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Abstract

The set of real matrices described by a sign pattern (a matrix whose entries are elements of {+, −, 0}) has
been studied extensively but only loose bounds were available for the minimum rank of a tree sign pattern.
A simple graph has been associated with the set of symmetric matrices having a zero–nonzero pattern of
off-diagonal entries described by the graph, and the minimum rank/maximum eigenvalue multiplicity among
matrices in this set is readily computable for a tree. In this paper, we extend techniques for trees to tree sign
patterns and trees allowing loops (with the presence or absence of loops describing the zero–nonzero pattern
of the diagonal), allowing precise computation of the minimum rank of a tree sign pattern and a tree allowing
loops. For a symmetric tree sign pattern or a tree that allows loops, we provide an algorithm that allows exact
computation of maximum multiplicity and minimum rank, and can be used to obtain a symmetric integer
matrix realizing minimum rank.
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1. Introduction

Much of the material we present is inspired by previous work in two somewhat different but
related areas: sign patterns of matrices, and graphs of matrices.

Sign pattern matrices have many important applications; in fact, the study of sign patterns
arose more than fifty years ago in economics. Brualdi and Shader [4] provide a thorough mathe-
matical treatment of sign patterns through 1995. For a current survey with extensive bibliography,
see [7].

Recently there has been substantial interest in minimum rank and the related question of the
maximal multiplicity of an eigenvalue for sign patterns, e.g., [5,6]. In addition, many other papers
concerning related parameters of sign patterns, such as inertia [8], rank [9], diagonalizability
[14], etc. have appeared. In the last ten years there have been numerous papers on minimum rank
and multiplicities of eigenvalues for symmetric matrices associated with a graph, e.g., [11,3,1,2].
There are similarities in techniques and results in the study of sign patterns and matrices of
graphs, but also important differences, caused by the issue of what set of matrices is associated
with a graph or a sign pattern. For sign patterns, the matrices have traditionally not been required
to be symmetric and the diagonal has been constrained by the pattern; for graphs, traditionally
symmetric matrices have been required and the diagonal has been unconstrained. Algorithms
are known [13] for the exact computation of the minimum rank among the family of symmetric
matrices associated with a tree (with no restriction on diagonal entries of the matrices), whereas
only loose bounds have been given for the minimum rank of tree sign patterns [5]. We generalize
the techniques used for trees (with unconstrained diagonal) to obtain an algorithm for an exact
computation of minimum rank of a tree sign pattern (Section 2), and also present an algorithm to
realize minimum rank with a symmetric integer matrix in Section 3.

1.1. Matrices and sign patterns

We begin by introducing some terminology. Let N = {1, . . . , n}. An n × n matrix B = [bij ],
i, j ∈ N can be described in a natural way as being indexed by N. Every matrix discussed
in this paper is real and square. Because we will be extracting submatrices of submatrices, and
because we will be associating principal submatrices with induced subgraphs, we will need to
retain information about the original row and column indices. Thus, we explicitly attach the index
set to the matrix.

An index set is a finite set of positive integers. We require every matrix B to have an index
set, denoted ι(B); the order, denoted o(B), is the cardinality |ι(B)| of its index set. Thus B is an
o(B) × o(B) matrix with entries bij , i, j ∈ ι(B); B is written as a square array using the natural
order of the indices. The standard index set for an n × n matrix is N, and this is used for an
ordinary matrix (that does not arise from a graph or as a principal submatrix).

Matrix functions, such as the rank and the spectrum of B, are computed ignoring the index set
(here the spectrum σ(B) is the multiset of roots of the characteristic polynomial). We will use the
definition of the determinant in terms of permutations, with the permutations acting on the index
set; this results in the same value of the determinant as obtained by ignoring the index set and
evaluating as usual.

If B is a matrix and R ⊆ ι(B), define the principal submatrix B[R] to be the submatrix of B

lying in rows and columns that have indices in R, together with the index set R. This definition
has the desirable feature that if R ⊆ Q ⊆ ι(B), B[Q][R] = B[R]. We also define B(R) to be the
principal submatrix obtained from B by deleting from B all rows and columns with indices in R,
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with ι(B(R)) = R, where R = ι(B) − R. Equivalently, B(R) = B[R]. If R and Q are disjoint
subsets of ι(B), then B(R)(Q) = B(R ∪ Q). When {k} is a singleton set, we use B(k) to denote
B({k}).

A sign pattern matrix (sign pattern for short) is a square matrix Z = [zij ] whose entries zij

are elements of {+, −, 0}, with index set ι(Z) and order o(Z) = |ι(Z)|. For Z a sign pattern
and R ⊆ ι(Z), define the principal subpattern Z[R] to be the subpattern of Z lying in rows and
columns that have indices in R, together with the index set R. Define Z(R) = Z[R]; when {k} is
a singleton set, Z({k}) is denoted Z(k). The determinant of an order n sign pattern Z is evaluated
as a formal sum of n! terms that are products of +, −, 0, where each product is evaluated in the
obvious way to be one of +, −, 0.

For a real number b, the sign of b, denoted sgn(b), is +, −, 0 according as b > 0, b < 0,

b = 0. For B a matrix, define Z(B) to be the sign pattern matrix with (Z(B))ij = sgn(bij ) and
ι(Z(B)) = ι(B). The qualitative class of sign pattern Z is

Q(Z) = {B : Z(B) = Z}.
The qualitative class of a sign pattern has been studied extensively, cf. [4]. For the sign patterns of
primary interest to us (tree sign patterns defined in the next subsection) we will be able to reduce
the class of matrices studied to symmetric matrices, and thus for a symmetric sign pattern Z we
define

S(Z) = {A : A is a symmetric matrix and Z(A) = Z}.

1.2. Graphs

For our purposes, a graph G allows loops but does not allow multiple edges. A simple graph is
a graph that does not have loops. The set of vertices V (G) of G is a finite set of positive integers.
An edge of G is an unordered multiset of two vertices of G, denoted vw or vv, and the set of
edges of G is denoted E(G). The simple graph associated with G, Ĝ, is obtained from G by
suppressing all loops. We will also use Ĝ to denote an arbitrary simple graph. If Q ⊆ V (G),

G − Q is the graph obtained from G by deleting all vertices in Q and all edges incident with a
vertex in Q. An induced subgraph of G is a graph of the form G − Q, also denoted 〈R〉 where
R = V (G) − Q.

A matrix or sign pattern Z is symmetric if for all i, j ∈ ι(Z), zij = zji, and Z is combinatorially
symmetric if for all i, j ∈ ι(Z), either zij and zji are both nonzero, or they are both 0. Let Z be
a combinatorially symmetric sign pattern or matrix. Then we define

• G(Z) to be the graph with vertices ι(Z) such that ij is an edge of G(Z) if and only if zij /= 0.
• Ĝ(Z) to be the simple graph with vertices ι(Z) such that ij is an edge of Ĝ(Z) if and only if

i /= j and zij /= 0. Note the diagonal is ignored.

Let G be a graph, and Ĝ a simple graph. Then we define

• S(G) = {A : A is a symmetric matrix and G(A) = G}.
• Ŝ(Ĝ) = {A : A is a symmetric matrix and Ĝ(A) = Ĝ}.

Ŝ(Ĝ) is the traditional class of symmetric matrices associated with a simple graph, e.g.,
[1,3,11].
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Let Z be a symmetric sign pattern and let G be a graph. For S ∈ {S(Z),S(G)}, every matrix
A in S has the same index set and graph, so we can extend various definitions to S, i.e., for
S ∈ {S(Z),S(G)},

G(S) = G(A), Ĝ(S) = Ĝ(A), ι(S) = ι(A), o(S) = o(A) for A ∈ S.

