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Abstract In this paper we investigate the unsteady boundary-layer flow of an incompressible
Powell-Eyring nanofluid over a shrinking surface. The effects of heat generation and thermal radi-
ation on the fluid flow are taken into account. Numerical solutions of the nonlinear differential
equations that describe the transport processes are obtained using a multi-domain bivariate spectral
quasilinearization method. This innovative technique involves coupling bivariate Lagrange interpo-
lation with quasilinearization. The solutions of the resulting system of equations are then obtained
in a piecewise manner in a sequence of multiple intervals using the Chebyshev spectral collocation

method. A parametric study shows how various parameters influence the flow and heat transfer
processes. The validation of the results, and the method used here, has been achieved through a
comparison of the current results with previously published results for selected parameter values.
In general, an excellent agreement is observed. The results from this study show that the fluid
parameters ¢ and 0 reduce the flow velocity and the momentum boundary-layer thickness. The heat
generation and thermal radiation parameters are found to enhance both the temperature and ther-

mal boundary-layer thicknesses.

© 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of flow and transport processes in non-Newtonian
fluids has gained much research attention in recent years due
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to the important use of various such fluids in industry, biolog-
ical processes and chemical engineering. A few examples of
such applications include in the manufacture of optical fibers
and plastic polymers, clay coating and in cosmetic products.
Due to the wide diversity of non-Newtonian fluids, the impor-
tant rheological characteristics of such flows cannot be
addressed by a single constitutive relation between the shear
stress and the shear rate. Significant contributions to the study
of non-Newtonian fluid models with a variety of rheological
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properties have been made by Harris [1] and Bird et al. [2]. An
interesting non-Newtonian fluid is the Powell-Eyring fluid,
which, although very complex, has certain advantages over
other non-Newtonian fluid models, Powell and Eyring [3] in
some respects. These include the fact that the model is derived
from kinetic theory of liquids instead of the empirical relation,
and that the Powell-Eyring fluid model reduces to the Newto-
nian fluid for low and high shear rates. A common example of
an Powell-Eyring fluid is human blood. Due to the importance
of Powell-Eyring fluids, many researchers have studied differ-
ent physical properties of Powell-Eyring fluids. These include
the study of Malik et al. [4] who investigated mixed convection
in an MHD Eyring-Powell nanofluid over a stretching sheet.
They showed that the fluid was accelerated by increasing the
Eyring-Powell parameter and the mixed convection parameter.
Hayat et al. [5] investigated radiation effects on the flow of a
Powell-Eyring fluid past an unsteady inclined stretching sheet
with a non-uniform heat source/sink. They showed that the
velocity and temperature profiles generally decrease with the
unsteadiness parameter. An increase in the radiation parame-
ter was shown to increase the heat flux from the plate, which
in turn enhanced the fluid velocity and temperature.

The unsteady incompressible Eyring-Powell flow in a pipe
with porous walls was investigated by Zaman et al. [6] using
the homotopy analysis method. Series of solutions of an
unsteady Eyring Powell nanofluid flow about a rotating cone
were obtained by Nadeem and Saleem [7]. In their investiga-
tion, they observed that the nano particle volume fraction
decreased with the particle Brownian motion and the Lewis
number. Jalil et al. [8] found self-similar solutions for flow
and heat transfer in an Powell-Eyring fluid flow over a moving
surface with a variable surface temperature. Rosca and Pop [9]
studied the boundary-layer flow and heat transfer in a Powell-
Eyring fluid over a shrinking surface. In their study, numerical
results were obtained using the Matlab inbuilt function bvp4c.
They found dual solutions for negative values of the stretching
parameter and stability analysis showed that the first (upper
branch) solution was stable and physically realizable, while
the second (lower branch) solution is not stable and, therefore,
not physically possible. Other Powell-Eyring studies were car-
ried out by Hayat et al. [10,11], Asmat et al. [12], Khan and
Sultan [13], Nadeem and Saleem [14].

In the past few years, the study of the flow, and the thermo-
physical properties of nanofluids has become a topic of major
interest due to the huge potential for the use of these fluids as
efficient heat transfer fluids, and in some biomedical applica-
tions. The concept of a nanofluid was first proposed by Chol
[15] when he showed that by adding a small quantity of
nanoparticles to conventional heat transfer liquids, the thermal
conductivity of the fluid improved by approximately a factor
of two. A non-homogeneous two component equation for
nanofluids was developed by Buongiorno [16]. He introduced
seven slip mechanisms between nanoparticles and the base
fluid. He took into account particle Brownian motion and
thermophoresis and showed that Brownian motion and ther-
mophoresis have significant influence on forced convection in
nanofluids. Rohni et al. [17] used the shooting method to find
a numerical solution of the equations for an unsteady shrink-
ing surface with wall mass suction using the nanofluid model
proposed by Buongiorno [16]. Zaimi et al. [18] used the Buon-
giorno model to investigate unsteady flow due to a contracting
cylinder. The equations were solved using the shooting

method. They obtained dual solutions for a certain range of
the unsteadiness parameter and also observed that the skin
friction coefficient, the Nusselt number and the Sherwood
number decreased with increasing values of the unsteadiness
parameter. Multiple solutions of MHD boundary layer flow
and heat transfer behavior of nanofluids induced by a
power-law stretching/shrinking permeable sheet with viscous
dissipation were presented by Dhanai et al. [19] using the
shooting method. They showed the existence of dual solutions
for different flow parameters. Further, they found that viscous
dissipation is important whereas the Brownian motion has
negligible effect on the rate of heat transfer. Recently, Haroun
et al. [20] used the spectral relaxation method to solve the
equations that model the unsteady MHD mixed convection
in a nanofluid due to a stretching or shrinking surface with suc-
tionand/or injection. Their results showed that the skin friction
factor increases with both an increase in the nanoparticle vol-
ume fraction and the stretching rate, and that an increase in
the nanoparticle volume fraction leads to a reduction in the
wall mass transfer rate. Numerical solutions of heat and mass
transfer of nanofluid through an impulsively stretching vertical
surface were presented by Haroun et al. [21]. Other recent
studies of nanofluid flows include those by Haroun et al.
[22], Dalir et al. [23], Abolbashari et al. [24], Heidary et al.
[25], Mansur et al. [26], Haq et al. [27], Mehmood et al. [28],
Sher Akbar et al. [29-32].

