

Next, we would like ∇ to restrict onto �(E′) ∼= �G(K⊥) directly – that is without additional 
projection of the result onto �(E′). After a careful analysis of this assumption, one can arrive to 
the following definition. One says that a G-equivariant Levi-Civita connection ∇ is relevant for 
reduction, if it has, with respect to the decomposition �G(E) ∼= �(E′) ⊕ �(gP ), the following 
block form

∇(ψ,�) =
(∇′

ψ 0
0 π2([ψ,I (�)]E′) − 2

3 [�,�]g
)

, (177)

where ∇′ is a Courant algebroid connection on E′. It is not the most general Levi-Civita con-
nection which restricts to �(E′), but this is the one which contains no additional data except 
for ∇′

ψ and the brackets [·, ·]E′ and [·, ·]g. It is defined so that ∇ is torsion-free with respect to 
[·, ·]HD if and only if ∇′ is torsion-free with respect to the heterotic bracket [·, ·]E′ . Moreover, it 
is easy to see that ∇′ is metric compatible with the reduced generalized metric G′, hence ∇′ is a 
Levi-Civita connection on E′ with respect to G′.



114 B. Jurčo, J. Vysoký / Nuclear Physics B 909 (2016) 86–121
Compare the factor − 2
3 to the factor − 1

3 in (162), this is because of the factor 2 in the bracket 
(107). Not every Levi-Civita connection corresponding to a relevant generalized metric G is rel-
evant for reduction. Of all examples, mention the “minimal” J = K = 0 Levi-Civita connection. 
In general (for F ′ �= 0) it is not relevant for reduction, as one can verify explicitly. Also, it is 
nether of the form (177), nor does it preserve the subspace �G(K⊥) ∼= �(E).

Example 5.1. We will now construct an explicit example of a Levi-Civita connection relevant 
for the reduction. In particular, we will find its fields J and K and calculate its scalar curvatures.

Assume that G is a generalized metric on E relevant for reduction. Let ∇′ be a Levi-Civita 
connection on E′ corresponding to the reduced generalized metric G′, such that the correspond-
ing untwisted connection ∇̂′ has the form (161)–(163). Now, define the connection ∇ on E by 
the formula (177). It follows that ∇ is an equivariant Levi-Civita connection on E with respect 
to the generalized metric G, reducing to ∇′ on E′. Instead of ∇ , let us examine the connection 
∇ defined by

∇ee
′ = eB(∇e−B(e)e

−B(e′)), (178)

for all e, e′ ∈ �G(E), where e−B is the map defined and discussed at the end of Section 4.2. It is 
straightforward to show that it has the block form

∇(ψ,�) =
(∇̂′

ψ 0
0 π2([ψ,I (�)]′

E′) − 2
3 [�,�]g

)
. (179)

The reason why we use this connection is that it is related to the untwisted connection ∇̂ by 
the orthogonal transformation eA

′
, which is block diagonal with the original splitting E = T P ⊕

T ∗P . Note that eA
′
is just a change of frame in T P , accompanied with the corresponding change 

of dual frame in T ∗P . It follows that ∇ has to have the form

∇X =
(

∇0
X + g′ −1K(X,�, ·) − 1

3g′ −1H
′
(X,g′ −1(�), ·) − J (g′(X), �, ·)

− 1
3H

′
(X, �, ·) − g′J (g′(X), g′(�), ·) ∇0

X + K(X,g′ −1(�), ·)

)
,

(180)

∇ξ =
(

1
6g′ −1H

′
(g′ −1(ξ), �, ·) − J (ξ, g′(�), ·) g′ −1K(g′ −1(ξ), g′ −1(�), ·)

K(g′ −1(ξ), �, ·) 1
6H

′
(g′ −1(ξ), g′ −1(�), ·) − g′J (ξ, �, ·)

)
,

(181)

where g′ is the metric defined by g = (eA′
)T g′eA′

and ∇0
X is the corresponding Levi-Civita 

connection (with respect to the twisted Lie algebroid bracket on T P ). Tensors with bars above 
them are eA′

-twists of the ones parameterizing the Levi-Civita connection ∇̂ in Theorem 3.4, that 
is

H
′
(X,Y,Z) = H ′(e−A′

(X), e−A′
(Y ), e−A′

(Z)), (182)

K(X,Y,Z) = K(e−A′
(X), e−A′

(Y ), e−A′
(Z)), (183)