A component of a graphG is a maximal connected induced subgraph ofG. IfS ∈ {S(Z),S(G)}
and 〈R〉 is a component ofG(S), then we call the family of principal submatrices S[R] a component
of S.

1.3. Trees and tree sign patterns

The standard terms tree and forest are customarily defined for simple graphs. To distinguish
between graphs and simple graphs, we will preface these terms with the word “simple” when
referring to a simple graph. We extend these terms to graphs by ignoring loops. Thus, a graph
T is a tree if its associated simple graph T̂ is a simple tree and is a forest if T̂ is a simple forest
(where a simple forest is a disjoint union of one or more simple trees).

A combinatorially symmetric sign pattern Z is a tree sign pattern (forest sign pattern) if G(Z)

is a tree (forest); equivalently, Z is a tree sign pattern (forest sign pattern) if Ĝ(Z) is a simple tree
(simple forest).

The results in Lemmas 1.1–1.4 are generally known; as indicated, several were stated in [5].

Lemma 1.1 [5]. Let Z be a symmetric tree sign pattern and B ∈ Q(Z). Then there exists a positive
real diagonal matrix D such that A = DBD−1 is symmetric and has the same sign pattern as B,

i.e., A ∈ S(Z).

Lemma 1.2. Let Z be a symmetric tree sign pattern. There exists a nonsingular diagonal sign
pattern D such that all nonzero off-diagonal entries of DZD are +.

Proof. There exists exactly one path between any two vertices of G(Z). Let D be the diago-
nal matrix with index set ι(Z) defined by D = diag

(
dι(1), dι(2), . . . , dι(n)

)
. Set dι(1) = +. Let

P(v0 = ι(1), v1, . . . , vk−1, vk = v) be the path from ι(1) to v, and set dv = ∏k
i=1 zvi−1vi

. Then
DZD has all off-diagonal entries equal to +. �

Lemma 1.3 [5]. If Z is a symmetric forest sign pattern such that all nonzero off-diagonal entries
of Z are + and B ∈ Q(Z), then there exist positive diagonal matrices D1, D2 such that all the
nonzero off-diagonal entries of A = D1BD2 are one, and A ∈ S(Z).

Lemma 1.4 [5]. Let Z be a forest sign pattern. There exists a nonsingular diagonal sign pattern
D and symmetric forest sign pattern Z1 such that Z = Z1D.

1.4. Minimum rank and maximum eigenvalue multiplicity

The multiplicity of eigenvalue λ for the symmetric matrix A will be denoted by mA(λ).
For a real number λ and a symmetric sign pattern Z, the maximum multiplicity of λ for Z is

Mλ(Z) = max{mA(λ) : A ∈ S(Z)},
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and for a graph G, the maximum multiplicity of λ for G is

Mλ(G) = max{mA(λ) : A ∈ S(G)}.
For convenience, we extend this notation to sets of matrices: for S ∈ {S(Z),S(G)}, where

G is a graph and Z is a symmetric sign pattern,

Mλ(S) = max{mA(λ) : A ∈ S}.
Note that if G is a graph, Mλ(G) = Mλ(S(G)), and if Z is a symmetric sign pattern, Mλ(Z) =
Mλ(S(Z)).

For a simple graph Ĝ, where no restriction is placed on the diagonal of associated matrices,
the maximum multiplicity for Ĝ is

M̂(Ĝ) = max{mA(λ) : A ∈ Ŝ(Ĝ)}.
The subscript λ is omitted since translation by a scalar multiple of the identity matrix makes λ

irrelevant. What we are denoting by M̂(Ĝ) is often denoted by M(Ĝ) in the literature.
We now state a standard result, which applies to all real symmetric matrices, and a more general

version that we will need.

Theorem 1.5 (Interlacing Theorem [10, p. 185]). If the eigenvalues of a symmetric matrix A are
λ1 � λ2 � · · · � λn, k ∈ ι(A), and the eigenvalues of A(k) are µ1 � µ2 � · · · � µn−1, then
λ1 � µ1 � λ2 � µ2 � · · · � λn−1 � µn−1 � λn.

Corollary 1.6 (Interlacing Corollary). Let G be a graph, let Z be a symmetric sign pattern, let
S ∈ {S(Z),S(G)}, and let R ⊆ ι(S). Then

Mλ(S) − |R| � Mλ(S(R)) � Mλ(S) + |R|.

Proof. We prove that for k ∈ ι(S), Mλ(S) − 1 � Mλ(S(k)) � Mλ(S) + 1, and the more general
result follows by repeated application.

Choose A ∈ S such that mA(λ) = Mλ(S). Then Mλ(S(k)) � mA(k)(λ) � mA(λ) − 1 =
Mλ(S) − 1. Choose A′ ∈ S such that mA′(k)(λ) = Mλ(S(k)). Then Mλ(S(k)) = mA′(k)(λ) �
mA′(λ) + 1 � Mλ(S) + 1. �

One of the parameters of primary interest in this work is the minimum rank of the family of
matrices associated with a tree or tree sign pattern. Although it is possible to give the following
definitions more generally for sign patterns and graphs, we restrict our attention to trees and tree
sign patterns to avoid having to distinguish minimum rank from symmetric minimum rank.

Let Z be a symmetric tree sign pattern. The minimum rank is

mr(Z) = min{rank A : A ∈ S(Z)}.
Note that by Lemma 1.1, mr(Z) = min{rank B : B ∈ Q(Z)}. For a tree T , the minimum rank of
T is

mr(T ) = min{rank A : A ∈ S(T )}.
For a simple tree T̂ , the minimum rank is

m̂r(T̂ ) = min{rank A : A ∈ Ŝ(T̂ )}.
What we are denoting by m̂r(T̂ ) is often denoted by mr(T̂ ) in the literature.
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Observation 1.7. For a simple tree T̂ and for S ∈ {S(Z),S(T )} where T is a tree and Z is a
symmetric tree sign pattern,

M0(S) + mr(S) = o(S) and M̂(T̂ ) + m̂r(T̂ ) = o(S).

1.5. Allowing a given eigenvalue

Let Z be a symmetric pattern. If there exists a matrix A ∈ S(Z) such that λ ∈ σ(A), then we
sayS(Z) (or Z) allows eigenvalue λ. Equivalently,S(Z) allows eigenvalue λ if Mλ(S(Z)) � 1.
Analogously, for a graph G, S(G) (or G) allows eigenvalue λ if there exists a matrix A ∈ S(G)

such that λ ∈ σ(A).

Lemma 1.8. Let G be a graph and let Z be a symmetric sign pattern. Let S ∈ {S(G),S(Z)}.

1. If Ĝ(S) has an edge, then S allows any nonzero eigenvalue.
2. If G has a loop, then S(G) allows any nonzero eigenvalue.
3. If Z has a positive (negative) diagonal entry, then S(Z) allows any positive (negative) eigen-

value.

Proof. Suppose Ĝ(S) has edge kj with k /= j . Choose A ∈ S with akj = ajk = 1 (or akj =
ajk = −1) and akk, ajj ∈ {0, 0.1, −0.1}, depending on whether the loop is present (or zkk,

zjj ∈ {0, +, −}). Then det(A[{k, j}]) � −0.99, so A[{k, j}] must have both a positive and a
negative eigenvalue. Then, by the Interlacing Theorem 1.5, A has both a positive and a negative
eigenvalue. Now scale A.

For the second and third statements, apply the Interlacing Theorem 1.5 to the 1 × 1 matrix
associated with the loop or the correctly signed diagonal entry and scale. �

It is traditional (cf. [4]) in the study of sign patterns to say that a sign pattern Z requires property
P if every matrix in Q(Z) has property P and to say that Z allows property P if there exists a
matrix in Q(Z) that has property P .

