
Artificial Intelligence 72 (1995) 305-327

Artificial
Intelligence

The stabilization of environments

Kristian J. Hammond ‘, Timothy M. Converse *, Joshua W. Grass 2
Department of Computer Science, University of Chicago, II00 E. 58th Street, Chicago, IL 60437, USA

Received June 1992; revised October 1993

Abstract

In planning and activity research there are two common approaches to matching agents with
environments. Either the agent is designed with a specific environment in mind, or it is provided
with learning capabilities so that it can adapt to the environment it is placed in. In this paper we
look at a third and underexploited alternative: designing agents which adapt their environments
to suit themselves. We call this s&d&ion, and we present a taxonomy of types of stability
that human beings typically both rely on and enforce. We also taxonomize the ways in which
stabilization behaviors can be cued and learned. We illustrate these ideas with a program called
FIXPOINT, which improves its performance over time by stabilizing its environment.

1. Introduction

The notion of “general purpose intelligence” is somewhat out of fashion these days.
Early optimism in artificial intelligence has been tempered by the realization that the
other face of generality is intractability. It is easy to find algorithms that solve general
problems; the difficulty is to make problems specific enough that their solution is
feasible. In AI models of activity, this injunction turns into a task of analysis; the
question becomes “How is it possible to do the right thing in this domain?‘, and any
answer that does not depend on the characteristics of that specific domain may well turn
out be too general to work [31. There is reason for skepticism even about assumptions
of “domain-independent” intelligence in human beings; we may not be as general as we
think we are (see [9]).

’ Conesuondine: author. B-mail: converseQcs.uchica9o.edu.
‘This -work ‘;Yas supported in part by DARPA contract number F49620-88-C-0058. E-mail:

hammond@cs.uchicago.edu.
*E-mail: grass@cs.uchicago.edu.

0004-3702/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved
SSDI0004-3702(94)00006-M

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82654976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

306 K.J. Hmvnond et (11. /Artijicinl lntellipnce 72 (1995) 305-327

This special volume of the journal Artijcial Intelligence calls, among other things,
for analyses that take into account how agents are fitted to their environments, and for

theories that use such accounts to explain the success of agents, or that help in agent
design. Our contribution here is to make an argument for a simple idea: that one way
to ensure a good fit between agent and environment is to have the agent change the
environment to suit itself. We call this kind of activity stabilization.”

1. I. Stabilization

We argue that, for an agent to interact successfully with a complex environment, one
or more of the following things must be true:

l Either the agent or the environment, or both, must be designed with the other in

mind (the “design” of the agent can be either evolutionary or intentional). In this
case, agent and environment are well-matched from the start.

l The agent is able to learn to adapt to the particulars of its environment. In this
case, through interaction, the agent comes to be better fitted to its environment over
time.

l The agent is able to stabilize its environment to make it more hospitable. In this
case, due to the action of the agent, the environment comes to be better fitted to
the agent as time goes on.

Of course, all of the above may be true, and play a role in determining the success
of the agent. Take the case of someone moving into a newly rented apartment, and

the subsequent changes that occur in both the person and the apartment. The person
(wonderfully designed, of course) occupies a new space, which (due to conventions

about how buildings are constructed, as well as the particular skill of architects) is
designed to make life easy in many ways for such a person. What follows is a process
of mutual fitting. The person does quite a bit of learning about the particular space
(becomes familiar with the floor plan, location of cabinets, electrical outlets, quirks

of the plumbing, and so on). The new tenant also effects considerable change in the
apartment (moving and arranging furniture, stocking the refrigerator, deciding where
particular objects should be stored, and so on). As a result of both of these processes,
the person develops a set of routines for interacting with the apartment, and is more
effective and more comfortable than on the day of the move.

We use the term “stabilization” for this kind of organizing of the environment, and
here is a more specific example of what we mean by it: Most people keep clean drinking
glasses in some particular cabinet of their home, and when they want to drink something,
they simply use one of them. This means that, at the time of deciding to have a drink of
water, they need to do neither a lot of inference about whether they possess a suitable
glass, nor a lot of physical search for a glass that meets their needs. The location of clean
glasses is stabilized. Of course, this only happens due to the good efforts of someone
in ensuring that glasses that are used are (at some point or other) cleaned and replaced
in the cabinet.

‘We use the term stabilizcttir~~~ and rnforwwrft (found in earlier papers) interchangeably here; the latter

term more precisely captures the idea, but the former sounds less hostile.

K.J. Hammond et al./Artijicial Intelligence 72 (1995) 305-327 307

In this paper we focus on this sort of stabilization, first of all because it has been
neglected (in comparison with learning and more straightforward considerations in agent
design), secondly because we believe that the notion can play a central role in under-
standing the successes of habitual human behavior, and, finally, because it seems like

an unexploited research area in the analysis and design of agents that have a long-term
interaction with their environments.

For the rest of the paper, we explore the idea of stabilization, and its use in the design
of agents and in the analysis of agent-environment interaction. Finally we describe

FIXPOINT, a program that implements some of these ideas, and some performance
improvement results due to the stabilization of FIXPOINT’S environment.

1.2. Models of long-term activity in AI

This paper is an entry in a long-standing debate in AI on appropriate methods for
the construction of intelligent agents. Our central concern in this paper is with agents
that have a long-term interaction with their environment. In the next two subsections we

look very briefly at both classical and situated models, and explain why some concerns
we have are addressed in neither tradition. 4 Then we will quickly present our “theory
of agency”, and explain how questions of stabilization fit into it. The rest of the paper
will address stabilization itself.

1.2.1. Classical planning
Research on plan construction in AI can be viewed either as having produced a

particular set of techniques for a well-defined computational problem, or as an approach
that (in addition to the techniques) proposes a theory of action in which intelligent
activity is seen as the result of plan construction and execution 121. Either way, a
consensus has arisen in AI that classical techniques for plan construction do not provide
a complete and satisfying story about the generation of intelligent action.

There are a number of sources of this discontent: planning’s formal intractability, the
reliance on complete world descriptions, reliance on complete action models, and the
questionable utility of plans produced when the restrictive assumptions are violated.

To this list, we would like to add one more: planning’s view of activity is essentially
one-shot. That is, classical planning techniques produce a plan to satisfy a given goal
set, given a particular situation. There is no place for time-extended interaction [I] with
an environment: presumably either a planner plans for the whole of time in advance, or
is invoked at appropriate times to deal with particular goal sets. The former alternative
multiplies the intractability of planning, while the latter requires, at the minimum, a
theory of when to invoke the planner. Research on execution monitoring and interleaving
of planning and execution can be seen as an attempt to develop such a theory; still, the
original technology of this sort of planning was developed for one-shot goal achievement,

4 These overviews will be so brief as to be caricatures; we apologize, but feel that these two extreme views

have framed the debate on these issues to such an extent that we have to identify to the reader where we fit

in the landscape defined by them.