J (ξ, η, ζ ) = J ((eA′
)T (ξ), (eA′

)T (η), (eA′
)T (ζ )). (184)

Let us now calculate K and J in order to determine the curvature of the connection ∇ . We will 
use the notation (X, �) ∈ �G(T P ) and (ξ, �) ∈ �G(T ∗P). The tensor K is calculated as

K(g′ −1(ξ,�), (Y,�′), (Z,�′′)) = 〈∇(ξ,�)(Y,�′), (Z,�′′)〉E. (185)
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Plugging into the block form (179), we obtain

∇(ξ,�)(Y,�′) = �{∇̂′
(0,c−1(�),ξ)

(Y,
1

2
�′,0)}

+ R{π2([(0, c−1(�), ξ), I (
1

2
�′)]′E′) − 2

3
[−c−1(�),

1

2
�′]g}.

(186)

Evaluating this gives

∇(ξ,�)(Y,�′) = (
1

2
g−1

0 〈F ′(Y ),�〉 + 1

6
g−1

0 H ′′
0 (g−1

0 (ξ), Y, ·),−1

3
[c−1�,�′]g,0,0).

(187)

As this has no �G(T ∗P) part, it follows that

K(g′ −1(ξ,�), (Y,�′), (Z,�′′)) = 0. (188)

The calculation of J is more elaborate, as one has to calculate first the twisted 3-form H
′
. As it 

is straightforward, we omit the explicit calculation here. The resulting tensor J is

J ((ξ,�), (η,� ′), (ζ,� ′′)) = 1

3
〈�,F ′(g−1

0 (η), g−1
0 (ζ ))〉

+ 1

6
〈� ′,F ′(g−1

0 (ξ), g−1
0 (ζ ))〉 − 1

6
〈� ′′,F ′(g−1

0 (ξ), g−1
0 (η)〉.

(189)

Now note that according to Theorem 3.5, only the partial traces J ′ and K ′ contribute to the scalar 
curvatures. Let J ′ be the partial trace of J using the metric g′. It follows that

J ′(ξ) = J ′((e−A′
)T (ξ)). (190)

It is now easy to see that J ′ = 0, and consequently also J ′ = 0. Finally, we conclude from 
Theorem 3.5 that the connection ∇ defined by (177) with ∇′ in the form (144)–(146) has the 
scalar curvatures

R =R(g) − 1

12
H ′

ijkH
′ijk

, RE = 0. (191)

5.2. Reduction of curvatures

Let ∇ be an equivariant Courant algebroid connection on E relevant for reduction. By defini-
tion, it induces a Courant algebroid connection on E′. As it is formed from G-invariant objects, 
the corresponding curvature operator R defined by (22) will also be G-invariant. As the both 
fiber-wise metrics G and gE are also G-invariant, so are the both scalar curvatures R and RE . 
For a suitable definition of the curvature operator R′ for the reduced connection ∇′, R can be 
related to R′, and consequently also the respective scalar curvatures.

To start, we have to discuss how K defined by (23) decomposes with respect to the splitting 
�G(E) ∼= �(E′) ⊕ �(gP ). As gE is block diagonal with respect to this decomposition, the only 
important object is the projection pr2 ∈ End(E). Let ψ = (X, �, ξ) ∈ �(E′) and �′ ∈ �(gP ). 
Then the G-invariant section of E corresponding to the pair (ψ, �′) ∈ �(E′) ⊕ �(gP ) is

�(ψ) + R(�′) = (X,� + �′, ξ,
1
c(� − �′)).
2
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Applying the projection gives pr2(�(ψ) +R(�′)) = (0, 0, ξ, 12c(� −�′)). But this decomposes 
as

(0,0, ξ,
1

2
c(� − �′)) = �(0,

1

2
(� − �′), ξ) + R(

1

2
(�′ − �)).

The map pr2 can thus be written as

pr2((X,�, ξ),�′) = ((0,
1

2
(� − �′), ξ),

1

2
(�′ − �)). (192)

In the block form, we have the matrix

pr2 =
(

F0 − 1
2I

− 1
2π2

1
2

)
, (193)

where F0 is exactly the map we have used in order to define K′ in (165), I : gP → E′ is the 
inclusion, and π2 : E′ → gP the projection. This finally explains our choice in the definition of 
the curvature operator R′ of the connection ∇′. Now recall that gE has the block form (118), that 
is there is −c in the gP block. This is in contrast with gE′ which has c in its gP block. Plugging 
in, one finds