The study of unsteady Powell-Eyring Nanofluid has not
been given much attention so far. The aim of this study was
to investigate the flow of an unsteady Powell-Eyring nanofluid
over a shrinking sheet with heat generation and thermal radi-
ation effects. The traditional model of Jalil et al. [§] and Rosca
and Pop [9] is revised to incorporate the effects of thermal radi-
ation, heat generation, thermophoresis and Brownian motion.
The equations are solved numerically using a multi-domain or
multi-stage bivariate spectral quasilinearization method (MD-
BSQLM). Examples of multi-interval methods that have been
developed to solve IVPs include the piecewise spectral homo-
topy analysis [33,34], the piecewise homotopy perturbation
method [35], the multi-stage differential transformation
method [36,37], multistage Adomian decomposition method
[38,39], the multi-stage quasilinearization method [40,41],
and multistage spectral relaxation method [42,43]. The MD-
BSQLM is a novel technique that has not been used to solve
systems of nonlinear partial differential equations. In this
investigation, we extend the use of the method to systems of
nonlinear partial differential equations. The multi-domain
bivariate spectral quasilinearization method is based on lin-
earizing the governing nonlinear system of PDEs using the
Newton—Raphson based quasilinearization method of Bellman
and Kalaba [47] and then integrating the resulting equation in
multiple sub-intervals using the Chebyshev spectral collocation
method with Lagrange interpolation polynomials as basis
functions. The Chebyshev spectral collocation method with
the Lagrange interpolation polynomials is applied on the lin-
earized nonlinear systems of partial differential equations inde-
pendently in both space and time direction. These useful
features of the MD-BSQLM enable the approach to yield a
very accurate solution and lead to significant computational
time saving. The approach has a much better region of conver-
gence for the approximate solution when compared to other
Chebyshev spectral collocation based methods such as
bivariate spectral homotopy analysis method [44], bivariate
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Chebyshev spectral collocation quasilinearization method [45],
bivariate spectral relaxation method [46], among others. These
Chebyshev spectral collocation based methods remain to be
tested on a wider range of problems that model real phenom-
ena in engineering and science. The new approach yields accu-
rate solutions with significant computational time savings. In
order to demonstrate the accuracy of the method, a compar-
ison with previously published results of Jalil et al. [8], Rosca
and Pop [9] and Bachok et al. [48] has been made and our
results are found to be in an excellent agreement.

2. Mathematical formulation

We consider an unsteady, two-dimensional flow of an incom-
pressible Powell-Eyring nanofluid over a permeable surface
coinciding with the axis y = 0. The flow is confined to y > 0,
where y is measured in the normal direction to the shrinking
surface. The constant mass flux velocity is vy with vy < 0 for
suction, and vy > 0 for injection or withdrawal of the fluid.
The surface temperature at the plate is 7,,(x) and in the ambi-
ent fluid this is 7. The ambient concentration is C,. The flow
geometry is shown in Fig. 1.

Under these conditions, the dimensionless Powell-Eyring
nanofluid boundary layer equations are as follows (see Jalil
et al. [8], Rosca and Pop [9]):

oo o
%—i—u%%—vg—;—ue%—k(l+£)gi;;—66(g—z>2(%), (2)
%-Htg—zg-l—vg—j—z—;_%ﬂ—i—%yﬁ— T.)

%—f—r—ug—g—b—v(g—j:%% ?—:22—;, (4)

subject to the initial and boundary conditions:

1<0: v=u=0, T=T,(x1), C=C,(x,1), forany
X,y
t=0: v=sv(x,1), u=lu,x1), T=T,(x1),
oC Dy oT
Dpg—+——=0 t =0
oy TToay 0 D
u=u(x,t)y, T— Ty, C—Cyx, as y— oo,
(5)

where ¢ is the time, # and v are the velocity components along
x- and y-axis, T and C are the fluid temperature and concen-
tration respectively, ¢ and 6 are Powell-Eyring fluid parame-
ters, o, is the thermal diffusivity, p is the density of the
fluid, ¢ is the specific heat at constant pressure, 0y is the heat

generation constant, ¢, is the radiation heat flux, T = % is the

ratio of the heat capacity of the nanoparticle material and the
heat capacity of the fluid (see Oyelakin et al. [49]), Dp is the
Brownian diffusion coefficient, D is the thermophoresis diffu-
sion coefficient, A is the dimensionless stretching/shrinking
parameter with 2 > 0 for a stretching surface and 4 < 0 for a
shrinking surface, and s is the dimensionless mass flux param-

Boundary layer

—y / U

Fig. 1 Physical model of the flow.

eter with s > 0 for suction and s < 0 for injection respectively.
These are defined as follows:

. 1 5= a PR Svo(aL)l/z
CopvBCGT T L T d a\v '

where ¢ and 6 are Powell-Eyring fluid parameters, C; and f§ are
the material parameters, p is the density, v is the kinematic vis-
cosity and L is the length characteristics of the stretching/
shrinking surface. Following Rosca and Pop [9], it is assumed
that u,(x, 1), u.(x, ) and v,(x,7) have the following forms:

vo(x, 1) = x5, (6)
The following similarity variables are then introduced:
¥=x"n,¢), &=x7",

- TﬁTao
9(C7’1):ﬁ7

w(x, 1) = X3, ue(x, 1) = x'7,

n=x
o Ci Coc
P (&m) TC -y ()

Vs

where  is the stream function such that

0 0
u= a—f and v=— a—li
Substituting Eq. (6) into Egs. (2)—(4), gives the following set
of partial differential equations:

(4" + 3"+ 50 =) — (" = 2
_gé[fg_f;_‘ ” gﬂ (®)

%(1 +NR)0”+§<;0’ L Hel + N0+ N0 = gz
_gé[f'%z—O'%], o

The boundary condition (5) becomes:
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0,8 =1, £(0,8) =4 [f(o,8) =1,
0(0,8) =1, 0(c0,&) =0, (11)
Nbd)/(ov 5) + Nr9 ( )6 ) 0, ¢(007 é) =0.