308 K.J. Hammond et trl. /Artificial Intelligence 72 (199.5) 305-327

and it remains to be seen whether it is appropriate for embedding in a longer-term
context.

There is one line of planning research that is not “one-shot” in this sense: work
on planning and learning (cf. the various learning attachments to the PRODIGY plan-
ning system [II]) This research concerns itself with planners that improve over time;
nonetheless, the sense of performance improvement that is relevant is defined in terms
of single tasks, rather than in interaction with an environment over time.

1.2.2. Situated action models

Discontents with planning models have led to an enormous variety of research in
recent years-in this section we will focus on “situated action” models [1,4], and leave

connections with closely related work to the reader.
This line of work stresses the interaction of agents and their environments, and their

mutual dependence. It argues that design of an all-purpose agent is not feasible, and that
it is incumbent on the designer of an agent to characterize the dynamics of an interaction
(i.e. patterns of interaction that depend on both agent and environment, without being
fully represented in either), and make use of that characterization in design. Chapman
and Agre, along with championing this sort of analysis of agent-environment interac-
tions, argue for a methodology of “machinery parsimony” (that is, a preference for

the least complicated mechanisms in the agent that will explain an interaction). As
illustrations of their theories of activity (and demonstration of sufficiency of simple
mechanisms), they wrote programs that play videogames. In these programs, the mini-
mal mapping between perception and action leads to the minimal proposal for a central
system: a combinational logic circuit. As the central system diminishes, the peripheral
systems grow in complexity. In his work on Sonja, for example, Chapman presents a
sophisticated implementation of task-directed intermediate vision.

Our central difficulty with the models implied by the programs is that they are
steady-state. That is, while they do provide an account of long-term interaction with an
environment, they do not provide an account of how the interaction can arise (other than

by careful characterization and resultant design work). It is difficult (for us, anyway),
to see a place for learning in a combinational logic central system. (The only sort of
learning that we are aware of that has actually been used with one of these systems

is reinforcement learning; we believe that the same combinatoric problems that have
dogged classical planning are likely to surface here.)

Of course, these programs were in part just sufficiency demonstrations to begin with-
much of Agre’s thesis has to do with analyses of how particular agent-environment
interactions might arise [I], and our style of analysis here draws heavily from his.
Whether our paper should be considered “situated action” research should probably
depend on whether the reader will identify that term with programs or theories.

1.2.3. Our view of agency
We would like to have a theory of agency that is neither “one-shot” nor “steady-state”,

in that the account should explain the agent’s extended interaction with an environment,
while also telling a story about how that interaction can change and improve over time.

K.J. Hammond et al. /Art#cial Intelligence 72 (1995) 305-327 309

We come at this from a background in case-based planning [5], where the cost of
synthetic planning is amortized by attempting to reuse prior plans as much as possible.
In more recent work [6,7], we have come to see case-based planning as one part of a
framework for the study of long-term agents.

In this framework, extended interaction with the environment consists of the use of a
small set of plans5 that cover the goals that typically arise, where the plans retrieved in
response to environmental cues are incrementally debugged in response to failure, and
are made as reliable as possible by stabilization of the environment.

Our main concern in this paper is the interaction of plan reuse and stabilization-
how stabilization behaviors, external to episodes of using a particular plan, can impact
the success of using the plan. To make this more concrete: imagine the “plan” to be
knowledge of how to cook a particular dish, and the stabilization to be the set of
behaviors that keeps the kitchen organized, cleaned, and stocked with the appropriate
food and spices. Our interest is in how the plan use and the stabilization could be

coordinated, particularly if the behaviors might be external to any particular episode of

using the plan.
The most obvious thing to say about this is that there is clearly a tradeoff between the

comprehensiveness of stabilization and the difficulties of plan reuse. For example, if a
given plan achieves a given goal in a situation, the plan could obviously be reused later
if the situation were exactly the same. If the later situation were the same in all respects

relevant to the success of the plan, then (by definition) the plan could be reused as
well. This will be true regardless of whether the similarity across the episodes is due to
the natural stability of the world or due to the agent’s efforts in stabilization. The more
the “preconditions” of standard plans are stabilized, the less flexible and inventive the

use of those plans will have to be.

2. Analysis versus design versus representation

There are several ways in which the concept of stabilization might be useful. First
of all, it might be useful merely to help in understanding the dynamics that permit a
particular agent to succeed in its environment. Secondly, such analysis might help in the
design of an agent for a particular environment. Finally, such a designed agent might
stabilize its environment because it happens to participate in the right dynamics, or
(alternatively) because it explicitly represents and reasons about the types of stability it

enforces.
As an example, consider an external view (say, by videotape) of a human in ex-

tended interaction with a kitchen. Take it as a fact about the kitchen that there is
some limited number of drinking glasses, and that they cannot be used again without
washing them. The behavior we observe is this: every so often the person goes to a

5 We are tom between the desire not to use an ambiguous word like “plan”, and the desire not to invent a

new term when we don’t mean anything really new by it. By “plan” we mean: the collection of knowledge

used in pursuit of a particular (set of) goals, and that is used only in pursuit of those goals. This may or

may not consist of a partially ordered set of “primitive actions”; we intend it usually to mean a sketchier

representation used by a more flexible executive.

310 K.J. Hunmond et al. /Artijiicial Intelligence 72 (1995) 305-327

particular cabinet, takes out a glass, drinks from it, and puts it in the sink. At longer
intervals, the person washes a number of glasses, dries them, and puts them back in the

cabinet.
As a matter of analysis, we can notice that the washing-and-drying behavior supports

the drinking behavior by replenishing the glasses (and that, in an odder sense, the

reverse is true as well). Of course, we can only speculate on the design considerations
that led to the behavior. Finally, does the person behave this way because of an explicit
awareness that glass-washing supports glass use? Probably, but it is a subtle question,
and one that might have a different answer if we wanted to design a robot to do the

same task.

2.1. Analysis

We argue that the notion of stabilization is a powerful one, even just in explaining
agent-environment interactions. In analyzing the role of stabilization in an interaction,
several questions must be answered:

(1) What sorts of stability does the agent depend on?
(2) What sorts of stability are enforced by the agent?
(3) What does the agent do to perform the stabilization?