K((ψ,0), (ψ ′,0)) = (K′(ψ,ψ ′),−1

2
〈∇′

�a
ψ,ψ ′〉E′ · c−1(�a)), (194)

K((ψ,0), (0,�′)) = (0,0), (195)

K((0,�), (0,�′)) = ((0,
5

6
[�,�′]g,−〈∇�,�′〉g),−5

6
[�,�′]g). (196)

Instead of calculating the tensor R′, we skip the step and write the result for the block diagonal 
components of Ricci tensor. One obtains

Ric((ψ,0), (ψ ′,0)) = Ric′(ψ,ψ ′), (197)

Ric((0,�), (0,�′)) = −1

6
〈�,�′〉g, (198)

where Ric’ is the Ricci tensor corresponding to the curvature operator R′ of the connection ∇′
defined by (164). Note that, once more, we have used that the Killing form 〈·, ·〉g can be written 
as in (173). Taking the trace of the Ricci tensor, we arrive to the following theorem.

Theorem 5.2. Let G be a generalized metric on E relevant for reduction, and G′ the induced 
generalized metric on E′. Further, let ∇ be an equivariant Courant algebroid connection on 
E relevant for the reduction, and let ∇′ be the induced Courant algebroid connection on the 
reduced Courant algebroid E′.

Let R and RE be the two scalar curvatures of ∇ , defined using G and gE and the curvature 
operator R defined as in (173). Let R′ and R′

E′ be the two scalar curvatures of ∇′, defined using 
G′ and gE′ and the curvature operator R′ defined as in (164). Then there holds the relation

R=R′ ◦ π + 1

6
dimg, RE =R′

E′ ◦ π + 1

6
dimg. (199)

Example 5.3. Let ∇′ be the Levi-Civita connection on E′ from Example 4.3. We have calculated 
its scalar curvatures (R′, R′

E′) in Theorem 4.4. On the other hand, we have found the correspond-
ing Levi-Civita connection on E which reduces to ∇′ on E′ in Example 5.1, and calculated its 
scalar curvatures (R, RE). Using the Theorem 5.2 gives the following two equations:
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R(g) − 1

12
H ′

ijkH
′ ijk = {R(g0) + 1

4
〈F ′

kl,F
′ kl〉g − 1

12
(H ′′

0 )klm(H ′′
0 )klm} ◦ π + 1

3
dimg,

(200)

0 = (−1

6
dimg) ◦ π + 1

6
dimg, (201)

where the latter one is in this case merely a consistency check (which however proved to be 
useful to catch the minus signs lost on the way). Recall that

F ′ = F +D∇A′, (202)

H ′ = dB + π∗(H0) + 1

2
CS3(A), (203)

H ′′
0 = dB0 + H0 − 1

2
C̃3(A

′) − 〈F ∧ A′〉g. (204)

The definitions of all the objects can be found in Section 4.3.

Remark 5.4. In fact, the metrics g and g0 in fact do not need to be positive definite. Only, one has 
to assume that there exists a decomposition of g in the form (117). The whole reduction process 
can thus be, with this assumption, generalized to include any metric manifold.

Remark 5.5. Note that in the entire construction, one does not use the full Leibniz identities 
of any of the involved Courant algebroids. The only important property of the bracket required 
for the definition of the torsion and curvature is the homomorphism property (3). Thus, we can 
assume that (E, ρ, 〈·, ·〉E, [·, ·]E) is a pre-Courant algebroid as defined in [39] and studied in 
detail in [32]. For a pre-Courant algebroid, one drops the Leibniz identity (2), and keeps only its 
consequence (3).

We thus can consider E to be an H -twisted Dorfman bracket, where H is not closed. Con-
sequently H0 does not need to satisfy the condition (97). Hence, we can consider also principal 
bundles with non-vanishing first Pontryagin classes, all of the above remaining valid.

Remark 5.6. Everything can be worked out for the Levi-Civita connections with dilatons, yet 
it is not completely straightforward. Let us start on E, and impose the natural condition on the 
dilaton function φ ∈ C∞(P ), namely φ = π∗(φ0) for φ0 ∈ C∞(M). Choose K ≡ Kφ to be (68), 
and J as in Example 5.1. Unfortunately, the resulting connection ∇ is not relevant for reduction.

