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Abstract

This paper presents a new approach to the dimension theory of triangulated categories by considering
invariants that arise in the pretriangulated setting.
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1. Introduction

In [17], Rouquier gave several results on the dimension theory of triangulated categories.
Following this paper, Orlov computed the dimension of the derived category of coherent sheaves
on an arbitrary smooth curve and found it to equal one in [16]. Orlov then advanced a more
general perspective on dimension theory by defining the spectrum of a triangulated category,
now called the Orlov spectrum, which includes the generation times of all strong generators.
The relevance of strong generators in triangulated categories and their connection to algebraic
geometry was thoroughly established in the seminal paper [3] by Bondal and Van den Bergh. As
the Orlov spectrum compares the generation times amongst all strong generators, it serves as a
more nuanced invariant than dimension.

In the important recent work [1] of Ballard, Favero and Katzarkov, gaps in the Orlov spectrum
were found to depend on the existence of algebraic cycles. To further this line of reasoning,
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they stated the following conjectures which link large gaps in the Orlov spectrum to birational
invariants.

Conjecture 1.1. Let X be a smooth algebraic variety. If ⟨A1, . . . ,An⟩ is a semi-orthogonal
decomposition of T , then the length of any gap in Db(X) is at most the maximal Rouquier
dimension amongst the Ai .

Conjecture 1.2. Let X be a smooth algebraic variety. If A is an admissible subcategory of
Db(X), then the length of any gap of A is at most the maximal length of any gap of Db(X).
Conversely, if A has a gap of length at least s, then so does Db(X).

These have many important corollaries connecting birational geometry to triangulated cate-
gories and their Orlov spectrum. We recall again from [1] two such results.

Corollary 1.3. Suppose Conjectures 1.1 and 1.2 hold. Let X and Y be birational smooth proper
varieties of dimension n. The category, Db(X), has a gap of length n or n − 1 if and only if
Db(Y ) has a gap of the same length i.e. the gaps of length greater than n − 2 are a birational
invariant.

Corollary 1.4. Suppose Conjectures 1.1 and 1.2 hold. If X is a rational variety of dimension n,
then any gap in Db(X) has length at most n − 2.

Establishing a procedure for computing the Orlov spectrum of Db(X) would also allow us to
pursue, for example, the following.

Conjecture 1.5. Let X be a generic smooth four dimensional cubic. Then the gap of the spectra
of the derived category of this cubic is equal to two.

From the considerations above, this conjecture implies that generic smooth four dimensional
cubic is not rational, a standing question in algebraic geometry.

While the triangulated setting serves as an accessible model for homological invariants, it is
generally accepted that triangulated categories are inadequate for giving a natural characteriza-
tion of homotopy theory for derived categories. Instead of working in this setting, it is advisable
to lift to a pretriangulated category, or (∞, 1)-category framework, where several constructions
are more natural [15,7]. In this paper, we study the Orlov spectra of triangulated categories by
lifting to pretriangulated DG or A∞-categories.

When the category T is strongly generated by a compact object G, we upgrade several clas-
sical results in dimension theory of abelian categories to the pretriangulated setting and find that
the natural filtration given by the bar construction plays a determining role in the calculus of
dimension. Indeed, if G is such a generator, using a result of Lefèvre-Hasegawa, we can regard
T as the homotopy category of perfect modules over an A∞ algebra AG = Hom∗(G,G). In
addition to being a DG category, the category of perfect A∞ modules over AG is enhanced over
filtered chain complexes, where the filtration is obtained through the bar construction. This filtra-
tion descends to the triangulated level. The first main result, Theorem 3.12, in this paper is that
the generation time of a strong generator G equals the maximal length of this filtration.

Theorem 1.6. The generation time of G ∈ T equals the supremum over all M, N ∈ AG-mod∞

of the lengths of HomAG -mod∞
(M, N ) with respect to the filtration induced by the bar

construction.

As a result, we develop a filtered cohomology theory which yields the generation times that
occur in Orlov spectra. The lengths referred to in this theorem are those of the filtrations induced
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on the cohomology of the complexes, or the Ext groups, by the pretriangulated filtrations. In
practice, it is possible to compute these lengths by calculating their spectral sequences which
will converge under very mild assumptions.