In the above equations, prime denotes differentiation with
respect to 1, f,, = —3s/2 is the constant suction parameter
(f,, > 0) or injection (f;, < 0). Other non-dimensional parame-
ters appearing in Eqgs. (8)—(11) are Pr which is the Prandtl
number, Nz is the thermal radiation parameter, N, is the
Brownian motion parameter, N, is the thermophoresis param-
eter, and He is the heat generation parameter. These parame-
ters are mathematically defined as follows:

PG N 166° T2,

Pr= Ny = TDB(CH' - Coo)a

7 DT QO o v
N,*TT—OO(T‘W—TOC), He = W, Sch—B, (12)

3. Method of solution

In this section, we give a brief description of how the multi-
domain (or piecewise or multi-stage) bivariate spectral quasi-
linearization method (MD-BSQLM) is being used to solve
Egs. (8)-(10). The method is applied only in the ¢ direction.
In the MD-BSQLM, we first linearize Eqgs. (8)—(10) using the
quasilinearization (QLM) of Bellman and Kalaba [47]. Apply-
ing the QLM on (8)-(10) gives the following:

aOJ'(n7 ).f1+l + a r( )f+1 +a2r(’77 )f+1 + a?r( )f+1

+an 0%t s asin 0%t = R 0,0, (13)

bo (1, 5)9,“ + by,(1, )9:+1 + b2 (1, 8)0,4
a0, o
+ b3 ;( ) agl + b4,r(7/’7 C)-}().’+1 + bir(’/]v é) r+1
f+l

+ b6;(7] é) + b7_,(1’], £)¢:+1 = Rz.,:(i’], 6)7 (14)
('0'( 6)¢;+1 + Clr(yh )(th»l + ('2'(’7 6)¢r+1

0 ! 9
2'51 + C4)( 1, é)f;-+1 + Cs.r(rh C) rl

0 /1 2
gjl + C7r( 5)0,+1 = R3,r(’17§)7 (15)

f;'+] (Oa ‘f) :./I;m .f;+l (07 é) = )”a f;/+1 (007 ‘f) = 17
0,1(0,8) =1, 0,11(00,) = 0,
Nopy.1(0,8) + N6, (0,€) =0,

where

+ cS,r (’77 C)

+ Cﬁ.r(na é)

¢r+l(ooaé) :07 (16)
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2
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b3>,A—§Plffr—Pr, b4T,A—§Pl’€8—é, b51,»—3PV0,,
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Cor = 17 7SC/;‘ f Gy = 07
2
ey = gScffr’ —Sc, ¢, = —S éa(g
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No, let ¢ € Q, where Q € [0, T] and the domain Q is decom-
posed into p non-overlapping intervals as follows:

Qm = [émfh 5111]7 C,mfl < 51117 &:0 = 07 5p = T7
m:1727'“7p' (18)

r

R3,/’ = §

The PDEs are solved independently at each of the p sub-
intervals. Once the solution at the first sub-interval has been
computed, the new solutions at the subsequent mith interval
are computed using the solution at the right hand boundary
of the m — 1th interval as an initial solution. In the mth sub-
interval, we solve the following:

() 1(m) 1(m) ( ) )aff(n;)
I+ df +a a5
9, n
+ a5 {T =R}, (19)
m m m) pl(m 001 m
bé r)e/r/il +b1))0r+l) + b7r 01+l +b"47) 8gl +b( )fr
)0
b+ b L g = R, (20)
m) 11(m) 1(m) m) (m) a(]ﬁiﬁ{ (m) p#(m)
¢r+1 +c lr¢r+1 ¢r+1 3,r aé +c4,r‘ r+1
fm
bl e Lty e = R, C1)

subject to the boundary conditions

f,i'”I( &) =L S0, =2, £ (00,8 =1,

qub,ﬁ( )+N,0,+1 0,8)=0, ¢ (00, &) =0.

A suitable initial condition to begin the piecewise iteration
scheme in the first sub-interval is the one that satisfies the
boundary conditions (15). Initial condition at the subsequent
sub-intervals is given by the continuity conditions:

.f(M) ('77 fm—l) :f'(m_l) (7/’7 6m—1)>
9("1)(717 ém—l) = 6(,”7])(’77 ém—] )7 (23)
¢(W‘) (’7’ 6/7771) = d)(WHl) (177 6/7171 )
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The physical domains in 5 and & are first transformed to the
computational domain (x,¢) € [-1,1] x [-1,1] at each sub-
interval using the linear transformation:

1, 1
— — _ t —
2 (Cm ém 1) + 2 (
where Lx is a number large enough to approximate conditions
at infinity in 5. The collocation points are the Chebyshev-
Gauss-Lobatto nodes defined in [50,51] by

i nj .
X; = COS (Fx),z,-:cos (ﬁ,)’ i=0,1,..., N,

j=0,1,....N, xe[-1,1], t€[-1,1], (25)

7]:7(14“)(,'), é: ém+€ymfl)7 (24)

where (N, + 1) and (N, + 1) are the total number of collocation
points in 77- and ¢-directions respectively. Suppose that the solu-
tions £, 0 and ¢ can be approximated at each sub-interval by a
bivariate Lagrange interpolation polynomial of the form:

Ny N,

S0, m F (o 0) = N F (3 ) Ly(x) Ly (1)
p=0 ¢=0
Ne N
0" (1,6) = O (x,0) =D Y 0" (1) Ly ()Ly(1)  (26)
p=0 ¢=0
Ny N,
¢ (n,) = O (x, 1) = O (x,, 1) Ly(X) Ly (1),
p=0 ¢=0

where the functions L,(x) and L,(¢) are the Lagrange cardinal
polynomials defined as

Ny X — X Nt — I
Lx)=]] prm— L(n=11 P (27)
o o
with
0 ifiktk 0 ifj<k
L[,(Xk) = 5,-/\, = { 1 lf P k7 Lq(tk) = 51-/( = { | lf] —