We thus employ the opposite approach. Consider ∇′ to be the heterotic Levi-Civita connection 
with dilaton φ′

0 as in Remark 4.6. Note that at this point there is no reason for φ′
0 and φ0 to 

be equal. Denote by K ′
0 the tensor (174) adding the dilaton. Now extend the connection ∇′ to 

the connection ∇ on E relevant for reduction using the formula (177) as in Example 5.1. By 
construction, ∇ is a Levi-Civita connection on E. Repeating the procedures in Example 5.1, it is 
straightforward to calculate the corresponding tensors J and K . One finds

J = J |K ′
0=0, K = π∗(K ′

0), (205)

where π : P → M is the principal bundle projection. Note that for no choice of φ′
0, one has Kφ =

π∗(K ′
0), which explains why the original connection with dilaton is not relevant for reduction.

Fortunately, when talking about scalar curvatures, there is a certain freedom. In particular, in-
stead of the tensor Kφ (68), one can choose any tensor K̂φ , as long as K ′

φ = K̂ ′
φ . By Theorem 3.5, 

this does not change the scalar curvatures R and RE . Recall our assumption φ = π∗(φ0). We 
claim that one can choose K̂φ = π∗(K0), where K0 ∈ �1(M) ⊗ �2(M) is defined as
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K0(X,Y,Z) = 1

6
〈ϕ0, Y 〉 · g0(X,Z) − 1

6
〈ϕ0,X〉 · g0(X,Y ), (206)

for ϕ0 = 6/(1 − dimM) · φ0. We have to show that K ′
φ = K̂ ′

φ . We know from Section 3.6 that 
K ′

φ = dφ = π∗(dφ0). On the other hand, using the connection induced splitting of �G(E) as in 
Section 4.2 and the block forms (121), one has

K̂ ′
φ(Z,�) = K̂φ(g−1(dyk),0), (∂k,0), (Z,�)) = K0(g

−1(dyk), ∂k,Z)◦π = 〈dφ0,Z〉◦π.

This proves that we can use K̂φ instead of Kφ to get the same scalar curvatures. Moreover, ac-
cording to (205), this connection is relevant for reduction to the heterotic Levi-Civita connection, 
and φ′

0 = φ0. One can now generalize Theorem 5.2 to include the scalar curvatures with dilatons. 
In fact, we get the direct equality of both dilaton terms:

4�φ − 4‖dφ‖2
g = {4�0φ0 − 4‖dφ0‖2

g0
} ◦ π. (207)

6. Double field theory curvature tensor

We have added this section in response to an anonymous referee. We would like to thank him 
for pointing out to us a relevant and interesting paper [24], which we have missed originally. The 
definition of a generalized Riemann tensor given in that paper can easily be compared with our 
definition (22). Note that the definition of [24] is suitable for any Courant algebroid, which is an 
advantage over our definition (22).

Let (E, ρ, 〈·, ·〉E, [·, ·]E) be any Courant algebroid, let ∇ be a Courant algebroid connection, 
and let R(0) denote the “naive” curvature operator:

R(0)(e, e′)e′′ = ∇e∇e′e′′ − ∇e′∇ee
′′ − ∇[e,e′]Ee′′, (208)

for all e, e′, e′′ ∈ �(E). As we already know, it is C∞(M)-linear in e′ and e′′ but not 
C∞(M)-linear in e, as we obtain

R(0)(f e, e′)e′′ = f · R(0)(e, e′)e′′ − 〈e, e′〉E∇Df e′′. (209)

The simplest way to fix this is to define the map L(e, e′) = 〈∇ek
e, e′〉E · g−1

E (ek), where (eλ)
k
λ=1

is an arbitrary local frame on E. Note that this map is C∞(M)-linear in e′, and L(f e, e′) =
〈e, e′〉E ·Df . This suggests to define

R(1)(e, e′)e′′ = R(0)(e, e′)e′′ + ∇L(e,e′)e
′′. (210)

However, such a modification of the “naive” curvature operator R(0) destroys the C∞(M)-
linearity in e′′. One gets

R(1)(e, e′)(f e′′) = f R(1)(e, e′)e′′+(ρ(L(e, e′)).f )e′′ = f R(1)(e, e′)e′′+〈∇Df e, e′〉E ·e′′.
(211)

In our approach as described above,5 we have solved this by using K instead of L, which has 
ρ ◦ K = 0.