(4) How are the stabilizing behaviors organized and cued?
(5) How is the need for new kinds of stabilization recognized (if at all)?
For instance, in trying to account for what makes it possible to use clean drinking

glasses at arbitrary times, the answers might be something like this:
(I) The agent depends on a wide array of types of stability including: the physics

of the world, the fact that most household objects don’t move unless someone

moves them, and so on.
(2) Among other things, the agent enforces the fact that there is always at least one

clean drinking glass in the cabinet.

(3) To ensure this, the agent periodically collects used glasses, washes them, dries
them, and replaces them in the cabinet.

(4) The question of how the glass-washing behavior is organized and cued is by far
the most interesting one here, and, in the case of a human being, is a question
for psychologists and anthropologists rather than for us. We can, however, talk
about some ways in which the behavior might be effectively cued:

l Glasses could be washed immediately after use.
l Glasses could be washed whenever a certain number of them collect in the

sink.
a All glasses could be washed every so often, say, once a day.

These are only a few of the possibilities, and we will have more to say about

this in a later section.
(5) Finally, there is the question of how the need for stabilization is recognized in

the first place. This is somewhat beyond the scope of our example (which had
to do with a successful “steady-state” pairing of behaviors), so we will postpone
discussion of this until later in this section.

K.J. Hammond et al. /Artificial Intelligence 72 (1995) 305-327 311

2.2. Design

Let us continue with the same example, but change our project from psychology to
engineering; rather than speculating about how it is that people manage to get their

dishes done, let’s imagine that we have the task of designing a robot butler who must
serve drinks in clean glasses at a moment’s notice. How should our robot ensure that
glasses are available when necessary?

Let’s assume that the robot has the ability both to fill glasses and wash glasses-our
concern will be with how those behaviors are linked. Of course, if the robot must always
respond immediately to a request for a drink, then it is easy to see that there is the
possibility of failure: all it would take would be simultaneous requests for more drinks

than there were glasses in the household. As designers, we would want to ensure that,
when possible, the robot did not rely on the assumption of clean glasses when none
were clean, and also that the robot ensured that there were clean glasses when it was
possible for it to do so.

The main source of possible failure here is that glass use will outstrip replenishment

of glasses. In designing an agent to avoid that failure, there are a number of strategies

to employ:
(1) Have the robot maintain an internal count of glasses used. When this count

exceeds some threshold, insist that the robot collect and wash the glasses.
(2) Have the robot put used glasses into the sink, and scan the sink periodically.

Whenever the number of glasses in the sink exceeds some threshold, insist that

the robot wash the glasses.
(3) Assume some upper limit on the rate at which glasses are used, and insist that

the robot wash glasses periodically (say, by using an internal timer).
(4) Have the robot wash glasses whenever it notices a dirty glass (whatever that

would mean).
(5) Have the robot use glasses until they have all been used. Upon encountering

a failure situation, where no clean glasses are available, have it wash all the

glasses.
These suggestions vary along a number of dimensions: where information is carried

(internally versus in the world), assumptions about future demands, assumptions about
perceptual abilities, and the cost of occasional failure. The main point that we would
like to make here is that there can be multiple ways to design an agent to enforce a
single type of stability.

2.3. Representation

As we have seen, it is at least conceivable that an agent could be designed that
(1) enforced a certain kind of stability in the world,
(2) relied on that stability, and
(3) had no internal representation of either the stability or of its reliance on it.

For example, one might be able to design a robot that did three things: served drinks
in glasses when asked, deposited used glasses in the sink, and washed glasses when
enough glasses accumulated in the sink. Cleaning would be linked to use only via the

312 K.J. Hammond et al. /Artificial Intelligence 72 (1995) 305-327

external representation of glasses standing for themselves. Assuming that the robot were
able to notice the accumulation of glasses, and that glass use did not vary unpredictably
(as it might, say, during a party), then it is possible that this design strategy would be
effective in the absence of any internal connection between use and cleaning.

Having said that, we have to say that we don’t believe in that sort of strategy for the
design of stabilizing agents, primarily because it requires too much precision from the
designer. The steady-state behavior of our robot is plausible-relying on environmental
cues to tell it when to wash glasses and when to use them. But it is a lot to ask of
a designer to anticipate all of the dynamics that the designed agent might participate
in, particularly if the design task includes ruling out unlikely sources of failure. If our

robotic butler has no representation of the connection between washing glasses and their
use, then what is it to do in the case when it runs out of glasses?

3. Types of stability and stabilizing behaviors

In our discussion of so far we have focused on a single example of stabilization.
In this section we give a broader categorization of a number of types of stability and
stabilizing behaviors that occur in daily life, and offer some intuitive arguments for their
adaptiveness. At the end of the section, we discuss the problem of recognizing the need
for a novel type of stabilization.

3.1. Types of stability

Here are some types of stability that people typically enforce. In addition to the
common-sense examples, we offer reasons why it might be functional to perform this
sort of stabilization.

3.1.1. Stabilio of location
The most common type of stability that arises in everyday activity relates to the

location of commonly used objects. Our drinking glasses end up in the same place
every time we do dishes. Our socks are always together in a single drawer. Everything

has a place and we enforce everything ending up in its place.
Enforcing STABILITY OF LOCATION, then, serves to optimize a wide range of pro-

cessing goals. First of all, the fact that an often used object or tool is in a set location

reduces the need for any inference or projection concerning the effects of standard plans
on the objects or the current locations of objects. 6 Second, it allows plans that rely
on the object’s locations to be run without explicit checks (e.g., no need to explicitly
determine that the glasses are in the cupboard before opening it). Third, it removes the
need at execution time for a literal search for the object.

h This strategy happens to be spatial, and provides stability for activity in the long term. See [81 (in the

companion volume) for a more general treatment of use of the spatial world to support activity. Our concerns

are similar, and to some extent the taxonomies are orthogonal.

K.J. Hammond et al. /Artificial Intelligence 72 (1995) 305-327 313

3.1.2. Stability of schedule
Another common form of stability involves the construction of standard schedules that

persist over time. Eating dinner at the same time every day or having preset meetings that
remain stable over time are two examples of this sort of stability. The main advantage of
this sort of stability is that it allows for very effective projection in that it provides fixed
points that do not have to be reasoned about. In effect, the fixed nature of certain parts
of an overall schedule reduces that size of the problem space that has to be searched.

A second advantage is that fixed schedules actually allow greater optimization of the
plans that are run within the confines of the stable parts of the schedule. Features of a

plan that are linked to time can be removed from consideration if the plan is itself fixed
in time. For example, by going into work each day at 8:30, an agent might be able to
make use of the traffic report that is on the radio at the half-hour. Because the schedule
is stable, however, he doesn’t actually have to reason about the times that the report is
on the air to be assured of hearing it.