The first spatial derivatives of £, 0, and ¢ with respect to g
at the Chebyshev-Gauss-Lobatto points (x;, ;) for
i=0,1,2,..., N, are evaluated as follows:

ar Al
f< xl7 ] Z ZF(W ‘Cp7 q

ZF (i 1)

p=0 ¢=0
dLy(x) _ <" ( 2 ) ( 2 ) SE (m)
X = Di,F" (x,,1;) = (— |DF") = DF",
dx p; L) " r L) /
a0 N N dL,(x)
(xi, 17) = 0" (x,, 1) 5= Ly (1)
a J e ; P q dx VAN
N N
- m dL,(X,‘) - 2
:Z@( )(xp,lj) ]dx = Z(L )D,p(a (xp, )
p=0 p=0
- (%)pe! - e
Ly ’
ad)(m) Ny N; " dL x
8—(351'71‘./’) :Z Z(D( )(’Cp’[q) ol )Lp(/)
n p=0 ¢=0
Ny Ny
- m dL ()C,) - 2 m
=3 0y ) Z(L) B, 0" (x,,1)
p=0 p=0
2\
= (f) Do = DO", (28)

where D = L,D/2 is the standard first derivative Chebyshev
differentiation matrix of size (N,+1)x (N, +1) as
defined in Trefethen [50]. The vectors F;"'), (');"1), (I)E'") are
defined as

F/('m) = [F(’?m é/’)v F(nh éj) : F(”Nv\,v é/)] Ta
Q;r”) = [®(’707 éj)a @(1’]] ) é/) : ®(7’N\ ) é/)} T7
" = [@(n, &), O(n1, &) - Py, &)

and the superscript T here denotes matrix transpose. The nth
order derivative of f; 6 and ¢ with respect to n are approxi-
mated using the matrix product as

)
oo

(m)

O (et = D) 29)
1 (m)

a}acf]n (Y” ) D(’l)q)(’”

The spatial derivatives of f, 0 and ¢ are evaluated at the
Chebyshev-Gauss-Lobatto points (x;,¢;) for j=0,1,2,..., N,
as

a F(m

N dL,(t;
‘C,, . Z ZF(VM ’Cp7 t[ ) 251/)

p=0 ¢=0
m ) 2 g m
_ZF( (xi,2 q dE Z ECE d/q}?( )(xl-,tq)
N, ) .
:zgf?a%WZZ%w»
- m m— 4=0

39(’“ S ) dLy()
S =35 S0

p=0 ¢=0

N, N,
- m de (t) - 2 7 m
= E ®( )(xh [q) c;’t s E (ém — m l)d/-!/®( )(X[, [!/)

m 1) @(m Zd q@m
Ny d .
20 ) = 35 D11 o) L)

p=0 ¢=0

S dL, (1) - 2
=3 0, oL 22(5 2 )0 )
q70 m nm—

q=0
= dj @ = "d; 0, 30
-3 (e e - 3 30)
where c;’j‘q = *”’T’*‘djw 7,q=0,1,2, N, are the entries of the
standard first order Chebyshev differentiation matrix in the
mth subinterval. Substituting Eqgs. (28)-(30) into Egs. (19)
(21), we have:

q=0

(a0 + 2D D+l R, + a2 S, DL,
q=0

m) Zd Fﬁlmf+l = 1",7)” (31)
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q.r+1

Ny
[bg’?Dz +b"'D + b ] 0", +b" Zd,.[,@‘"’)

|:b(m D+ bSH; :| fr,”+1 m) Zd/ qun:+1

+ [bfp]@f, = RY, (32)

Jir+

m) 2 m m m m)
{cgr D +C5J)D+C;’r:| §1+1 +c?r Z £1r+1

[c4"f)D +C } ,’/"+>1 + ¢, r) Zd]leqn:ll
+ [elvD?|Op), = RE. (33)

Noting that the solution at the time level j = N, of each
sub-interval is given by the solution at the previous level,
and taking i and j as dummy indices, Eqgs. (31)-(33) can be
written as

{30",1 D3 + a(m D2 + aZm)D + a(m)i| F (m)

ir+1

"‘34”; ZdllDF/’ZH +a5, Zd F/’ZH

= R(IWIIY - 4";7)511 ’V/DFN g4l T 35,)‘1: v F M r+17 (34)
{bo"; D2 +b"’D + b!" }@f’,ﬁl b Zd 0,
+ [biD b b Zd Fi
+ [p/p] o, = R, - b O, W
(35)

{cg": D’ + cl D+ c21 :|(ny;]+l + c%z Zd (I)/(Vznﬂ
N1
D e [ EL el Y dFy
=0
+ D0, = RY) — <V diwOF) ., — cdin .
(36)
In a more compact format, Eqs. (34)-(36) can be written as
N1 .
Ag’,)lFE,’:il (m Zd,,DF,',”H +a (m) Zdé/‘F/('Til + Agl,)Z(Df'JJ)rl
J=0 J=0

AL, =B, (37)

Ni—1
AL b)) Zd FL o+ ALO b Y a0,

A<’><I>,‘?’ﬂ— s (38)
O pim ) 0 @ 1 Al @™
A31 ir+l T Cor Zd F11+1+A32®1r+1 33(I)i,l'+1
+c3r Zd (DETH = wn:)n (39)

where

Ay =al"D’ +a"D* +al"D+al”, AV
Az 1= bi"i D+ bsnpl)v A bon: D’ + b(m

=0 A, =0
B AL=bED

A( 31— 4’7 D+c 5r ) A(ziz = 7”,1 D’, A(l E)m D2+clz D,+c 2’7;1
B =R, —al dnDFY —aldnFy

o =R b O b A FY

o =R — e O — e dinF

The boundary conditions given in Eq. (22) when evaluated
at the Chebyshev-Gauss-Lobatto collocation points give the
following:

Ny
L v &) = fr S Dy f (NG &) = 2
p=0
ZDW 1 (M, ) =1,
6“”) (n &) =1, 0" (n,&) =0
r+1 Nyo 7 r+1\"10>» )
X,
N, ZDV\P¢1+1(N\7£ +NT ZDNMJ ITI(N’H&)
p=0 p=0
¢\ (19, &) = 0. (40)

4. Results and discussion

The systems of nonlinear partial differential Egs. (8)—(10), sub-
ject to the boundary conditions (11) are solved numerically
using a multi-domain (or piecewise or multi-stage) bivariate
spectral quasilinearization method. Results are presented for
the skin friction coefficient and Nusselt number for different
physical parameters that are of interest to the flow model.
To ascertain the accuracy of the computed numerical results,
comparison is made with the results of Jalil et al. [§], Rosca
and Pop [9] and Bachok et al. [48]. The comparison is shown
in Table 1 where the results are seen to be in very good agree-
ment. This shows the reliability and accuracy of the numerical
approach in this paper.