In our study of minimum rank, we are interested in sign patterns that allow singularity, or
equivalently, that do not require nonsingularity. Let Z be a symmetric tree sign pattern and let T

be a tree. If S ∈ {S(Z),S(T )} allows eigenvalue zero, then we say S ∈ {S(Z),S(T )} allows
singularity. With this definition, S(Z) allows singularity if and only if Z allows singularity (with
the standard definition of “allows” based on Q(Z)) for a symmetric tree sign pattern Z, by Lemma
1.1. It is worth noting that the analogous result is not true for symmetric sign patterns that are
not tree sign patterns, where allowing symmetric singularity must be distinguished from allowing
singularity, and minimum rank must be distinguished from symmetric minimum rank, cf. [5].
However, our interest here is restricted to tree sign patterns.

Using the well-known result that a sign pattern Z of order n requires nonsingularity if and only
if at least one of the n! terms in the standard expansion of the determinant as a sum of products is
nonzero and all nonzero terms have the same sign [4], we have the following criterion for S(Z)

to allow singularity.

Observation 1.9. Let Z be a symmetric tree sign pattern and let XZ be the o(Z) × o(Z) matrix
defined as follows: For i � j, i, j ∈ ι(Z), let xij be independent indeterminates and define
(XZ)ij = zij xij and (XZ)ji = zij xij . Then S(Z) requires singularity if and only if det XZ is
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6

17 18
19 20

_ _

___

Fig. 1.1. The tree Ĝ(Z) of Z in Example 1.10 (showing signs of diagonal entries).

identically zero and S(Z) allows but does not require singularity if and only if det XZ is not
identically zero and not all the nonzero terms have the same sign. Thus one can determine whether
Z allows singularity by evaluating the determinant of XZ .

Example 1.10. Let Z be the symmetric tree sign pattern having ι(Z) = {6, 17, 18, 19, 20}, every
diagonal entry equal to −, every nonzero off-diagonal entry equal to +, and graph shown in Fig.
1.1 (the index set was chosen for use in Example 2.5).

Then

XZ =




−x6,6 x6,17 x6,18 x6,19 0

x6,17 −x17,17 0 0 0

x6,18 0 −x18,18 0 0

x6,19 0 0 −x19,19 x19,20

0 0 0 x19,20 −x20,20




and

det XZ = −x18,18x
2
6,17x

2
19,20 − x17,17x

2
6,18x

2
19,20 + x17,17x18,18x66x

2
19,20

+ x18,18x19,19x20,20x
2
6,17 + x17,17x19,19x20,20x

2
6,18

+ x17,17x18,18x20,20x
2
6,19 − x17,17x18,18x19,19x20,20x6,6.

Since det XZ has terms of both signs, Z allows singularity (a singular integer matrix having this
sign pattern is actually constructed in Example 3.3).

For a tree T , we could determine whether S(T ) allows singularity by evaluation of the deter-
minants of all possible sign patterns having the graph T ; however, this would be extraordinarily
inefficient. Fortunately, it is unnecessary. For a tree T , define its matrix of indeterminates XT

as follows: For i � j, i, j ∈ ι(T ), let xij be independent indeterminates and (XT )ij = xij and
(XT )ji = xij . We can use XT to determine whether T allows singularity.

Lemma 1.11. Let T̂ be a simple forest. If the order of T̂ is odd, then det XT̂ = 0. If the order of
T̂ is even, then det XT̂ has at most one nonzero term.

Proof. Since T̂ has no loops, all the diagonal entries of XT̂ are zero, so every term in det XT̂ must
be a product of distinct squares x2

ij with i /= j . Thus if |T̂ | = n is odd, then det XT̂ = 0. Suppose

the order n = 2k of T̂ is even. We show by induction on k that there is at most one nonzero term
of det XT̂ . The result is clear for k = 1, i.e., n = 2. Assume true for k. Let the order of T̂ be
2(k + 1) = 2k + 2. If T̂ has an isolated vertex, det XT̂ = 0; otherwise, let v be a vertex of degree
1, and let u be the unique neighbor of v. In any nonzero term in det XT̂ , x2

uv must appear since
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there is no other way to cover v. So delete u and v from T to obtain simple forest T − {u, v} of
order 2k, which by the induction hypothesis has at most one nonzero term in its determinant. �

Lemma 1.12. Let T be a forest that has at least two nonzero terms in its determinant. Then T

has a loop ii such that there is a nonzero term of det XT that includes xii and another nonzero
term of det XT that does not include xii .

Proof. Let t1 and t2 be nonzero terms of det XT . If t1 and t2 do not have identical sets of diagonal
elements xjj , then one has a diagonal element xii that is not in the other. If they have identical
sets of diagonal elements, then let L be the set of indices j such that the diagonal xjj appears in t1
and t2. Dividing t1 and t2 by

∏
j∈L xjj gives two nonzero terms in the determinant of the simple

graph ̂T − L, contradicting Lemma 1.11. �

Theorem 1.13. Let T be a forest. Then T requires singularity if and only if det XT is identically
zero and T allows but does not require singularity if and only if det XT has at least two nonzero
terms.

Proof. If det XT = 0 then T requires singularity. If det XT has one term then T requires non-
singularity.

Let T be a forest such that det XT has at least two nonzero terms. We show there is a symmetric
sign pattern Z with G(Z) = T such that Z allows singularity.

Choose any symmetric sign pattern Z such thatG(Z) = T . Compute det XZ, which has at least
two nonzero terms. If there are terms of opposite sign, then Z allows singularity. Now suppose
all nonzero terms in det XZ have the same sign. By Lemma 1.12, there is a loop ii of T and two
terms in det XT such that one includes xii and another does not include xii . Reverse the sign of
the ith diagonal element in Z to obtain a new sign pattern Z′. The determinant of XZ′ is obtained
from the determinant of XZ by reversing the signs of exactly those terms containing xii . Thus,
at least one term changes sign and at least one does not. Thus Z′ allows singularity, and hence T

allows singularity. �

1.6. Generalized Parter–Wiener Theorem

Let A be a symmetric matrix. Index k ∈ ι(A) is a Parter–Wiener vertex of A for eigenvalue
λ if mA(k)(λ) = mA(λ) + 1. Furthermore, k is a strong Parter–Wiener vertex of A for λ if λ is
an eigenvalue of at least three of the principal submatrices of A corresponding to components of
Ĝ(A) − k and k is a Parter–Wiener vertex of A for λ.

Theorem 1.14 (Parter–Wiener Theorem [15,16,12]). If A is a symmetric matrix, Ĝ(A) is a simple
tree, and mA(λ) � 2, then there is a strong Parter–Wiener vertex of A for λ.

Theorem 1.15 (Generalized Parter–Wiener Theorem). Let S ∈ {S(Z),S(T )}, where T is a
tree and Z is a symmetric tree sign pattern. If Mλ(S) � 2, then there exists k ∈ ι(S) such that
Mλ(S(k)) = Mλ(S) + 1 and S(k) has at least three components that allow eigenvalue λ.