Finally, if the schedule is stabilized with regard to a pre-existing norm, (e.g., always
have lunch at noon) coordination between agents is also facilitated.

Here we see an instance of a tradeoff between enforcement and planning flexibility.
While an enforced schedule allows for optimization of search and execution for recurring
goals, it often reduces the flexibility required to incorporate new goals into the preset
agenda. As with any heuristic that reduces the combinatorics of a search space, there
will be times when an optimal plan is not considered.

It is important to realize that the schedule enforced is optimized over the goals that
actually do tend to recur. Thus, an agent who is enforcing this sort of stability is able
to deal with regularly occurring events with far greater ease than when it is forced to

deal with goals and plans outside of its normal agenda. This sort of tradeoff in which
commonly occurring problems are easier to solve than less common ones seems to be
an essential by-product of stabilizing an environment.

3.1.3. Stability of resource availability

Many standard plans have a consumable resource as a precondition. If the plans are

intended to be used frequently, then availability of the resource cannot be assumed
unless it is enforced. A good result of this sort of enforcement is when attempts to use
a plan that depends on it will usually succeed. The ideal result is when enforcement is
effective enough that the question of availability need not even be raised in connection

with running the plan.

3.1.4. Stability of satisfaction
Another type of stability that an agent can enforce is that of the goals that he tends to

satisfy in conjunction with each other. For example, people living in apartment buildings
tend to check their mail on the way into their apartments. Likewise, many people will

stop at a grocery store on the way home from work. In general, people develop habits
that cluster goals together into compact plans, even if the goals are themselves unrelated.
The reason that the plans are together is more a product of the conditions associated
with running the plans than the goals themselves.

314 K.J. Hammond et (I/. /Arttjiciul Intelligence 72 (1995) 305-327

An important feature of this sort of stability is that the goals are recurring and that
the plan associated with the conjunct is optimized with respect to them. Further, the
goals themselves must be on loose cycles and robust with regard to over-satisfaction.

The advantage of this sort of STABILITY OF SATISFACTION is that an optimal plan
can be used that is already tuned for the interactions between individual plan steps.

Second, it can be run habitually, without regard to the actual presence of the goals
themselves. As in the case of STABILITY OF LOCATION in which a plan can be run
without explicit checks on the locatio: of objects, STABILITY OF SATISFACTION

allows for the execution of plans aimed satisfying particular goals, even when the

goals are not explicitly checked.
A way to enforce this sort of stability is associate the plan with a single cue-either

a goal or a feature in the world-and br in execution of that plan whenever the cue
arises. In this way, the habitual activity ca be started even when all of the goals that it

satisfies are not present.

3.1.5. Stability of plan use
We often find ourselves using familiar plans to satisfy goals even in the face of wide-

ranging possibilities. For example, when one of us travels to conferences, he tends to
schedule his flight in to a place as late as he can and plans to leave as late as he can
on the last day. This optimizes his time at home and at the conference. It also allows
him to plan without knowing anything about the details of the conference schedule. As
a result, he has a standard plan that he can run in a wide range of situations without
actually planning for them in any detail. It works, because it already deals with the
major problems (missing classes at home and important talks at the conference) as part

of its structure.
The major advantage here in enforcing the STABILITY OF PLAN USE is that the plan

that is used is tuned to avoid the typical interactions that tend to come up. This means, of
course, that the plans used in this way must either be the result of deep projection over
the possible problems that can come up in a domain or be constructed incrementally.

A further advantage is that little search through the space of possible plans for a set of
goals needs to be done in that one plan is always selected.

3. I .6. Stability of cues
One effective technique for improving plan performance is to improve the proper

activation of a plan rather than improve the plan itself. For example, placing an important
paper that needs to be reviewed on his desk before going home improves the likelihood
that an agent will see and read it the next day. Marking calendars and leaving notes

serves the same sort of purpose.
One important area of enforcement is related to this use of visible cue in the environ-

ment to activate goals that have been suspended in memory. The idea driving this type
of enforcement is that an agent can decide on a particular cue that will be established
and maintained so as to force the recall of commonly recurring goals. One example of
this kind of enforcement of STABILITY OF CUES is leaving a briefcase by the door
every night in order to remember to bring it into work. The cue itself remains constant

K.J. Hammond et al./Artificial Intelligence 72 (1995) 305-327 315

over time. This means that the agent never has to make an effort to recall the goal at
execution time and, because the cue is stabilized, it also never has to reason about what
cue to use when the goal is initially suspended.

The advantage of this sort of enforcement is that an agent can depend on the external
world to provide a stable cue to remind it of goals that still have to be achieved. This
sort of stability is suggested when an agent is faced with repeated failures to recall a

goal and the plan associated with the goal is tied to particular objects or tools in the
world.

3.2. Types of enforcement

To some extent the question of which sorts of stability an agent can profit from is
separate from the question of how to ensure that stability. We now categorize some
methods of ensuring stability, which differ from each other partly in what actions are
taken and partly in how and when those actions are cued.

3.2.1. One-time change

It is often possible to make a single change to the environment which will persist

without further effort on the agent’s part. If this is a desirable state that facilitates normal
activity, it may be worthwhile to perform.

A good example of this is rearrangement of furniture, say, to remove a couch from
a frequently-traveled path. Once the change has been made, it can be forgotten about,
and taken as a normal fixed part of the environment. But at the same time, the world
has been made more hospitable to the normal activity of the agent.

3.2.2. Policy

Another type of enforcement is what McDermott calls “policy” [lo]. For example,
everyone always carries money. This is because we always need it for a wide variety of
specific plans.

Enforcement of POLICY requires the generation of specific goals to satisfy the policy
state whenever it is violated. In terms of policies such as always having money on hand,
this means that the lack of cash on hand will force the generation of a goal to have
cash, even when no specific plan that will use that cash is present.

Many policies have to do with ensuring resource availability. Here again, the advantage
is that plans can be run without explicit reference to many of the conditions that must

obtain for them to be successful. An agent can actually assume conditions hold, because
he has a POLICY that makes them hold.

3.2.3. Plan modijkation
Enforcement of POLICY requires detecting when the desired state is being infringed

upon. Another strategy for enforcing similar types of stability is to modify all the plans
that normally disturb the stable state to include its re-establishment. This strategy is only

possible when the state can only be disturbed by the agent, and there is a small set of
plans that are implicated.