Fig. 2 shows the effect of the suction parameter f,, > 0 for
both cases 41> 1 and A< 1. It can be observed that when
/> 1, both the velocity and the momentum boundary layer
thicknesses decrease with an increase in the suction parameter
while for A < 1, the velocity profiles increase. An increase in
the values of the suction parameter leads to a decrease in the
boundary layer thickness. This could be attributed to the fact
that when the fluid is removed from the system due to suction,
the momentum boundary layer thickness reduces. These find-
ings are consistent with those of Jalil et al. [8] in a related ear-
lier investigation.

Fig. 3 illustrates the effect of the injection parameter f,, < 0
for both A > 1 and 4 < 1. It can be seen that both the velocity
and the momentum boundary-layer thicknesses decrease with
an increase in the suction parameter when 1 > 1 while for
A < 1, the velocity profiles are enhanced. An increase in the
suction parameter leads to a decrease in the boundary-layer
thickness. These findings are consistent with those of Jalil
et al. [8].
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Table 1

values of f,, when Pr=1, e =0 = He = Nr = £ =0 and A = 0.5 in the absence of N, and N,.

Comparison of the MD-BSQLM approximate solutions of /*(0, ), and —0'(0, &), against those of Refs. [8,9,48] for different

S 1"(&0) =0'(¢,0)

Present Ref. [8] Ref. [9] Ref. [48] Present Ref. [8] Ref. [9] Ref. [48]
2 0.9251 0.9251 0.9250 0.9251 1.6036 1.6036 1.6035 1.6036
4 1.5030 1.5030 1.5029 1.5030 2.8333 2.8330 2.8330 2.8330
6 2.1233 2.1233 2.1233 2.1233 4.1177 4.1177 4.1177 4.1177
8 2.7627 2.7626 2.7626 2.7627 5.4238 5.4238 5.4238 5.4238
10 3.4116 3.4116 3.4116 3.4116 6.7399 6.7399 6.7399 6.7399
12 4.0659 4.0659 4.0659 4.0659 8.0615 8.0615 8.0614 8.0615
14 4.7236 4.7236 4.7235 4.7236 9.3863 9.3863 9.3862 9.3863
16 5.3833 5.3833 5.3833 5.3833 10.7131 10.7131 10.7130 10.7131
18 6.0446 6.0446 6.0445 6.0446 12.0414 12.0413 12.0413 12.0414
20 6.7069 6.7069 6.7068 6.7069 13.3706 13.3706 13.3706 13.3706
25 8.3656 8.3656 8.3656 8.3656 16.6966 16.6964 16.6965 16.6966
30 10.0270 10.0269 10.0269 10.0270 20.0249 20.0248 20.0249 20.0249
40 13.3536 13.3536 13.3535 13.3536 26.6854 26.6853 26.6853 26.6854
50 16.6829 16.6829 16.6828 16.6829 33.3483 33.3483 33.3483 33.3483

n
Fig. 2 Velocity profile f(y) for different values of suction
parameter  f,, >0 when 6 =0.1, { =1, ¢=0.1, for both 1=
0.2 and A =1.5.

The effect of the shrinking parameter 4 on the velocity pro-
files is shown in Fig. 4. We note that for both 1 < 0 and 4 > 0,
the velocity profile increases as the shrinking parameter
increases. The reason for this could be because an increase in
the shrinking parameter increases the nanofluid velocity which
in turn increases the momentum boundary layer thickness.
These results are in agreement with those obtained by Jalil
et al. [8].

Figs. 5 and 6 show the effects of the Powell-Eyring fluid
parameters &, 9, respectively, on the velocity profiles. The
velocity profiles decrease and the momentum boundary layer
thickness is enhanced as ¢ and J increase. This is because Pow-
ell-Eyring fluids are shear-thinning fluid such that the viscosity
reduces as the shear rate increases. Similar results have been
reported in investigations by Jalil et al. [8] and Rocsa and
Pop [9].

The influence of suction/injection parameter f,, on the tem-
perature profile is displayed in Fig. 7. It is evident that the tem-

Ui

Fig. 3  Velocity profile f(5) for different values of injection

parameter  f,, <0 when 0 =0.1, £ =1, ¢=0.1, for both 1 =
0.2 and A= 1.5.
2 r
—A=0
---1=03
' —%=05
---1=15|
---A=17
—Ai= 2
0 .
0 1 2 3 4 5

Ui

Fig. 4 Velocity profile f(y) for different values of shrinking
parameter 4 when 6 =0.1, £ =1, ¢=0.1, and f,, = 0.5.
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—e=0
——
=3
---e=7
8 10

Ui

Fig. 5 Velocity profile /(1) for different values of fluid param-
eter ¢ when 6 =0.1, £=1, f,, =0.5, and 1=0.5.

—5=0.1
---5=03
—5=07]]
---5= 1

6 8 10

Ui

Fig. 6  Velocity profile /(i) for different values of fluid param-
eter 0 when ¢=0.1, £ =1, £, =0.5, and 1 =0.5.

1.5

1
S
>
05}

Fig. 7 Temperature profile 0(y) for different values of suction/
injection parameter f,, when 6 = 0.1, ¢ =¢=1, He=N, =N, =
Ng=0.5, Pr=Sc=1, and 2 =0.5.

1 :
——NR=03
---NR=05
08 \ ——NR=0.7}
\ ---NR=09
A\
06} W
§ \\\\
> W\
04} N\
WL
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W\
0.2} NN
0 ===
0 2 4 6 8
n

Fig. 8 Temperature profile 6(n) for different values of thermal
radiation parameter Ny when 6 =0.1, E=¢=1, He= N, =
N, =f,=0.5, Pr=Sc=1, and 2 =0.5.