Proof. If Mλ(S) � 2, then there exists A ∈ S such that mA(λ) = Mλ(S) � 2. So by the Parter–
Wiener Theorem, there exists k ∈ ι(A) = ι(S) such that k is a strong Parter–Wiener vertex of A for
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λ. That is, λ is an eigenvalue of the principal submatrices A[Ri] of A corresponding to at least three
of the components 〈Ri〉 of Ĝ(A(k)) = Ĝ(S(k)) and mA(k)(λ) = mA(λ) + 1 = Mλ(S) + 1. Thus,
S(k) must have at least three components that allow eigenvalue λ and Mλ(S(k)) � Mλ(S) + 1.
But Mλ(S(k)) � Mλ(S) + 1 by the Interlacing Corollary 1.6. �

An index k with the properties in Theorem 1.15 is called a strong Parter–Wiener vertex for S.
In [11], the parameter � is defined for simple trees as �(T̂ ) = max{pQ − |Q| : Q ⊆ V (T̂ )

and T̂ − Q consists of pQ disjoint paths}.
One of the main results of [11] is that for T̂ a simple tree, �(T̂ ) = M̂(T̂ ); this is useful

because there are algorithms for the computation of �, e.g., [13], which render the otherwise
challenging computation of M straightforward. In the next section we introduce a new parameter
that generalizes � and is readily computable.

2. Algorithm for determination of minimum rank and maximum multiplicity for trees and
tree sign patterns

Chen et al. [5] give a variety of lower bounds for the minimum rank of a tree sign pattern.
Specifically, both the diameter and half the number of loops of G(Z) are lower bounds for the
minimum rank of tree sign pattern Z. Those authors also provide a means of computing the exact
value of minimum rank for certain tree sign patterns having “star-like” graphs. In this section, we
introduce a parameter Cλ, show Cλ = Mλ, and give an algorithm for the computation of Cλ that
allows exact calculation of the minimum rank of any tree sign pattern. Throughout this section,
Z will denote a symmetric tree sign pattern and T will denote a tree.

For S ∈ {S(Z),S(T )} and Q ⊆ ι(S), define cλ(Q) to be the number of components of S(Q)

that allow eigenvalue λ. Then our readily computable new parameter is

Cλ(S) = max{cλ(Q) − |Q| : Q ⊆ ι(S)},
and we define

Cλ(T ) = Cλ(S(T )) and Cλ(Z) = Cλ(S(Z)).

Theorem 2.1. Cλ(S) = Mλ(S) for S ∈ {S(Z),S(T )} where T is a tree and Z is a symmetric
tree sign pattern.

Proof. Let S ∈ {S(Z),S(T )}. Let Q be a subset of vertices such that cλ(Q) = Cλ(S) + |Q|.
Let S[R1], . . . , S[Rcλ(Q)] be the components of S(Q) that allow eigenvalue λ. Since S[Ri] allows
eigenvalue λ, there exists a matrix Ai ∈ S[Ri] such that λ ∈ σ(Ai). Construct a matrix A ∈ S

such that A[Ri] = Ai for i = 1, . . . , cλ(Q), so λ ∈ σ(A[Ri]). Thus mA(Q)(λ) � cλ(Q) and
Mλ(S(Q)) � cλ(Q). Then by the Interlacing Corollary 1.6, Mλ(S) � cλ(Q) − |Q| = Cλ(S).

We show by induction on the order of S that Cλ(S) � Mλ(S). Note first that if Mλ(S) = 1,

Cλ(S) � Mλ(S) by choosing R = ∅; this includes the base case where o(S) = 1. Now assume
the theorem is true for every S′ ∈ {S(Z′),S(G′)} such that o(S′) < o(S) (where Z′ denotes a
symmetric tree sign pattern and G′ denotes a tree). The case Mλ(S) = 1 is done; if Mλ(S) > 1,

then by the Generalized Parter–Wiener Theorem 1.15, there exists an index k such thatMλ(S(k)) =
Mλ(S) + 1. Each component S[Ri] of S(k) is in {S(Z[Ri]),S(〈Ri〉)} and o(S[Ri]) < o(S),

so by the induction hypothesis, Cλ(S[Ri]) = Mλ(S[Ri]). Thus there exists a subset Qi ⊆ Ri

such that there are at least Mλ(S[Ri]) + |Qi | components of S[Ri](Qi) that allow eigenvalue λ.
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Let Q = (∪Qi) ∪ {k}. Then S(Q) has at least
∑

Mλ(S[Ri]) + ∑ |Qi | = Mλ(S(k)) + ∑ |Qi | =
Mλ(S) + 1 + |Q| − 1 components that allow eigenvalue λ, so Cλ(S) � Mλ(S). �

Observation 2.2. Let T be a tree. When computingC0(T ), by Theorem 1.13, c0(Q) is the number
of components 〈Ri〉 of T − Q such that det X〈Ri 〉 is identically zero or has at least two nonzero
terms. For λ /= 0, by Lemma 1.8, cλ(Q) is the number of components of T − Q that have an edge
(with a loop considered to be an edge).

Observation 2.3. Let Z be a symmetric tree sign pattern. When computingC0(Z), by Observation
1.9, c0(Q) is the number of components Z[Ri] of Z(Q) such that det XZ[Ri ] is identically zero or
has nonzero terms of opposite sign. For λ /= 0, by Lemma 1.8, cλ(Q) is the number of components
of Z(Q) that have a nonzero off-diagonal entry or a diagonal entry whose sign matches the sign
of λ.

For a simple tree T̂ and subset R ⊆ V (T̂ ), we say T̂ is R-free if R ∩ V (T̂ ) = ∅. A high degree
vertex in a simple forest T̂ is a vertex whose degree is at least three.

Algorithm 2.4. Let S ∈ {S(Z),S(T )} with T a tree and Z a symmetric tree sign pattern.
Initialize: T̂ = Ĝ(S), H is the set of all high degree vertices of T̂ , Q = ∅, and i = 1.
While H /= ∅:

1. Set T̂i = the unique component of T̂ − Q that contains an H -vertex.
2. Set Si = S[V (T̂i)], the associated component of S(Q).
3. Set Qi = ∅.
4. Set Wi = {w ∈ H : all but possibly one component of T̂i − w is H -free}.
5. For each vertex w ∈ Wi,

if there are at least two H -free components of Si(w) that allow eigenvalue λ, then Qi =
Qi ∪ {w}.

6. Q = Q ∪ Qi .
7. Remove all the vertices of Wi from H .
8. For each v ∈ H,

if degT̂ −Q v � 2, remove v from H .
9. i = i + 1.

In Theorem 2.8 we will show that for the set Q produced by Algorithm 2.4,

cλ(Q) − |Q| = Cλ(S).

Before doing so, we illustrate how the algorithm is used in several examples. As noted in Obser-
vation 2.3, it is easy to determine whether a component allows a positive or allows a negative
eigenvalue for a sign pattern or a graph (cf. Example 2.6). However, the case of λ = 0 is of more
interest, because of the connection to minimum rank, so we begin with that example, even though
it is more difficult.

Example 2.5. We compute the minimum rank of the tree sign pattern Z shown in Fig. 2.1, by
computing M0(Z). The sign of each diagonal entry is shown on the vertex, with the absence of a
sign indicating 0; the signs of the nonzero off-diagonal entries can be assumed to be + by Lemmas
1.4 and 1.2. Initially, Q = ∅, i = 1, and H = {1, 2, 3, 4, 5, 6} is the set of high degree vertices.
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Fig. 2.1. The tree Ĝ(Z) for Z in Example 2.5, showing signs of diagonal entries.

For the first iteration of Algorithm 2.4, T̂1 = Ĝ(Z), and W1 = {1, 4, 6}.
Deletion of vertex 1 leaves two H -free components of S(Z), but neither allows singularity,

since in each case the determinant of XZ[R] has a single nonzero term. Thus 1 /∈ Q1.
Deletion of vertex 4 leaves three H -free components, two of which allow singularity (since

z14,14 = 0 and det XZ[{12,13}] = x12,12x13,13 − x2
12,13). Thus 4 ∈ Q1.