316 K.J. Hammond et trl. /Arg”ciul Intelligence 72 (1995) 305-327

For example, one of us typically carries a transit pass in his wallet. There is only
a single plan that requires taking it out of the wallet. If that plan includes the step of
putting it back, then stability of location is effectively enforced, and the assumption that

it is “always true” can be made.
Whether policy or plan modification is preferable depends also on the costs and

utilities of establishing the state. For example, one method for ensuring having cash
might be to add a trip to an automatic teller to every plan that uses cash, thereby
ensuring that it is always replenished. It so happens that the trip is costly and the
violation is easy to detect, so a policy makes more sense in this case.

3.2.4. Clean-up plans

One difference between PLAN MODIFICATION and POLICY is how the actions that
re-establish a desirable state are cued. The first associates the actions with detecting the
violation, while the second associates them with use of the plans that disturb the state.
Another alternative is to have explicit plans that look for a certain category of states
that need to be re-established, and then to use the plans in response to reliable cues.

For example, most people keep their kitchens stocked with food by some mixture of

noticing depletion (policy) and periodically doing more exhaustive checking for what
needs to be replenished (a clean-up plan). Similarly, people often maintain stability of
location in their living spaces by a mixture of “putting things back” when done with
them, and “cleaning up”. The fact that clean-up plans are often dissociated from the

plans that violate desired states as well as from recognition of the violation means that
there must be other cues that indicate when it is time to employ them. For example, it is
common to have a standard routine for leaving a home or office, cued by the activity of
leaving, that involves looking for various standard states that need to be re-established.

3.3. Detecting the need jk stabilization

In this section we are concerned with the question of how novel stabilizing behavior
might be evolved. This can be slightly difficult to distinguish from the question of how
enforcement behaviors are cued, which occupied us in the last section. Our suggestions
here are also more tentative than the previous two taxonomies; the problem of learning
when to change stabilization behaviors is difficult, and probably requires exactly the sort
of deep reasoning that stabilization itself is designed to avoid.

3.3.1. Plan failure

Probably the central way to recognize the need for a particular kind of stabilization
is to encounter the failure of a particular plan. If this plan is to be reused frequently,

there are a number of alternative responses to the failure:
l Repair the plan.
l Substitute an alternate plan for the same goal that is not subject to the failure.
l Determine the circumstances in the world that are responsible for the failure and

only use the plan when those conditions do not hold.
l Determine the circumstances responsible for the failure, and arrange to stabilize

them so that the plan can always be used.

K.J. Hammond et al./Art@cial Intelligence 72 (1995) 305-327 317

This categorization is quite abstract, so as an example: imagine that you have made
coffee intending to drink it with milk, but find out that in fact there is no milk in your
refrigerator. What should you do differently in the future?

l Repair-you could resolve to run out to the store to get milk whenever you en-
countered this problem in the future.

l Substitution-decide to have tea in the future instead.
l Selective use-decide that you should check for availability of milk before having

coffee, and only have coffee when milk is available.

l Stabilization-decide that the problem is in the world, rather than in your specific

plan for making coffee. Resolve that there will always be milk in the refrigerator
in the future. (This, of course, leaves open the question of how the stabilization is
to be accomplished and cued, which we discussed in the previous section.)

Of course, this example was constructed in such a way as to make stabilization the
most attractive alternative. Also, the explanatory stance is a bit disingenuous, since it

is unlikely that the notion of having to buy milk would be entirely novel to someone
sophisticated enough to successfully make coffee. Still, we believe that plan failure
is a good indication of the need for more subtle kinds of stabilization, and that it
can also indicate the need for better tuning of stabilization behaviors that already ex-
ist. Encountering the failure in the above story might well indicate the need to buy
milk more frequently or consistently, even for someone who had a well-tuned set of

habits.

3.3.2. Critic application
Outright failure is not the only reason to be discontented with plans or patterns of

activity-substandard results, inefficiency, or wasteful use of resources can indicate the

need for learning, and possibly the need to learn stabilizing behaviors.
The problem is that inefficiency, for example, is difficult to recognize, and even more

difficult to assign blame for. Depending on the action model and the expressiveness of
a plan representation, it may (or may not) be possible to trace outright failure to the
failure of a particular step or assumed precondition. But it is difficult to detect when a
plan is taking “more time than it should”, and even harder to diagnose what is wrong

and what should be done.
One way that classical planners increased the efficiency of plans was by looking for

certain patterns of steps and precondition relationships in the current versions of plans;
for example, if two different steps relied on the establishment of identical preconditions,

it indicated that the plan might be transformed by establishing the precondition once for
both steps, eliminating one of the establishing steps.

This sort of critic application might be useful for pointing out the need for stabiliza-
tion-rather than indicating a possible transformation to the plan, the critic would
point out a change in the world that would make an improved version of the plan
workable. For example, if a particular plan repeatedly established a particular condition,
the corresponding stabilization might be an action external to the plan that ensured that
the condition was always true. As we will see, FIXPOINT operates in part by means of
something quite like this kind of plan criticism.

118 K.J. Hatnmond e/ al. /Artificial Intelligence 72 (199.5) 305-327

Of course, critic application depends on having a symbolic representation, either of a
proposed plan or of a sequence of actions that had been performed in the past.

3.3.3. Projiling

A standard technique in software optimization is to projile the program-to study the
amount of time the program spends in different function calls, in hopes of finding out
where the bulk of execution time is being spent. This can be done either exhaustively
or statistically (by periodically sampling the stack). Once the profiling has been done,

efforts in optimization can be directed to the parts of the program that are actually
responsible for most of the execution time. This may turn out to be fruitless, since it
may well be that those parts of the program are already as fast as they can be made. But
as a development strategy it makes sense to try to speed up the functions that account
for most of the time.

One problem with critic application as an optimization strategy, or as an indicator
of the need for stabilization, is that it relies on a representation of a sequence of
actions (whether in the future or in the past). This is fine for a linear plan execution
system, which must possess such a representation anyway, but may be restrictive for
more flexible action systems. As the most speculative part of this paper, we would like
to suggest that something like profiling might serve as an initial focusing mechanism

to indicate where stabilization could be useful. Where plan critics might require, for
example, a representation of a sequence of back-and-forth travel steps before suggesting
a transformation to eliminate them, a profiling approach might detect (say, by sampling)
that a large portion of the time spent in pursuit of a certain goal was spent in traveling.
While there would be no associated transformation to suggest, stabilizations that reduced
the need for travel could then be actively sought.

We now abandon these speculations, and turn to the FIXPOINT program, and what
we have learned from it.