Another filtration that occurs naturally from the bar construction is on the tensor product. This
filtration is especially useful as one may define change of base as a tensor product with an ap-
propriate bimodule. After establishing basic adjunction results in the next section, we generalize
the classical change of base formula for dimension to the A∞ algebra setting in Theorem 3.20.
A new multiplicative constant appears in this version which is related to the speed at which a
spectral sequence associated to the tensor product filtration converges.

Theorem 1.7. Let P be a (B, A)-bimodule and M a left A-module. Suppose the spectral se-

quence of P
∞

⊗A M degenerates at the (s + 1)-st page. If the convolution functor P
∞

⊗ is faithful,
then

lvlA(M) ≤ lvlA(P)+ s · lvlB(P
∞

⊗A M).

Here lvlA(M) plays the role of homological, or projective, dimension of a module M . If the
algebra A is formal, the constant s is 1 and we see the classical formula. If higher products are
relevant, one must modify the classical inequality.

2. A∞ constructions

This section will review many definitions and constructions related to A∞ algebras and mod-
ules. The aim of our treatment is to approach this subject with a special emphasis on the filtrations
arising from the bar constructions. These filtrations are the main technical structure we use in the
dimension theory for pretriangulated categories.

After reviewing some standard definitions, we will give the definitions of filtered tensor prod-
uct, filtered internal Hom and duals in the category of A∞-bimodules. The mantra that all con-
structions in the A∞ setting are derived constructions will be continually reinforced. Moreover,
the above functors will land in the category of lattice filtered A∞-modules, which preserves the
relevant data for a study of dimension. The ⊗ − Hom adjunction, usually written in either the
abelian or derived setting, will be formed as an adjunction between filtered DG functors. The cat-
egorical formulation of this statement is that the category Alg∞ is a biclosed bicategory enriched
over filtered cochain complexes. We will utilize this to update classical results on the relationship
between flat and projective dimensions for perfect modules.

2.1. Fundamental notions

We take a moment to lay out some basic notation and fix our sign conventions. All algebras
and vector spaces will be over a fixed field K and categories will be K-linear categories. Let
gr be the category of graded vector spaces over K and finite sums of homogeneous maps. We
take Ch to be the category of cochain complexes of vector spaces over K and finite sums of
homogeneous maps. We will identify HomCh with the internal Hom whose differential of

f ∈ Homk
Ch((C, dC ), (C

′, dC ′))

is the usual one, namely,

d f := f ◦ dC − (−1)kdC ′ ◦ f.

Finally, we take K to be the category of chain complexes and cochain maps. In other words,
maps which are cocycles relative to d in Ch. For most of the paper, we will assume our chain
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complexes are Z-graded, but there will be examples of the (Z/2Z)-graded case. This should
cause no difficulty as the proofs will be independent of this choice.

We view Ch as a closed category with respect to the tensor product along with the Koszul
sign rule γV,W : V ⊗ W → W ⊗ V given by:

γV,W (v ⊗ w) = (−1)|v||w|w ⊗ v. (2.1)

We will need to implement this sign convention when discussing tensor products of maps
as well. For this we follow the usual convention. Namely, given homogeneous maps f ∈

Hom∗
gr (V1, V2) g ∈ Hom∗

gr (W1,W2) then we define f ⊗ g ∈ Homgr (V1 ⊗ W1, V2 ⊗ W2)

via ( f ⊗ g)(v ⊗ w) = (−1)|g||v| f (v)⊗ g(w).

By a differential graded, or DG, category D we mean a category enriched in Ch. We let

h : D → ChDop

be the Yoneda functor given by hE (E ′) = HomD(E ′, E).

In categories gr , Ch and K , we have the shift functor s which sends V ∗ to V ∗+1. On mor-
phisms we have s( f ) = (−1)| f | f . There is also a (degree 1) natural transformation σ : I → s
defined as σ(v) = (−1)|v|v. One can utilize σ to translate the signs occurring in various bar con-
structions given in this text and those in the ordinary desuspended case. In particular, given a map
f : V ⊗n

→ W ⊗m in Ch we define s⊗( f ) : (sV )⊗n
→ (sW )⊗m to be σ⊗m

◦ f ◦ (σ−1)⊗n . We
will often use this notation to write the equations defining various structures without mentioning
the elements of our algebras or modules. A nice account of the various choices and techniques
used in sign conventions can be found in [6].