Deletion of vertex 6 leaves three H -free components, but only one allows singularity, so
6 /∈ Q1.

Vertex 3 is no longer high degree, and so is removed from H also.
Now Q = Q1 = {4}, H = {2, 5}, and the signed forest Ĝ(Z) − Q1 is shown in Fig. 2.2 (the

only labels now shown are for vertices currently in H ).
For the second iteration of Algorithm 2.4, T̂2 is the component that contains 2 and 5, and

W2 = {2, 5}.
T̂2 − 2 has two H -free components. Vertex 2 is not an element of Q2 because Z[{3, 11}] does

not allow singularity (use Fig. 2.1 to see the vertex numbers). It is unnecessary to verify that
Z[{1, 7, 8, 9, 10}] allows singularity.

T̂2 − 5 has two H -free components. The component Z[{16}] requires singularity because
z16,16 = 0. The fact that the component Z[{6, 17, 18, 19, 20}] allows singularity was established
by evaluation of the determinant in Example 1.10. Thus 5 ∈ Q2.

Thus Q = {4, 5}. The signed forest Ĝ(Z) − Q is shown in Fig. 2.3. Note that H is now empty.
From previous remarks, the componentsZ[{14}],Z[{16}],Z[{12, 13}], andZ[{6, 17, 18, 19, 20}]
allow singularity. By evaluating the determinant we can also see that Z[{1, 2, 3, 7, 8, 9, 10, 11}]
allows singularity, so five components allow singularity. Since |Q| = 2, by Theorems 2.1 and
2.8, M0(Z) = C0(Z) = 5 − 2 = 3. Thus mr(Z) = 20 − 3 = 17. Note that the lower bound for
minimum rank given by Corollary 2.9 of [5] is 6, since G(Z) has 12 loops, and the lower bound
given by the diameter (Corollary 2.3 of [5]) is 8. A specific symmetric integer matrix A ∈ S(Z)

of rank 17 is constructed in Example 3.3.
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Fig. 2.2. The signed forest Ĝ(Z) − Q1 resulting from the first iteration of Algorithm 2.4.
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Fig. 2.3. The signed forest Ĝ(Z) − Q.

The set W = ⋃
Wi produced by Algorithm 2.4, realizes �(T̂ ) = M̂(T̂ ) where T̂ = Ĝ(S). As

a comparison, note that for the simple tree T̂ associated with Fig. 2.1, W = {1, 2, 4, 6} and T̂ − Q

consists of 11 paths, so M̂(T̂ ) = 11 − 4 = 7 and m̂r(T̂ ) = 20 − 7 = 13 (note only 2 of the 11
paths allow singularity when the diagonal entries are restricted as shown in Fig. 2.1). In this
example, W is the same as the set of deleted vertices produced by the Johnson–Saiago Algorithm
[13], although the two algorithms (Johnson–Saiago and using Algorithm 2.4 to generate the set
W ) do not always produce the same set of deleted vertices for simple trees (allowing the diagonal
to be unrestricted).

Example 2.6. Let Z be the symmetric tree sign pattern shown in Fig. 2.1. We compute M−1(Z).
Initially, Q = ∅, i = 1 and H = {1, 2, 3, 4, 5, 6} is the set of high degree vertices.

For the first iteration of Algorithm 2.4, T̂1 = Ĝ(Z), and W1 = {1, 4, 6}.
Deletion of vertex 1 leaves two H -free components of S(Z) that allow a negative eigenvalue,

since z89 is nonzero and z77 = −. Thus 1 ∈ Q1.
Deletion of vertex 4 leaves three H -free components, two of which allow a negative eigenvalue.

Thus 4 ∈ Q1.
Deletion of vertex 6 leaves three H -free components that allow a negative eigenvalue, so

6 ∈ Q1.
Vertices 3 and 5 are no longer high degree, and so are removed from H also.
Now Q = Q1 = {1, 4, 6}, H = {2}, and the signed forest Ĝ(Z) − Q1 is shown in Fig. 2.4

(the only labels now shown are for vertices currently in H ).
For the second iteration of Algorithm 2.4, T̂2 is the component that contains 2, and W2 = {2}.

T̂2 − 2 has three H -free components. The components Z[{10}], Z[{3, 11}], and Z[{5, 16}] each
allow a negative eigenvalue, so 2 ∈ Q2.

Thus Q = {1, 2, 4, 6} and the forest Ĝ(Z) − Q (with signs of diagonal entries) is shown in
Fig. 2.5. It is clear from this figure and Lemma 1.8 that Z(Q) has ten components that allow a
negative eigenvalue. Since |Q| = 4, by Theorems 2.1 and 2.8, M−1(Z) = C−1(Z) = 10 − 4 = 6.
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Fig. 2.4. The signed forest Ĝ(Z) − Q1.
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Fig. 2.5. The signed forest Ĝ(Z) − Q.

Construction of a specific symmetric integer matrix A ∈ S(Z) with mA(−1) = 6 is discussed in
Example 3.10.

Example 2.7. We apply Algorithm 2.4 to compute the minimum rank of the tree T shown in
Fig. 2.6 by computing M0(T ). Here S = S(T ) and the simple tree in Algorithm 2.4 is actu-
ally T̂ , but the components generated by the algorithm must be examined in T itself, so we
refer to the components of T rather than the components of S(T ). Initially, Q = ∅, i = 1 and
H = {1, 2, 3, 4, 5, 6, 7, 8} is the set of high degree vertices.

For the first iteration of Algorithm 2.4, T1 = T , and W1 = {1, 3, 6, 7}.
Deletion of vertex 1 leaves two H -free components both of which require nonsingularity, so

1 /∈ Q1.
Deletion of vertex 3 leaves four H -free components, three of which, 〈13, 14, 15〉, 〈16〉, and

〈17, 18, 19, 20〉 allow singularity, as can be verified by Theorem 1.13. Thus 3 ∈ Q1.
Deletion of vertex 6 leaves two H -free components, both of which allow singularity, so 6 ∈ Q1.
Deletion of vertex 7 leaves two H -free components, both of which require nonsingularity, so

7 /∈ Q1.
Now Q = Q1 = {3, 6}, H = {2, 4, 5, 8} and the forest T − Q1 is shown in Fig. 2.7 (the only

labels shown are for vertices currently in H ).
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Fig. 2.6. The tree T = T1.
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2

54

8

Fig. 2.7. The forest T − Q1 resulting from the first iteration of Algorithm 2.4.

For the second iteration of Algorithm 2.4, T2 is the component that contains 2, 4, 5, 8, and
W2 = {2, 5, 8}:

T2 − 2 has two H -free components, both of which allow singularity. The fact that the compo-
nent that contains vertex 1 (look at Fig. 2.6 in order to see that label) allows singularity follows
from Theorem 1.13. Thus 2 ∈ Q2.

T2 − 5 has five H -free components, three of which allow singularity, so 5 ∈ Q2.
T2 − 8 has two H -free components, both of which allow singularity, so 8 ∈ Q2.
Thus Q = {2, 3, 5, 6, 8} and T − Q is shown in Fig. 2.8. There is no third iteration since the

only vertex remaining in H after the removal of W2, i.e., 4, no longer has high degree, and so is
removed from H also.

Since T − Q has twelve components which allow singularity, by Theorems 2.1 and 2.8,
M0(T ) = C0(T ) = 12 − 5 = 7. Thus mr(T ) = 35 − 7 = 28. Construction of a specific sym-
metric integer matrix A ∈ S(T ) of rank 28 is discussed in Example 3.6.

Fig. 2.8. The forest T − Q.
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We now prove that the set Q produced by Algorithm 2.4 realizes Cλ(S).