4. The FIXPOINT program

FIXPOINT is a computer program (written by Grass) which demonstrates some of the

benefits of stabilization in a simple simulated domain. We make no great claims for it,
either in the completeness with which it embodies what we have talked about or in the

generality of its approach to stabilization. In particular, (as we will see) the stabilization
it performs occupies just one point in the space defined by our earlier taxonomies.

4.1. The domain

The agent in the FLXPOINT program works in a simulated woodshop, and its task
is to construct little wooden boats. This involves several pieces of wood, and a number
of operations using tools such as lathes, band-saws, and so on.

’ The simulation was built on top of Firby and Hanks’ Truckworld simulator

K.J. Hammond et al./Art$cial Intelligence 72 (1995) 305-327 319

The agent inhabits a world made up of six rooms, which contain woodworking
machines, storage bins, and pieces of wood of various shapes and sizes. At any time,
a given piece of wood may be in a machine, in a bin, or just in a room (as though it
were lying on the floor).

The agent has nine basic actions available to it: The agent can move in a particular
direction, to get from one room to another. The agent can grab the first available object
of a given type in a room with one of its hands (i.e. it can pick up a random piece of
wood in a room). With a more specific version of this action, it can also find and pick
up a piece of wood of given dimensions (if any such are in the room). The agent can

drop anything in a given hand, can transfer the contents of a hand to the internals of a
particular machine, and can take an object from a machine (transferring it to a hand).
Similarly, the agent can put objects into specific bins and take them out again. Finally,
the agent can operate the various machines, which transforms or combines the objects
inside the machine in a manner dependent on the type of machine.

These actions take varying amounts of time to execute, and in some cases expand
into multiple actions in execution. For example, execution of the size-specific version
of “grab” involves picking up and examining pieces of wood in a room until one of
the right size is found, and so can take time proportional to the number of objects in a
room.

FIXPOINT’S agent’s job is to use these actions to make as many toy boats as it can.

4.2. Planning and execution in FIXPOINT

FIxpOINT’s agent has a single goal (to make toy boats), which it must repeatedly
pursue over the course of a long-term interaction with its environment. The environment
is different each time the goal is satisfied, largely due to the agent’s own actions: the
agent moves objects around, depletes resources, replenishes resources, and so on.

The agent uses a single (handcrafted) plan to satisfy its goal (see appendix). This
plan is in the form of a sequence of STRJPS operators, augmented with descriptions
of preconditions that are necessary for the subsequent chunk of the plan to execute
successfully. In addition, the agent has the background tasks of ordering more wood
when necessary, and “cleaning up”.

42.1. What l3xF’om-r does
The execution cycle for FIXPOINT is as follows:
(1) If the amount of available wood is insufficient to make a certain minimum

number of boats, then more wood is “ordered”. This means that the ordered
wood will appear after a substantial delay.

(2) If there is sufficient wood to make a boat, then the agent attempts to use its
standard plan to do so. Execution consists of stepping through the plan (which
is a mix of actions and precondition statements). Preconditions are checked, and
when they are false, a STFUPS planner is invoked to create a plan that will make
them true. This “patch plan” is executed first, and then execution returns to the
main plan.

320 K.J. Hrrmmond r/ trl. /Arriftcirrl heiligence 72 (1995) 305-327

(3) After creation of the patch plan, FIXPOINT examines it for evidence that the
patch would have been unnecessary if prior stabilization had been done. In the
current implementation, this can happen in two ways:
l If the patch plan involves moving wood from one room into another where it

is needed, FIXPOINT makes an annotation that wood of that type “should” be

in the room where it was used.
l If the patch plan involves moving wood to a room, then FIXPOINT also makes

an annotation that, in the future, that type of wood should be put in a bin,
since this reduces the physical search necessary to find it and use it.

(4) Finally, whenever ordered wood arrives, FIXPOINT’s agent delivers it to the
appropriate rooms and bins, according to the annotations derived from trying to
use its standard plan.

4.2.2. World models in FIXPOINT

In some sense there is no interesting difference between planning and execution
in FIXPOINT. FIXPOINT maintains an accurate internal model of the current state
of the world, and plans that FIXPOINT constructs based on that model always suc-
ceed.

FIXPOINT spends its time in one of a small number of modes. Either it is executing

a part of its main plan, or it is trying (by means of invoking STRIPS and using the
resulting patch plan) to establish a precondition statement of the main plan, or it is
cleaning up, or it is ordering more wood. In addition FIXPOINT may be analyzing patch
plans to see where wood should be stored.

We are not advocating the assumption of complete world models, nor the use
of STRIPS planners to establish preconditions in plan reuse. If FIXPOINT were
operating exclusively by constructing and then executing plans, then there would
be no need for a simulation (since the execution of plans would give no in-
formation that could not be gleaned from their construction). As it is, though,
FIXPOINT combines construction and execution of very short plans with flexible
reuse of a very long standard plan (in addition to extracurricular activities like
ordering wood). Although the effect of any given action is predictable, the ef-
fect of use of the main plan, or the effect of ordering and restocking, is not
projected by FIXPOINT. We intend the use of short constructed plans to estab-
lish preconditions as a stand-in for improvisation to establish them. The difference-
reduction approach of STRIPS is not a bad stand-in, if the plans produced are very
short.

4.3. An annotated trace

What follows is a set of excerpts from a long trace of the FIXPOINT program at work,
with some explanatory comments.

At the beginning of the trace, FIXPOINT’S agent begins to try to execute its standard
plan for making boats. To negotiate the first part of the plan, the agent must start out in
a particular room with a piece of wood of a particular size in its hand. As it turns out,
the agent is in a different room with nothing in its hand.

K.J. Hammond et al. /Art$icial Intelligence 72 (1995) 305-327 321

Checking precondition ---
(AND (LEFT-SIZE 2 6 ?Z> (LOC ROBOT ROOM2))
Precondition failed. Attempting to replan and patch...

At this point, a conventional STRIPS planner is invoked to create a “patch plan” that
can be run to make the desired initial conditions hold:

Working on: (AND (LEFT-SIZE 2 6 ?Z> (LOC ROBOT ROOM2))
Trying to reduce differences.

Differences =
((~oc ROBOT Root421 (LEFT-SIZE 2 6 ?z>>

[..I
The Plan is:

(LEFT-CRAB ~00~ 2 6 24 (:RBCT))
(MOVE ROOMI ~ooM2)
Executing patch ---
(LEFT-CRAB WOOD 2 6 24 (:RECT))
(MOVE ROOMI RooM2)

As it happens, there is wood of the right type in the current room, but no such wood
in the room that contains the needed machine. So the result of invoking STRIPS is
simply to grab the requisite wood and carry it to the room where it will be used.