Filtrations will occur throughout this paper and our initial approach will be rather general. We
partially order Zk for any k ∈ N with the product order. A lattice filtered complex will consist
of the data V =


V, {Vα}α∈Zk


for some k ∈ N, where V is an object in Ch and {Vα}α∈Zk is a

collection of subcomplexes partially ordered by inclusion. If k = 1, we simply call V filtered.
Given two lattice filtered complexes V =


V, {Vα}α∈Zk


and W =


W, {Wβ}β∈Zl


, we define

the lattice filtered tensor product and internal hom as follows.

V ⊗ W =

V ⊗ W, {Vα ⊗ Wβ}(α,β)∈Zk+l


and

Hom (V,W) =


Hom (V,W ) , {Hom−α,β (V,W )}(α,β)∈Zk+l


where Hom−α,β (V,W ) = {φ : V → W |φ(Vα) ⊆ Wβ}. The category of lattice filtered com-
plexes and filtered complexes will be denoted Chl f and Ch f respectively. We note that the above
constructions make Chl f a closed symmetric monoidal category.

Given a DG category D, we define the category Dl f to have objects consisting of the data
E =


E, {Eα}α∈Zk


where


hE (E ′), {(hEα (E

′))}α∈Zk


∈ Chl f for every object E ′
∈ D. The

cochain complex of morphisms between D and E is simply HomD(D, E). Restricting to the case
of k = 1 yields the definition of D f .

The total filtration functor Tot : Chl f
→ Ch f is defined as

Tot

V, {Vα}α∈Zk


=

V, {∪|α|=n Vα}n∈Z
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for k ≠ 0 where |α| = a1 + · · · + ak for α = (a1, . . . , ak). One needs to deal with k = 0 a bit
differently and define Tot (V, {V0}) =


V, {V ′

n}


with V ′
n = 0 for n < 0 and V ′

n = V0 otherwise.
Now suppose V ∈ Ch f is a filtered complex. Letting Zn be the subspace of cocycles in Vn ,

we have that the cohomology

H∗(V) =


H∗(V ),


H∗(V )n =

Zn

im(d) ∩ Zn


n∈Z


is then a filtered object in gr . We define the upper and lower length of the filtration as follows. If
∪n H∗(V) ≠ H∗(V ) we take ℓ+(V) = ∞ and if ∩n H∗(V) ≠ 0 then ℓ−(V) = −∞. Otherwise,
we define these lengths as

ℓ+(V) = inf{n : H∗(V )n = H∗(V )} ℓ−(V) = inf{n : H∗(V )n ≠ 0}. (2.2)

By the length ℓ(V) of V we will mean the maximum of |ℓ+(V)| and |ℓ−(V)|. We extend these
definitions to V ∈ Chl f by taking length of Tot(V).

Given a DG category D and an object E ∈ Dl f , we define the lengths of E as

ℓ+(E) = sup{ℓ+(hE(E
′)) : E ′

∈ D},

ℓ−(E) = inf{ℓ−(hE(E
′)) : E ′

∈ D},

ℓ(E) = sup{ℓ(hE(E
′)) : E ′

∈ D}.

Given two DG categories D, D̃, a DG functor F : D → D̃ f and E ∈ D, we take ℓF
±(E) =

ℓ±(F(E)) and ℓF
= sup{ℓF (E) : E ∈ D}. One can consider ℓF as a generalization of the

cohomological dimension of a functor between abelian categories. Note that in the DG category
Ch the two notions of length are equal. In other words, the definition given by Eqs. (2.2) yield
the same quantities as the definition above using the Yoneda embedding h .

A motivating example for the above definitions is the case where D and D̃ are categories of
bounded below cochain complexes of injective objects in abelian categories D and D̃. Note that
these categories admit embeddings into their filtered versions by sending any complex E∗ to
(E∗, {τn(E∗)}n∈Z) where τn(E∗)k = Ek for k ≤ n and zero otherwise. Assuming D and D̃ have
enough injectives, any functor F : D → D̃ has the (pre)derived DG functor RF : D → D̃ and
after composition with the embedding above one has a DG functor F : D → D̃ f . It is then plain
to see that ℓF equals the cohomological dimension of F .

2.2. A∞-algebras

One of the fundamental structures in our study is an A∞-algebra.