Theorem 2.8. Let Z be a symmetric tree sign pattern and let T be a tree. For S ∈ {S(Z),S(T )},
Cλ(S) = cλ(Q) − |Q| for Q the set of vertices determined by Algorithm 2.4.

Proof. Let S ∈ {S(Z),S(T )}. Perform Algorithm 2.4, recording the number r of iterations
performed and the sets Qi and Wi produced in iteration i. Let W = ⋃r

j=1 Wj and let W0 = U0 =
Q0 = ∅. For i = 1, . . . , r, T̂i is the tree used in the ith iteration of the algorithm, and we let
T̂r+1 = ∅.

Now we partition the set U = ι(S) − W into subsets Ui . Note first that T̂ − W is a disjoint
union of paths, because if a vertex v has high degree in T̂ − W, then the algorithm would not have
terminated after r steps. Since T̂ is connected, each path P of T̂ − W has one or more vertices
having neighbor(s) in W . Define ω(P ) to be the maximum of the indices i such that a vertex of P

has a neighbor in Wi . Then define Ui to be the set of all vertices in all paths P such that ω(P ) = i.
Note U = ⋃r

j=1 Uj and T̂ = 〈W ∪ U〉 (the graph induced by W ∪ U ).

Let X be a set of vertices of T̂ . We say

• X has property α at level i if
( ⋃i

j=1 Uj

) ∩ X = ∅,

• X has property β at level i if
( ⋃i

j=1(Wj − Qj)
) ∩ X = ∅,

• X has property γ at level i if
⋃i

j=1 Qj ⊆ X.

If X has property ϕ at level i, then X has property ϕ at level j for j < i (ϕ ∈ {α, β, γ }). For
v ∈ X, define X(v) to be the set obtained from X by removing v from X. If X has property ϕ at
level i and v /∈ Q, then clearly X(v) also has property ϕ at level i.

Let v ∈ Wi+1 ∪ Ui+1. By construction, v ∈ T̂i+1. If X has property γ at level i, the component
C of T̂ − X(v) (or the component C of T̂ − X if v /∈ X) that contains v is contained in T̂i+1,

because T̂i+1 is a connected component of T̂ − ⋃i
j=1 Qj and

⋃i
j=1 Qj ⊆ X.

Note that any set X has properties α, β and γ at level 0, because U0 = W0 = Q0 = ∅. Assume
that X has properties α, β and γ at level i < r . We show that we can find a set Xγ of vertices of
T̂ such that Xγ has properties α, β and γ at level i + 1 and cX − |X| � cXγ − |Xγ |. Note that
if Y has properties α, β and γ at level r , then Y = Q, so repeated application of this step shows
cX − |X| � cQ − |Q|, i.e., Cλ(S) = cQ − |Q|.

Suppose that X has properties α, β, γ at level i, but does not have property α at level i + 1.
Then there is a vertex u in Ui+1 that is in X. By the algorithm, u has degree 2 or less in T̂i+1. Since
the component C of T̂ − X(u) that contains u is contained in T̂i+1, degC u � 2, so removing u

from C creates at most one additional component. Thus cX − |X| � cX(u) + 1 − (|X(u)| + 1) =
cX(u) − |X(u)|. So if Xα is obtained from X by removing every vertex of Ui+1 that is in X,
then Xα has property α at level i + 1 and properties β and γ at level i, and cX − |X| � cXα −
|Xα|.

Suppose that Xα does not have property β at level i + 1. Then there is a vertex w ∈ Wi+1 −
Qi+1 that is in Xα . Let C be the component of T̂ − Xα(w) that contains w. Since Xα has properties
β and γ at level i and property α at level i + 1, any component of C − w that is not in T̂i+2 is a
component of T̂i+1 − w. Since w /∈ Qi+1, at most one such component of S allows eigenvalue λ,

i.e., S[V (C − w)] has at most one component not in T̂i+2 that allows eigenvalue λ, and so at most
two components that allow eigenvalue λ. Then cXα − |Xα| � cXα(w) + 1 − (|Xα(w)| + 1) =
cXα(w) − |Xα(w)|. So if Xβ is obtained from Xα by removing every vertex of Wi+1 − Qi+1
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that is in Xα, then Xβ has properties α and β at level i + 1 and property γ at level i, and
cXα − |Xα| � cXβ − |Xβ |.

Suppose that Xβ does not have property γ at level i + 1. Then there is a vertex q ∈ Qi+1
that is not in Xβ . Let C be the component of T̂ − Xβ that contains q. Since Xβ has properties
α and β at level i + 1 and γ at level i, any component of C − q that is not in T̂i+2 is a compo-
nent of T̂i+1 − q. So S[V (C − q)] has at least two components that allow eigenvalue λ. Then,
cXβ∪{q} − |Xβ ∪ {q}| � cXβ + 1 − (|Xβ | + 1) = cXβ − |Xβ |. So if Xγ is obtained from Xβ by
adding every vertex of Qi+1 that is not in Xβ, then Xγ satisfies properties α, β and γ at level
i + 1, and cXβ − |Xβ | � cXγ − |Xγ |. �

3. Finding a symmetric integer matrix realizing minimum rank for trees and tree
sign patterns

In this section, we show how to use Algorithm 2.4 to obtain an integer matrix realizing the
minimum rank of a tree sign pattern or a tree that allows loops. This algorithm can be applied to
a forest or forest sign pattern by executing it on each component separately.

For a diagonal sign pattern D, let D(1) denote the real diagonal matrix obtained from D

by replacing + by 1 and − by −1. Before performing Algorithm 3.1, a tree sign pattern Z

should be preprocessed by applying Lemma 1.4 to determine a nonsingular diagonal sign pattern
D1 and a symmetric tree sign pattern Z1 such that Z = Z1D1. When an integer matrix A1 ∈
S(Z1) with rank A1 = mr(Z1) is obtained, then A = A1D

(1)
1 is a matrix having the desired

properties.

Algorithm 3.1. Let S ∈ {S(Z),S(T )}, where T is a tree and Z is a symmetric tree sign pattern.
To construct an integer matrix A ∈ S having rank A = mr(S):

1. Apply Algorithm 2.4 to S to find the subset Q of indices to be deleted. Let the indices of the
components of S(Q) be denoted by Ri, i = 1, . . . , h.

2. For each i, construct a rational symmetric singular matrix Ai ∈ S[Ri].
3. Construct a matrix A such that A[Ri] = Ai and A ∈ S, using 0, 1, or −1 for any as yet

unspecified entry.
4. If necessary, multiply by a positive scalar to obtain an integer matrix.

It is clear how to perform each of the steps in Algorithm 3.1 except step 2. Method 3.2
(respectively, Algorithm 3.4) gives a procedure for finding a rational singular matrix in S(Z)

(respectively, S(T )) that is usually simple to use in practice. We prove that Algorithm 3.4 (for
trees) always produces a rational singular matrix having the given tree as its graph. We prove
(in Lemma 3.7) that it is always theoretically possible to find a rational singular matrix having a
given symmetric tree sign pattern that allows singularity; we do not prove Method 3.2 will always
produce such a rational singular matrix, cf. Example 3.8.