After the patch plan is executed successfully, it is examined for optimizations in the
world that could make the preconditions of the main plan easier to establish.

Patch successful, returning to main plan.

Looking at what was needed in patch and planning to
change the environment so the precondition is met

Looking for. . .
Optimization of location...

Location optimizations are:
(ROOM2 WOOD 2 6 24 (:RECT))

Optimization of bins...
Bin optimizations are:

(ROOM2 (1 2 6 24 (:RBCT) WOOD 1))

Essentially, the program examines the patch plan to see whether it involves transport-
ing wood from one room to another. If so, it makes an annotation to itself that wood
of that type “should” be in that room. In addition, an annotation is made that wood of
that type should be placed in a distinguished bin, since it is less time-consuming to get

wood from a known bin than it is to physically search a room for it.
Execution of the main plan proceeds in this way, with precondition statements being

established by creating and executing very short plans. Sometimes the patch plans in-

322 K.J. Hammond et al. /Artificial Intelligence 72 (1995) 305-327

volve nothing but moving the agent to an appropriate room, and (since the program has
no knowledge of stabilizations that can ensure that the agent is always in a particular
location) no annotations are made. Eventually, after about seventeen minutes of sim-
ulated time, with the help of five machines in different rooms, FIXPOINT’S agent has
constructed its first boat. In addition, it has made annotations about which rooms and

bins should contain different types of wood:

Wood-room allocation:

(ROOM:! WOOD 2 6 24 (:RECT))
(~00~2 WOOD 2 4 24 (:RECT))
(~00~2 WOOD 0.5 0.5 36 (:D~wEL))
(ROOM2 WOOD 0.4 0.4 36 (:DOWEL))
(~00~1 wool 0.5 0.5 4 (:D~wEL))
(ROOM1 WOOD 1 4 6 (:RECT (:HOLE :MEDIUM 0.5)

(:HOLE :LARGE 0.5)))
(ROOMI ~00~ 0.4 0.4 3 (ZDOWEL))
(ROOM1 WOOD 2 6 10 (:SLANTED :POINTED :RECT))

Wood-bin allocation:
(ROOMI (1 I wool 0.5 0.5 4 (:D~WEL))

(2 I WOOD 14 6 (:~CT (:HOLE :MEDI~M 0.5)
(ZHOLE :LARGE 0.5)))

(3 I WOOD 0.4 0.4 3 (:DOWEL))
(4 1 WOOD 2 6 IO (:SLANTED :POINTF.D :RECT)))

(ROOM2 (1 1 WOOD 2 6 24 (:RECT))
(2 I WOOD 2 4 24 (:RECT))
(3 I ~00~ 0.5 0.5 36 (:D~wEL))
(4 1 WOOD 0.4 0.4 36 (:DOWEL)))

After completing its first boat, FIXPOINT’S agent has depleted its stock of wood
enough that it needs to order more. After ordering, FIXPOINT enters a period of “clean-

up” (removing scrap wood, and putting useful pieces of wood into appropriate bins
according to the annotations it has made). Then, when wood has arrived, the agent

distributes the wood to appropriate rooms and bins.

+++ Alarms have fired:
((2 9 19 49)
(ORDER-ARRIVED
(3 (1 (:RECT) 2 4 24)

(1 (:RECT) 2 6 24)
(3 (:D~wEL) 0.5 0.5 36)
(3 (:DOWEL) 0.4 0.4 36))))

(1 (:RECT) 2 4 24). . .is arriving. [. .I

After the wood has been distributed, FIXPOINT begins to use its main plan again to
build a second boat. Although the main plan is the same as it was when the first boat

K.J. Hammond et al. /Art$cial Intelligence 72 (1995) 305-327 323

was made, it is being used in slightly different circumstances: the agent happens to be
in a different location, and wood has been stored according to the annotations made on
the first use of the plan.

Checking precondition ---

(AND (LEFT-SIZE 2 6 ?z> (LOC ROBOT ~00~2))
Precondition failed. Attempting to replan and patch...

Working on: (AND (LEFT-SIZE 2 6 ?Z> (LOC ROBOT ROOM2))
Trying to reduce differences.
Differences =

((LEFT-SIZE 2 6 ?z>)

The agent is in the right room, but is not holding wood of the right type. Because

the restocking of wood was done using the annotations made during the first use of the
plan, there is now wood of the correct dimensions stored in a bin in the room it will be
used in. The “patch plan" created in this case is simply to take a piece of wood from

the bin.

The Plan is:

(LEFT-GET-FROM-BIN BIN5 1)
Executing patch ---
(LEFT-GET-FROM-BIN BIN5 1)

[. .I
Patch successful, returning to main plan.
**~

Looking at what was needed in pate'- and pla ing to
change the environment so the preco-,*_ition i 2"
****************************-8 c*******************

Looking for...
Optimization of location...
No location optimizations.

Optimization of bins...
No bin storage optimizations.

In this way, FIXPOINTS agent constructs the second boat using the same plan as the

first time around, but needs to perform fewer actions to make the various parts of the
plan executable. Most of these actions that are omitted the second time involve either
travel between rooms or search within a room for an object.

As a result, while it takes nearly eighteen minutes to construct the first boat (17:44),
the second boat takes less than seventeen minutes (16:50). This is a small improvement,
but is directly attributable to the stabilization performed. It is also larger than it seems,
since more time is spent physically searching for wood in the second execution, simply
because there is more wood in the rooms after the restocking.

324 K.J. Hammond et (11. /Art$ciul Intelligence 72 (1995) 305-327

4.4. Discussion

Now that we have discussed FIXPOINT, and have presented our taxonomy of stabilities
and stabilizing behaviors, we are finally in a position to treat the first in terms of the

second.

4.4.1. npes of stabilization in FIXPOINT

FIXPOINT has an inflexible commitment to stability of plan use; i.e. it has no choice
but to construct boats using its standard plan. In the service of plan reuse, FIXPOINT
enforces stability of location-by critiquing its patch plans, it makes annotations that
enable it to ensure that the preconditions of its standard plans are either true or easily
achieved. FIXPOINT tracks the use of resources internally, and periodically ensures
their availability and distribution by use of a standard clean-up plan (ordering and
distribution). FIXPOINT also enforces stability of schedule by tuning the minimum
quantities of wood in stock that it will tolerate before ordering more (this capability

was not covered in the trace). Finally, FIXPOINT displays some learning of stabilization
of the location of objects: the annotations made during execution of the main plan
persist, and are used during ordering. As a result, FIXPOINT decreases the total time
necessary for execution of its standard plan.