The nice idea of [24] is to add another correcting term, namely define the operator R̃ as

R̃(e, e′)e′′ = R(1)(e, e′)e′′ + 〈e′,R(0)(e′′, eλ)e〉E · g−1
E (eλ). (212)

5 Note that this approach is applicable to any (local) Leibniz algebroid.
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From (209) and (211), it follows that R̃ is C∞(M)-linear in all inputs. Also, in [24], the authors 
use the covariant generalized Riemann tensor defined as6 RHZ(w′, w, e, e′) = 〈w′, R̃(e, e′)w〉E , 
for all e, e′, w, w′ ∈ �(E). Explicitly:

RHZ(w′,w, e, e′) = 〈w′,∇e∇e′w − ∇e′∇ew − ∇[e,e′]Ew〉E
+ 〈e′,∇w∇w′e − ∇w′∇we − ∇[w,w′]Ee〉E
+ 〈∇ek

e, e′〉E · 〈∇
g−1
E (ek)

w,w′〉E.

(213)

The generalized Riemann tensor RHZ satisfies the analogue of Lemma 3.2, in particular it is 
skew-symmetric both in (e, e′) and (w′, w). Moreover, it has an additional manifest symmetry, 
namely

RHZ(w′,w, e, e′) = RHZ(e′, e,w,w′). (214)

Combined with the skew-symmetries, it gives the interchange symmetry (even for a non-
vanishing torsion operator). Moreover, one can show that R̃ satisfies the algebraic Bianchi 
identity which one can write in the form:

R̃(e, e′)e′′ + cyclic(e, e′, e′′) = (∇eTG)(e′, e′′, eλ) · g−1
E (eλ) − T (e,T (e′, e′′))

+ cyclic(e, e′, e′′)
− (∇eλTG)(e, e′, e′′) · g−1

E (eλ), (215)

for all e, e′, e′′ ∈ �(E). Recall that TG ∈ �3(E) is the Gualtieri’s torsion defined in Lemma 2.1
and related to the torsion operator as TG(e, e′, e′′) = 〈e′′, T (e, e′)〉E . Obviously, for T = 0, we 
get the simple relation R̃(e, e′)e′′ + cyclic(e, e′, e′′) = 0.

We can now compare the generalized Riemann tensor RHZ and the curvature operator (22).

Proposition 6.1. Let (E, ρ, 〈·, ·〉E, [·, ·]E) be the standard exact Courant algebroid with E =
T M ⊕ T ∗M equipped with the H -twisted Dorfman bracket [·, ·]HD . Let R be the curvature oper-
ator (22), and RHZ the generalized Riemann tensor (213) defined as in [24]. Then

RHZ(w′,w, e, e′) = 〈w′,R(e, e′)w〉E + 〈e′,R(w,w′)e〉E, (216)

for all e, e′, w, w′ ∈ �(E). In particular, if one defines RicHZ(e, e′) = RHZ(g−1
E (eλ), e, eλ, e′), 

one obtains the relation with our Ricci tensor (25):

RicHZ(e, e′) = Ric(e, e′) + Ric(e′, e), (217)

for all sections e, e′ ∈ �(E).

Proof. For E = T M ⊕T ∗M , one can choose the local frame {eλ}2n
λ=1 to be adapted to the canon-

ical splitting of E. Then the last term in the definition (213) splits into two terms, each of them 
correcting the tensoriality of one copy of the naive operators R(0) in (216), giving exactly the 
two copies of R as defined by (22). �

This proposition makes clear that there is no explicit7 occurrence of the B-field in the re-
sulting scalar curvatures of Theorem 3.5. Indeed, the main trick there was to use the twisted 

6 Observe that we use a more traditional convention for the definition of a covariant Riemann tensor.
7 In other words, B appears only as dB .
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version ∇̂ of the connection (26) to calculate the scalar curvature. The explicit B appeared only 
in the correcting map K̂ (52). Such thing does not happen for RHZ , as the twisted torsion op-
erator R̂HZ can be defined entirely in terms of the connection ∇̂, the twisted Dorfman bracket 
[·, ·]H+dB

E , and the pairing 〈·, ·〉E . It follows, using similar arguments as in (54), that the scalar 
curvature defined using RHZ can be calculated from R̂HZ and the block diagonal generalized 
metric GE = BlockDiag(g, g−1). Hence, it contains no explicit B . Finally, (217) shows that the 
scalar curvatures calculated from RicHZ are just two times our curvatures R and RE , therefore 
they do not contain an explicit B either.

Finally a proposition completely similar to 6.1 relates the curvature operator (164) to (213)
for heterotic Courant algebroids, and explains the rather mysterious 1

2 in the definition of the 
map K′.
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