—He= 0]
---He=05
—He=07|
---He=0.9
6 8

Fig. 9 Temperature profile 0(n) for different values of heat
generation parameter He when 0 =0.1, ¢=¢=1, f,, =N, =
N,=Ng=0.5, Pr=Sc=1, and 1 =0.5.

perature and thermal boundary-layer thicknesses reduce with
increasing suction/injection parameter values. This is because
due to suction, hot fluid is drawn closer to the surface, and
as a result, the thermal boundary-layer thickness decreases.

Fig. 8 depicts the influence of the thermal radiation param-
eter Ny on the temperature profiles. The temperature profiles
increase with increasing thermal radiation parameter values.
Physically, this may be attributed to the fact that an increase
in the thermal radiation parameter yields an increase in the
interaction in thermal boundary layer. The effect of heat gen-
eration parameter He on temperature profile is displayed in
Fig. 9. It is evident that increasing the heat generation param-
eter increases the temperature profiles, which, in turn leads to
an increase in the thermal boundary-layer thickness.

Fig. 10 shows the effect of the thermophoresis parameter N,
on the temperature profiles. It can be seen that the temperature
and the thermal boundary-layer thickness increase with an
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mophoresis parameter N, when 6 =0.1, é=e=1, f, = N = p P ! = ==L Jw =

He=Nr=0.5 Pr=Sc=1, and A =0.5.
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Fig. 11  Temperature profile 0(5) for different values of Prandtl

number Pr when 6 =0.1, {=¢=1, f, =Ny =N, = He = N =
0.5, Sc=1, and 2=0.5.

increase in the thermophoresis parameter. In Fig. 11 we
demonstrate the effect of changes in the Prandtl number Pr
on the temperature profiles. The temperature and thermal
boundary layer thickness decrease with increasing Prandtl
numbers. The effect is more obvious with smaller Prandtl num-
bers because as the boundary layer becomes thicker, the heat
transfer rate reduces. It is generally understood in the literature
that fluids with low Prandtl numbers such as liquid metals
have a high conductivity, resulting in large thermal
boundary-layers. In this case heat diffuses rapidly from the
heated plate compared to the case of fluids with high Prandtl
numbers.

Figs. 12 and 13 show how the concentration profiles vary
with the thermophoresis parameter N, and the Brownian
motion parameter N,. Fig. 12 shows an increase in the concen-
tration and solutal boundary layer thickness with increase in
thermophoresis parameter, while a decrease in the concentra-

Ny,=He=Nr=0.5 Pr=Sc=1, and 2 =0.5.

— Nb=03
02 ~--Nb=05
— Nb=07
-~ -Nb=09
015} -
=
< o1}
0.05
0 .
6 7 8

Fig. 13 Concentration profile ¢(y) for different values of
Brownian motion parameter N, when 6 =0.1, (¢ =¢=1, f, =
N, =He=Nzr=0.5, Pr=Sc=1, and 2=0.5.

tion and solutal boundary layer thickness is observed in
Fig. 13 with increasing values of Brownian motion parameter.

5. Conclusion

We have investigated the flow of an unsteady Powell-Eyring
nanofluid flow over a shrinking sheet with heat generation
and thermal radiation effects. Approximate numerical results
of the partial differential equations were obtained using a
multi-domain (or piecewise or multi-stage) bivariate spectral
quasilinearization method. The results from this study show
that the fluid parameters ¢ and 6 reduce the flow velocity
and the momentum boundary-layer thickness. The heat gener-
ation and thermal radiation parameter are found to enhance
both the temperature and thermal boundary-layer thickness.
These observations are consistent with earlier findings in the
literature. The method used proved to be reliable and easy to
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use, thereby making it a good numerical tool for solving non-
linear PDEs that arise in the boundary-layer studies.

Acknowledgment

The authors are grateful to the University of KwaZulu-Natal,
the DST-NRF Centre of Excellence in Mathematical and Sta-
tistical Sciences (CoE-MaSS) and the Claude Leon Founda-
tion, South Africa, for necessary financial support.

References

[1] J. Harris, Rheology and Non-Newtonian Flow, Longman, 1977.

[2] R.B. Bird, C.F. Curtis, R.C. Armstrong, O. Hassager, Dynamics
of Polymetric Liquids, Wiley, 1987.

[3] R.E. Powell, H. Erying, Nature, London, 1944.

[4] M.Y. Malik, I. Khan, A. Hussain, T. Salahuddin, Mixed
convection flow of MHD Eyring-Powell nanofluid over a
stretching sheet: a numerical study, AIP Adv. 5 (2015) 117118.

[5] T. Hayat, S. Asad, M. Mustafa, A. Alsaedi, Radiation effects on
the flow of Powell-Eyring fluid past an unsteady inclined
stretching sheet with non-uniform heat source/sink, Plos One 9
(2014) e103214.

[6] H. Zaman, M.A. Shah, M. Ibrahim, Unsteady incompressible
Couette flow problem for the Eyring-Powell model with porous
walls, Am. J. Comput. Math. 3 (2013) 313.

[7] S. Nadeem, S. Saleem, Series solution of unsteady Eyring Powell
nanofluid flow on a rotating cone, Am. J. Comput. Math. 52
(2015) 725-737.

[8] M. Jalil, S. Asghar, S.M. Imran, Self similar solutions for the
flow and heat transfer of Powell-Eyring fluid over a moving
surface in a parallel free stream, Int. J. Heat Mass Transfer 65
(2013) 73-79.

[9] A.V. Rosca, 1. Pop, Flow and heat transfer of Powell-Eyring
fluid over a shrinking surface in a parallel free stream, Int. J.
Heat Mass Transfer 71 (2014) 321-327.

[10] T. Hayat, Z. Igbal, M. Qasim, S. Obaidat, Steady flow of an
Eyring Powell fluid over a moving surface with convective
boundary conditions, Int. J. Heat Mass Transfer 55 (2012) 1817—
1822.

[11] T. Hayat, S. Ali, M.A. Farooq, A. Alsaedi, On comparison of
series and numerical solutions for flow of Eyring-Powell fluid
with newtonian heating and internal heat generation/
absorption, PloS One 10 (2015) e0129613.

[12] A. Asmat, N.A. Khan, H. Khan, F. Sultan, Radiation effect on
boundary layer flow of an Eyring-Powell fluid over an
exponentially shrinking sheet, Ain Shams Eng. J. 5 (2014)
1337-1342.