Method 3.2. Let Z be a symmetric tree sign pattern that allows but does not require singularity.
To construct a rational singular matrix A having Z(A) = Z:

1. Apply the method given in the proof of Lemma 1.2 to compute a nonsingular diagonal sign
pattern D such that Z1 = DZD has all nonzero off-diagonal entries equal to +.
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2. Construct rational A1 ∈ S(Z1) as follows:
(a) Set all nonzero off-diagonal entries of A1 equal to 1.
(b) For j = 1, . . . , r, where r = o(Z1), set the j th diagonal entry to the j th diagonal entry of

Z1 times xj , where the xj are independent indeterminates.
(c) Compute det A1 = p(x1, . . . , xr ).
(d) Select a variable xs that appears in one of a pair of terms of opposite sign and not in the

other.
(e) Express p as

p(x1, . . . , xr ) = ±(
xsq1(x1, . . . , xs−1, xs+1, . . . , xr ) − q2(x1, . . . , xs−1, xs+1, . . . , xr )

)
,

where q1 and q2 each contain at least one positive term.
(f) If possible, choose positive rational values of x1, . . . , xs−1, xs+1, . . . , xr to make both q1

and q2 positive; otherwise the method does not produce the desired matrix.
(g) With the chosen values of the xj , set

xs = q2(x1, . . . , xs−1, xs+1, . . . , xr )

q1(x1, . . . , xs−1, xs+1, . . . , xr )
.

3. A = (
D(1)A1D

(1)
)
.

We illustrate Algorithm 3.1 and Method 3.2 in the next example. Method 3.2 calls for setting
all nonzero off-diagonal elements to one. The adjacency matrix A(T̂ ) of a simple graph T̂ is a
0, 1-matrix that has 1’s in exactly the off-diagonal entries corresponding to the edges of the graph.
Thus it is convenient to describe each matrix constructed by giving only its diagonal, since the
matrix A[R] is the sum of the adjacency matrix for Ĝ(Z[R]) and a diagonal matrix.

Example 3.3. Let Z be the symmetric tree sign pattern shown in Fig. 2.1 (assuming the nonzero
off-diagonal entries of Z are already +). Algorithm 2.4 has been applied to this sign pattern
in Example 2.5. For each of the components Z[{1, 2, 3, 7, 8, 9, 10, 11}], Z[{6, 17, 18, 19, 20}],
and Z[{12, 13}], we will produce a rational singular matrix A ∈ S(Z) that is the sum of the
A(Ĝ(Z[R])) and a rational diagonal matrix. Let di denote the ith diagonal element of the matrix
A. Note that choices are involved and many other matrices could be obtained from the algorithm.

We illustrate steps 2(a) to 2(g) of Algorithm 3.2 on Z[{6, 17, 18, 19, 20}], shown in Fig. 1.1.
The matrix produced by steps 2(a) and 2(b) is

Zx =




−x6 1 1 1 0
1 −x17 0 0 0
1 0 −x18 0 0
1 0 0 −x19 1
0 0 0 1 −x20


 .

Step 2(c) yields

det Zx = −x17 − x18 + x17x18x20 + x17x19x20 + x18x19x20 + x17x18x6 − x17x18x19x20x6.

We select x17 as our chosen variable in step 2(d), and step 2(e) yields

det Zx = −(
x17(1 − x18x20 − x19x20 − x18x6 + x18x19x20x6) − (−x18 + x18x19x20)

)
,

q1(x6, x18, x19, x20) = 1 − x18x20 − x19x20 − x18x6 + x18x19x20x6,

q2(x6, x18, x19, x20) = −x18 + x18x19x20.



L.M. DeAlba et al. / Linear Algebra and its Applications 418 (2006) 394–415 411

In step 2(f), we choose x6 = 2, x18 = 1, x19 = 2, x20 = 2, so det Zx = 3 − x17. In step 2(g),
x17 = 3, and thus d6 = −2, d17 = −3, d18 = −1, d19 = −2, d20 = −2.

For Z[{12, 13}],
[1 1
1 1

]
is singular, so let d12 = d13 = 1.

For Z[{1, 2, 3, 7, 8, 9, 10, 11}], det Zx = 1 − x1x7, so we choose x1 = 1, x7 = 1, x10 = 1.
The resulting diagonal entries are d1 = −1, d7 = −1, d10 = −1 (the latter value is irrelevant to
the determinant, but must have the correct sign).

The only remaining undetermined diagonal entries are d5 and d15. Step 3 of Algorithm 3.1 sets
d5 = 1, d15 = −1. Then the matrix we have constructed is

A=A(Ĝ(Z)) + diag(−1, 0, 0, 0, 1, −2, −1, 0, 0, −1, 0, 1, 1, 0, −1, 0, −3, −1, −2, −2),

and rank A = 17.

The algorithm for trees is simpler.

Algorithm 3.4. Let T be a tree that allows but does not require singularity. To construct a rational
singular matrix A having G(A) = T :

(a) Set all nonzero off-diagonal entries of A equal to 1.
(b) For j = 1, . . . , r, where r = |V (T )|, if T has a loop at vertex j, set the j th diagonal entry

to xj ; otherwise set the j th diagonal entry to zero.
(c) Compute det A = p(x1, . . . , xr ). Since T allows but does not require singularity, there are

at least two nonzero terms.
(d) Select a variable xs that appears in one of the nonzero terms and not in another.
(e) Express p as

p(x1, . . . , xr ) = xsq1(x1, . . . , xs−1, xs+1, . . . , xr ) − q2(x1, . . . , xs−1, xs+1, . . . , xr ),

where both q1 and q2 contain at least one nonzero term.
(f) Choose rational values of x1, . . . , xs−1, xs+1, . . . , xr to make both q1 and q2 nonzero.
(g) With the chosen values of the xj , set

xs = q2(x1, . . . , xs−1, xs+1, . . . , xr )

q1(x1, . . . , xs−1, xs+1, . . . , xr )
.

Lemma 3.5. Let T be a tree that allows singularity. If T allows but does not require singularity,
then Algorithm 3.4 will produce a singular symmetric rational matrix A ∈ S(T ). If T requires
singularity, then any symmetric rational matrix with graph T is a singular matrix.

Proof. Let Tx be the symmetric matrix such that all nonzero off-diagonal entries are equal to one,
and having xi as its ith diagonal entry if T has a loop at vertex i, where the xi are independent
indeterminates. Since T allows but does not require singularity, det Tx has at least two nonzero
terms. Then by Lemma 1.12, there is a loop ss that is in one nonzero term that is not in another
nonzero term. So we can write det Tx = xsq1(xi) − q2(xi), where both q1 and q2 are nonzero
polynomials in the variables xi, i /= s. We can choose rational values aii for the variables xi,

i /= s that make q1(aii) /= 0 and q2(aii) /= 0. Let ass = q2(aii )
q1(aii )

. Then the matrix A having nonzero
diagonal entries aii is a rational symmetric singular matrix with G(A) = T . �
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Example 3.6. In Example 2.7, Algorithm 2.4 was applied to the tree in Fig. 2.6. The components
are shown in Fig. 2.8. It is not difficult to apply Algorithm 3.4 to each component to choose
integer values for the diagonal that when added to the adjacency matrix produce a singular
matrix. One particular set of choices to produce such singular matrices yields A = A(Ĝ(Z)) +
diag(3, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, −1, 1, 0),

and rank A = 28. There are many other possible choices that achieve this rank.

We now prove it is always theoretically possible to find a singular symmetric rational matrix
having a given tree sign pattern that allows singularity.

Lemma 3.7. If Z is a symmetric tree sign pattern that allows singularity and has all nonzero
off-diagonal entries equal to +, then there exists a singular symmetric rational matrix A ∈ S(Z).

Proof. If Z requires singularity then any symmetric rational matrix with sign pattern Z may be
chosen, so assume Z does not require singularity. Note o(Z) � 2.

We say a tree sign pattern Z is minimally singular if for every index s ∈ ι(Z) such that zss /= 0,

Z(s) is nonsingular. Any nondiagonal sign pattern of size two that allows singularity is minimally
singular. We first show that it is possible to find the desired singular rational matrix if Z is
minimally singular.