4.4.2. What changes in FIXPOINT?
One possible objection the reader might have at this point is that FIXPOINT does not

really change its environment-instead it changes its plans (i.e. learns), and any perfor-
mance improvement should be viewed as the result of learning rather than stabilization,
with change in the world a mere side-effect.

This is true in a sense, but the distinction is a subtle one. Any type of stability that
needs to be actively maintained by an agent (i.e., that is not “one-time change” in our
taxonomy) can be viewed as the direct product of the agent’s plans and intentions.
Improvement at stabilization, then, is a type of learning, and (in the long run) the
changes in the world are simply the result of that learning.

The distinction (if one can be made) between improvement through stabilization and
improvement through more straightforward learning depends in part on the way in which
we segment the behavior we are trying to analyze. As an example of this, imagine that
a person who cooks frequently learns grocery-shopping practices that ensure that the
cupboard is always fully stocked with the spices typically used in that cooking. As a
result, there may be fewer cooking failures, and in some sense we would want to say
that the person had learned to be a better cook. To the extent that shopping is viewed as
a separate activity from cooking, though, we might prefer to say that the same person
now cooks in a better kitchen. The latter view may be preferable if the main connections
between the activities are via this relatively stable environment that they both impact,
rather than through internal representations.

4.4.3. Shortcomings and future work

The program trace we presented illustrates a particular type of stability, maintained in
a particular way. In some sense, the program falls into a particular subcategory of each

K.J. Hammond et al./Artificial Intelligence 72 (1995) 305-327 325

of the taxonomies presented in Section 3, rather than demonstrating them all at once.
The program is mainly intended to be illustrative of the idea of stabilization; we

make no particular other claims for it, and don’t want to be held to its representational
commitments. Two shortcomings, however, are interesting to address, if only because
they suggest directions for future work.

First of all, although the particular stabilization instances that FIXPOINT learns to
enforce are not built into the program, the methods for detecting the need for them and
the methods for enforcing those particular stabilizations are hand-coded. One direction

for future research is to try to generalize these methods so that more of the work of
making stabilization decisions can be made by the program. This work is underway in
the RUNNER project [71.

Secondly, as we have said, there are no interesting differences between the (symbolic)
internal model that FIXPOINT has of its world, and the (symbolic) simulation that is
that world. In addition to the acknowledged implausibility of such perfect world models,
the fact that FIXPOINT has such a model decreases the utility of stabilizing the location
of objects. An extension of this implementation would be to have the program more
thoroughly substitute learned stabilization policies for its models; in other words, have
the program’s knowledge of the world depend less on tracking it with a world model,
and more on the program’s knowledge of what the world should be like (due to its own

efforts) .

5. conclusion‘s

Agents involved in long-term interactions with their environments shape those envi-
ronments, in addition to being shaped by them. In this paper we’ve presented the idea

of stabilization, discussed its use in the analysis and design of agents, and categorized
some of the different forms it can take. Finally, we presented FIXPOINT, a program that
implements many of the ideas presented here, and showed how it achieves performance
improvements by actively stabilizing its environment.

Acknowledgments

We thank Mark Roller for his work with Josh Grass on the implementation of FIX-
POINT. We also thank Jim Firby for asking us questions that led us to thinking about
the issues in Section 2, and an anonymous reviewer for detailed and helpful comments.
Finally, we thank Phil Agre for not letting us get away with not writing this.

Appendix A. Plan representation

Both to give a sense of what FIXPOINT’S plan representation is like, and as an aid in
understanding the trace, we reproduce the first few statements of the standard plan used
by FIXPOINT.

326 K.J. Hmunond et trl. /Arri$citrl lntelli,qencr 72 (1995) 305-327

'((precondition (and (left-size 2 6 ?z>

(lot robot room2>>>

(put-in-machine 'left)

(operate-machine '(:z IO>>

(get-from-machine 'left 'used)

(get-from-machine 'right 'scrap)

(drop 'right)

(precondition (and (left-size 2 6 10)

(lot robot room5>>>

(put-in-machine 'left)

(operate-machine '(:pointed))

(get-from-machine 'left 'used)

(precondition (and (left-shape (:pointed :rect>>

(left-size 2 6 10)

(lot robot room3)))

(put-in-machine 'left)

(operate-machine '(:slanted))

(get-from-machine 'left 'used)

(precondition (lot robot rooml))

(drop 'left)

(precondition (and (left-size 2 4 ?z> (lot robot room2>>>

(put-in-machine 'left)

(operate-machine '(:x 1))

(get-from-machine 'left 'scrap)

(drop 'left)

(operate-machine '(:z 6))

(get-from-machine 'left 'used)

(get-from-machine 'right 'scrap)

(drop 'right)

. >

References

1 I I P.E. Agre. The dynamic structure of everyday life. Ph.D. Thesis, Technical Report 1085, MIT Artificial

Intelligence Laboratory, Cambridge, MA (1988).

121 P.E. Agre and D. Chapman, What are plans for? in: Designing Autononrous Agenfs: From Biology to

Engineering and Back (MIT Press, Cambridge, MA, 199 I)
I 3 1 D. Chapman, On choosing domains for agents, Position paper prepared for the Workshop on Benchmarks

and Metrics, NASA Ames (1990).

(4 1 D. Chapman, Vision. Instruction, md Action (MIT Press, Cambridge, MA, I99 1).

15] K.J. Hammond. Case-Bused Planing: Viewing Planning as a Memory Task, Perspectives in Artificial

Intelligence 1 (Academic Press. San Diego. CA. 1989).

16 1 K.J. Hammond, T.M. Converseand C. Martin, Integrating planning and acting in a case-based framework,

in: Proceedings AAAI-90, Boston, MA (1990).

171 K.J. Hammond, M. Marks and T.M. Converse, Planning in an open world: a pluralistic approach, in:

Proceedings I Ith Annunl Meeting of the Cognitive Science Society, Ann Arbor, MI (1989).

18 1 D. Kirsh, The intelligent use of space, Art$ lntell. 73 (1995), to appear.

K.J. Hammond et al./Art$cial Intelligence 72 (1995) 305-327 327

[91 J. Lave, Cognition in Practice (Cambridge University Press, New York, 1988).

[101 D. McDermott, Planning and acting, Cqn. Sci. 2 (1978) 71-109.

1 1 I] S. Minton, Learning effective search-control knowledge: an explanation-based approach, Technical Report

133, Carnegie-Mellon University, Department of Computer Science, Pittsburgh, PA (1988).