[13] N.A. Khan, F. Sultan, On the double diffusive convection flow
of Eyring-Powell fluid due to cone through a porous medium
with Soret and Dufour effects, AIP Adv. 5 (2015) 057140.

[14] S. Nadeem, S. Saleem, Mixed convection flow of Eyring-Powell
fluid along a rotating cone, Results Phys. 4 (2014) 54-62.

[15] S.U.S. Chol, Enhancing thermal conductivity of fluids with
nanoparticles, ASME-Publ.-Fed. 231 (1995) 99-106.

[16] J. Buongiorno, Convective transport in nanofluids, J. Heat
Transfer 128 (2006) 240-250.

[17] AM. Rohni, S. Ahmad, A.ILM. Ismail, I. Pop, Flow and heat
transfer over an unsteady shrinking sheet with suction in a
nanofluid using Buongiorno’s model, Int. Commun. Heat Mass
Transfer 43 (2013) 75-80.

[18] K. Zaimi, A. Ishak, I. Pop, Unsteady flow due to a contracting
cylinder in a nanofluid using Buongiornos model, Int. J. Heat
Mass Transfer 68 (2014) 509-513.

[19] R. Dhanai, P. Rana, L. Kumar, Multiple solutions of MHD
boundary layer flow and heat transfer behavior of nanofluids

induced by a power-law stretching/shrinking permeable sheet
with viscous dissipation, Powder Technol. 273 (2015) 62-70.

[20] N.A. Haroun, P. Sibanda, S. Mondal, S.S. Motsa, On unsteady
MHD mixed convection in a nanofluid due to a stretching/
shrinking surface with suction/injection using the spectral
relaxation method, Bound. Val. Probl. 1 (2015) 1-17, http://
dx.doi.org/10.1186/s13661-015-0289-5.

[21] N.A.H. Haroun, P. Sibanda, S. Mondal, S.S. Motsa, M.M.
Rashidi, Heat and mass transfer of nanofluid through an
impulsively vertical stretching surface using the spectral
relaxation method, Bound. Val. Probl. 161 (2015) 1-16, http://
dx.doi.org/10.1186/s13661-015-0424-3.

[22] N.A.H. Haroun, S. Mondal, P. Sibanda, Unsteady natural
convective boundary-layer flow of MHD nanofluid over a
stretching surfaces with chemical reaction using the spectral
relaxation method: a revised model, Proc. Eng. 127 (2015) 18
24.

[23] N. Dalir, M. Dehsara, S.S. Salman, Entropy analysis for
magnetohydrodynamic flow and heat transfer of a Jeffrey
nanofluid over a stretching sheet, Energy 79 (2015) 351-362.

[24] M.H. Abolbashari, N. Freidoonimehr, F. Nazari, M.M.
Rashidi, Analytical modeling of entropy generation for Casson
nano-fluid flow induced by a stretching surface, Adv. Powder
Technol. 26 (2015) 542-552.

[25] H. Heidary, R. Pirmohammadi, M.J. Kermani, Numerical study
of magnetic field effect on nano-fluid forced convection in a
channel, J. Magn. Magn. Mater. 374 (2015) 11-17.

[26] S. Mansur, A. Ishak, I. Pop, The magnetohydrodynamic
stagnation point flow of a nanofluid over a stretching/
shrinking sheet with suction, PLoS One 10 (2015) e0117733.

[27] R.U. Haq, S. Nadeem, N.S. Akbar, Z.H. Khan, Radiation effect
on stagnation point flow of micropolar nanofluid along a
vertically convective stretching surface, IEEE Trans.
Nanotechnol. 14 (2015) 42-50.

[28] R. Mehmood, S. Nadeem, N. Sher Akbar, Non aligned
Ethylene-Glycol 30 percent based stagnation point fluid over a
stretching surface with hematite Nano particles, J. Appl. Fluid
Mech. 9 (3) (2016) 1359-1366.

[29] N. Sher Akbar, A. Ebaid, Z.H. Khan, Numerical analysis of
magnetic field on Eyring-Powell fluid flow towards a stretching
sheet, J. Magn. Magn. Mater. 382 (2015) 355-358.

[30] N. Sher Akbar, Z.H. Khan, Effect of variable thermal
conductivity and thermal radiation on the flow of CNTS over
a stretching sheet with convective slip boundary conditions:
Numerical study, J. Mol. Liq. 222 (2016) 279-286.

[31] N. Sher Akbar, Z.H. Khan, Magnetic field analysis in a
suspension of gyrotactic microorganisms and nanoparticles
over a stretching surface, J. Magn. Magn. Mater. 378 (2016)
320-326.

[32] N. Sher Akbar, Z. Khan, S. Nadeem, W. khan, Double-diffusive
natural convective boundary-layer flow of a nanofluid over a
stretching sheet with magnetic field, Int. J. Numer. Meth. Heat
Fluid Flow 26 (1) (2016) 108-121.

[33] H.S. Nik, S. Effati, S.S. Motsa, S. Shateyi, A new piecewise-
spectral homotopy analysis method for solving chaotic
systems of initial value problems, Math. Probl. Eng. 2013
(2013) 13, http://dx.doi.org/10.1155/2013/583193. Article ID
583193.

[34] S. Effati, H. Saberi Nik, A. Jajarmi, Hyperchaos control of the
hyperchaotic Chen system by optimal control design, Nonlinear
Dyn. 73 (2013) 499-508.

[35] J.I. Ramos, Piecewise homotopy methods for nonlinear
ordinary differential equations, Appl. Math. Comput. 198
(2008) 92—116.

[36] Z.M. Odibat, C. Bertelle, M.A. Aziz-Alaoui, G.H.E. Duchamp,
A multi-step differential transform method and application to
non-chaotic or chaotic systems, Comput. Math. Appl. 59 (2010)
1462-1472.