LetZx be a matrix having all nonzero off-diagonal entries equal to one and having ziixi as the ith
diagonal entry, where the xi are independent indeterminates. Since Z allows but does not require
singularity, as in the proof of Lemma 3.5 there is a variable xs that appears in one term and does
not appear in another term. Then det Zx = xsq1(xi) − q2(xi), where both q1(xi) and q2(xi) are
nonzero polynomials in the variables xi, i /= s. By Lemma 1.3, there is a singular matrix Ã = [ãij ]
inS(Z) all of whose nonzero off-diagonal entries are one, so there are values ãi = |ãii | that make
ãsq1(ãi) − q2(ãi) = det Ã = 0. Note that det Ã(s) = ±q1(ãi) and Ã(s) ∈ S(Z(s)), so by the
hypothesis that Z is minimally singular, q1(ãi) /= 0. Since ãs > 0, sgn(q2(ãi)) = sgn(q1(ãi)).
Thus we can perturb the ãi , i /= s, slightly to rational values ai so that sgn(qj (ai)) = sgn(qj (ãi)),

j = 1, 2. Let as = q2(ai )
q1(ai )

. Then the matrix A with diagonal defined by aii = ziiai and having all
nonzero off-diagonal entries equal to one is the desired singular rational matrix.

Now we consider the case where Z is not assumed minimally singular. Let XZ be the matrix
of independent indeterminates defined in Section 1.5. Let Z′ be the symmetric forest sign pattern
obtained from Z by changing to zero the vw and wv entries whenever v < w and xvw is not in any
nonzero term of det XZ . Every nonzero off-diagonal entry of XZ′ appears in at least one nonzero
term of det XZ′ . An edge of G′ = G(Z′) is called isolated if the component of G′ that contains
the edge has only two vertices. If v < w and x2

vw appears in every nonzero term of det XZ′ , then
vw is isolated.

Choose a minimally singular principal subpattern Z′[R] of Z′. Carry out the procedure de-
scribed above to find index s, polynomials qj , j = 1, 2, and a symmetric singular rational matrix

A[R] ∈ Z′[R] such that if ai = |aii |, then sgn(q1(ai)) = sgn(q2(ai)) /= 0 and as = q2(ai )
q1(ai )

. Even
if G(Z′[R]) is not a component of G(Z′), there must exist a nonzero term in det XZ′[R], since

for any edge vw (with v < w) that is not isolated, x2
vw is not required to appear in every nonzero

term of det XZ′ . So Z′[R] does not require singularity, and we can choose a matrix A[R] ∈ Z′[R]
such that 0 /= det A[R] = f (aj ), j ∈ R, aj = |ajj |. Now all diagonal elements of A have been
determined. Set to one any off-diagonal entry of A that has not yet been assigned a value that
corresponds to an edge of G(Z) between two vertices in R or to an edge between two vertices in
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Fig. 3.1. The tree Ĝ(Z) in Example 3.8.

R; the values of these entries are irrelevant in computing the determinant of A by the construction
of Z′. Assign all remaining nonzero off-diagonal entries to be ε. Then there exists a polyno-
mial g(xi, xj ) with i ∈ R, j ∈ R, such that det A = f (aj )(asq1(ai) − q2(ai)) + ε2g(ai, aj ) =
asf (aj )q1(ai) − (f (aj )q2(ai) − ε2g(ai, aj )). Choose ε rational and sufficiently small so that
sgn(f (aj )q2(ai) − ε2g(ai, aj )) = sgn(f (aj )q2(ai)). �

Although it works well in practice, we have not proved that step 2(f) of Algorithm 3.2 will
always produce values for x1, . . . , xs−1, xs+1, . . . , xr that make q1, q2 both positive; in fact, for
some choice of xs that may be impossible, as is demonstrated in the next example.

Example 3.8. Let Z be the tree sign pattern shown in Fig. 3.1, with all nonzero off-diagonal
positions being +. Then det Zx = (1 − x6x7)(x1x2x3 + x2 + x3), so it is not possible to use any
of x1, x2, x3 as xs in Algorithm 3.2, even though each of these variables appears in both a positive
and a negative term. In this example, if either x6 or x7 is chosen as xs, the algorithm will produce
the desired matrix.

We now turn our attention to constructing a rational matrix having maximum multiplicity for
a nonzero rational eigenvalue.

Algorithm 3.9. Let S ∈ {S(Z),S(T )}, where T is a tree and Z is a symmetric tree sign pattern.
Given a rational number λ, to construct a symmetric rational matrix A ∈ S having mA(λ) = M(S):

1. Apply Algorithm 2.4 to S to find the subset Q of indices to be deleted. Let the indices of the
components of S(Q) be denoted by Ri, i = 1, . . . , h.

2. For each i, construct a rational symmetric matrix Ai ∈ S[Ri] having eigenvalue λ.
3. Construct a matrix A such that A[Ri] = Ai and A ∈ S, using 0, 1, or −1 for any as yet

unspecified entry.

Again, it is clear how to perform each of the steps in Algorithm 3.9 except step 2. Although we
do not present formal algorithms for step 2 for the nonzero case, it is usually not hard to construct
a rational matrix having the desired rational eigenvalue, as illustrated in the next example.

Example 3.10. Let Z be the symmetric tree sign pattern shown in Fig. 2.1 (assuming the non-
zero off-diagonal entries of Z are already +). Algorithm 2.4 has been applied to this sign
pattern for eigenvalue −1 in Example 2.6 (see Fig. 2.4). Table 3.1 lists matrices having eigen-
value −1 and components for which they should be used to assemble a matrix A ∈ S(Z)

having mA(−1) = 6. For nonzero eigenvalues, it is not always possible to have all the non-
zero off-diagonal entries be one, so we are no longer using the sum of the adjacency matrix
and a diagonal matrix. Instead, one embeds the matrices shown in Table 3.1 in the appropriate
places.
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Table 3.1
The matrices A[R] used to construct A realizing M−1(Z) for the sign pattern Z in Fig. 2.1

Matrix R

[−1] {7}, {10}, {15}, {17}, {18}[1 2
2 1

]
{12, 13}

[3 2
2 0

]
{5, 16}

[0 1
1 0

]
{3, 11}, {8, 9}

[−2 1
1 −2

]
{19, 20}

4. Conclusions

In this section, we summarize our main results.

Theorem 4.1. For any symmetric tree sign pattern Z, Cλ(Z) = Mλ(Z). The following parame-
ters can be computed by using Algorithm 2.4 to compute Cλ(Z):

• The maximum multiplicity of any positive eigenvalue, which is equal to M1(Z).
• The maximum multiplicity of any negative eigenvalue, which is equal to M−1(Z).
• The maximum multiplicity of eigenvalue zero, M0(Z).
• The minimum rank mr(Z) = o(Z) − M0(Z).

There is an integer matrix in S(Z) realizing the minimum rank, and a rational matrix in S(Z)

realizing M0(Z).
Furthermore, the minimum rank of any tree sign pattern (not necessarily symmetric) is equal

to the minimum rank of the symmetric tree sign pattern obtained by replacing each off-diagonal
− by +.

Theorem 4.2. For any tree T , Cλ(T ) = Mλ(T ). The following parameters can be computed by
using Algorithm 2.4 to compute Cλ(T ):

• The maximum multiplicity of any nonzero eigenvalue, which is equal to M1(T ).
• The maximum multiplicity of eigenvalue zero, M0(Z).
• The minimum rank mr(Z) = o(Z) − M0(Z).

There exists a matrix A ∈ S(T ) such that every off-diagonal element of A is 0 or 1, the diagonal
of A is rational, rank A = mr(T ) and mA(0) = M0(T ).
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