Please cite this article in press as: T.M. Agbaje et al., A numerical study of unsteady non-Newtonian Powell-Eyring nanofluid flow over a shrinking sheet with heat
generation and thermal radiation, Alexandria Eng. J. (2016), http://dx.doi.org/10.1016/j.a¢j.2016.09.006



http://refhub.elsevier.com/S1110-0168(16)30272-1/h0005
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0005
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0010
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0010
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0010
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0020
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0020
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0020
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0025
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0025
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0025
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0025
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0030
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0030
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0030
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0035
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0035
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0035
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0040
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0040
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0040
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0040
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0045
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0045
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0045
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0045
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0050
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0050
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0050
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0050
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0055
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0055
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0055
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0055
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0060
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0060
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0060
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0060
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0065
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0065
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0065
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0070
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0070
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0075
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0075
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0080
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0080
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0085
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0085
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0085
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0085
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0090
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0090
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0090
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0095
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0095
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0095
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0095
http://dx.doi.org/10.1186/s13661-015-0289-5
http://dx.doi.org/10.1186/s13661-015-0289-5
http://dx.doi.org/10.1186/s13661-015-0424-3
http://dx.doi.org/10.1186/s13661-015-0424-3
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0110
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0110
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0110
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0110
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0110
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0115
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0115
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0115
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0120
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0120
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0120
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0120
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0125
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0125
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0125
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0130
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0130
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0130
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0135
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0135
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0135
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0135
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0140
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0140
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0140
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0140
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0145
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0145
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0145
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0150
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0150
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0150
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0150
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0155
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0155
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0155
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0155
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0160
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0160
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0160
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0160
http://dx.doi.org/10.1155/2013/583193
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0170
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0170
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0170
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0175
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0175
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0175
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0180
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0180
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0180
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0180
http://dx.doi.org/10.1016/j.aej.2016.09.006

Numerical study of unsteady non-Newtonian Powell-Erying nanofluid flow 11

[37] A. Freihat, S. Momani, Adaptation of differential transform
method for the numeric-analytic solution of fractional-order
Rssler chaotic and hyperchaotic systems, Abstr. Appl. Anal.
2012 (2012) 13, http://dx.doi.org/10.1155/2012/934219. Article
1D 934219.

[38] O. Abdulaziz, N.F.M. Noor, I. Hashim, M.S.M. Noorani,
Further accuracy tests on Adomian decomposition method for
chaotic systems, Chaos Soliton. Fract. 36 (2008) 1405-1411.

[39] M.M. Al-Sawalha, M.S.M. Noorani, I. Hashim, On accuracy of
Adomian decomposition method for hyperchaotic Rossler
system, Chaos Soliton. Fract. 40 (2009) 1801-1807.

[40] S.S. Motsa, A new piecewise-quasilinearization method for
solving chaotic systems of initial value problems, Open Phys. 10
(2012) 936-946.

[41] S.S. Motsa, P. Sibanda, A multistage linearisation approach to a
four-dimensional hyperchaotic system with cubic nonlinearity,
Nonlinear Dyn. 70 (2012) 651-657.

[42] S.S. Motsa, P. Dlamini, M. Khumalo, A new multistage spectral
relaxation method for solving chaotic initial value systems,
Nonlinear Dyn. 72 (2013) 265-283.

[43] H.S. Nik, P. Rebelo, Multistage spectral relaxation method for
solving the hyperchaotic complex systems, Sci. World J. 2014
(2014) 10, http://dx.doi.org/10.1155/2012/934219. Article ID
943293.

[44] S.S. Motsa, On the bivariate spectral homotopy analysis method
approach for solving nonlinear evolution partial differential

equations, Abstr. Appl. Anal. 2014 (2014) 8, http://dx.doi.org/
10.1155/2014/350529. Article ID 350529.

[45] S.S. Motsa, V.M. Magagula, P. Sibanda, A bivariate Chebyshev
spectral collocation quasilinearization method for nonlinear
evolution parabolic equations, Sci. World J. 2014 (2014) 13,
http://dx.doi.org/10.1155/2014/581987. Article ID 581987.

[46] V.M. Magagula, S.S. Motsa, P. Sibanda, P.G. Dlamini, On a
bivariate spectral relaxation method for unsteady magneto-
hydrodynamic flow in porous media, SpringerPlus 5 (2016) 1-
15, http://dx.doi.org/10.1186/s40064-016-2053-4.

[47] R.E. Bellman, R.E. Kalaba, Quasilinearization and Nonlinear
Boundary-Value Probl, Elsevier Publishing Company, New
York, 1965.

[48] N. Bachok, M.A. Jaradat, I. Pop, A similarity solution for the
flow and heat transfer over a moving permeable flat plate in a
parallel free stream, Heat Mass Transfer 47 (2001) 1643—1649.

[49] I.S. Opyelakin, S. Mondal, P. Sibanda, Unsteady Casson
nanofluid flow over a stretching sheet with thermal radiation,
convective and slip boundary conditions, Alex. Eng. J. 55 (2016)
1025-1035.

[S0] L.N. Trefethen, Spectral Methods in MATLAB, SIAM,
Philadelphia, 2000.

[51] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral
Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.

Please cite this article in press as: T.M. Agbaje et al., A numerical study of unsteady non-Newtonian Powell-Eyring nanofluid flow over a shrinking sheet with heat
generation and thermal radiation, Alexandria Eng. J. (2016), http://dx.doi.org/10.1016/j.a¢}.2016.09.006



http://dx.doi.org/10.1155/2012/934219
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0190
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0190
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0190
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0195
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0195
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0195
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0200
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0200
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0200
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0205
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0205
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0205
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0210
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0210
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0210
http://dx.doi.org/10.1155/2012/934219
http://dx.doi.org/10.1155/2014/350529
http://dx.doi.org/10.1155/2014/350529
http://dx.doi.org/10.1155/2014/581987
http://dx.doi.org/10.1186/s40064-016-2053-4
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0235
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0235
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0235
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0235
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0240
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0240
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0240
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0245
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0245
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0245
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0245
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0250
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0250
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0250
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0255
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0255
http://refhub.elsevier.com/S1110-0168(16)30272-1/h0255
http://dx.doi.org/10.1016/j.aej.2016.09.006

	A numerical study of unsteady non-Newtonian Powell-Eyring nanofluid flow over a shrinking sheet with heat generation and thermal radiation
	1 Introduction
	2 Mathematical formulation
	3 Method of solution
	4 Results and discussion
	5 Conclusion
	Acknowledgment
	References