Definition 2.1. A non-unital A∞-algebra A is an object A ∈ Ch and a collection of degree 1
maps µn

A : (s A)⊗n
→ s A for n > 0 satisfying the relation

n
k=0


n−k
r=0

µn−k+1
A ◦ (1⊗r

⊗ µk
A ⊗ 1⊗(n−r−k))


= 0

for every n.

We note that it is common to see the definition utilizing the desuspended maps s−1
⊗ (µn

A)which
involves more intricate signs.
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In this paper we will assume that our A∞-algebras come equipped with a strict unit. We recall
that this means there exists a unit map u : K → A[1] where

µ2
A(u ⊗ 1) = 1 = −µ2

A(1 ⊗ u) (2.3)

µn(1⊗r
⊗ u ⊗ 1⊗(n−r−1)) = 0 for n ≠ 2. (2.4)

We will normally write eA for u(1) (or e if the algebra is implicit).
If A is an A∞-algebra, we take Aop to be the algebra with structure maps µk

Aop = µk
A ◦ σk

where σk : (s A)⊗k
→ (s A)⊗k reverses the ordering of the factors via the symmetric monoidal

transformation γ in Eq. (2.1).
It is immediate that the cohomology H∗(A) defined with respect to µ1

A is a graded K-algebra
with multiplication induced by µ2

A. However, the higher products determine more structure than
the cohomology algebra can express on its own. In order to see this we need to be able to compare
two different algebras. A homomorphism of A∞-algebras is defined as follows.

Definition 2.2. If (A, µ∗

A) and (B, µ∗

B) are A∞-algebras then a collection of graded maps φn
:

(s A)⊗n
→ s B for n ≥ 1 is an A∞-map if

n
k=1


n−k
r=1

φn−k+1
◦ (1⊗r

⊗ µk
A ⊗ 1⊗(n−r−k))



=

n
j=1

 
i1+···+i j =n

µ
j
B ◦ (φ⊗i1 ⊗ · · · ⊗ φ⊗i j )

 .
A strictly unital homomorphism is also required to preserve the unit as well as satisfying the

identities

φr+s+1
◦ (1⊗r

⊗ u ⊗ 1⊗s) = 0

for all r + s > 0. The category of unital and non-unital A∞-algebras will be denoted Alg∞ and
Algnu

∞ respectively.
When all maps φk

= 0 except φ1, we call {φk
} strict. If there is an A∞-map ϵA : A → K

we will call A augmented. Any augmented, strictly unital A∞ algebra is required to satisfy the
equation ϵAu = 1K.

It is important to observe that [φ1
] induces an algebra homomorphism H∗(A) to H∗(B) so

that cohomology is a functor from A∞-algebras to ordinary algebras. When the induced map [φ1
]

is an isomorphism, we call φ∗ a quasi-isomorphism. The following proposition can be found in
any of the basic references given above.

Proposition 2.3. Given a quasi-isomorphism φ∗
: A → B there exists a quasi-isomorphismψ∗

:

B → A for which [φ1
] and [ψ1

] are inverse.

Some of the A∞-algebras discussed in this paper satisfy additional conditions.

Definition 2.4. (i) An A∞-algebra is formal if it is quasi-isomorphic to its cohomology algebra.
(ii) An A∞-algebra is compact if its cohomology algebra is finite dimensional.

While it is rarely the case that an A∞-algebra is formal, there is an A∞-structure on its
cohomology, called the minimal model, which yields a quasi-isomorphic A∞-algebra. It is a
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well known fact that, for (A, µ∗

A), this is a uniquely defined A∞-structure (H∗(A), µ̃∗

A) with
µ̃1

A = 0 (here µ̃2
A = [µ2

A] and the higher µ̃∗

A are determined by a tree level expansion formula).
Let us state this as a proposition.

Proposition 2.5. For any A∞-algebra (A, µ∗

A) there is an A∞-algebra (H∗(A), µ̃∗

A), uniquely
defined up to A∞-isomorphism, and a quasi-isomorphism φA : A → H∗(A). We call (H∗(A),
µ̃∗

A) a minimal model of (A, µ∗

A).

It will be important to have at our disposal another equivalent definition, the algebra bar con-
struction, for which we closely follow [13,10]. First, given V ∈ gr we denote the tensor algebra
and coalgebra by T a V and T cV respectively. As graded vector spaces, both are equal to

T V =

∞
n=0

V ⊗n .

For space considerations, we will use bar notation and write [v1| · · · |vn], or simply v, for v1
⊗· · ·⊗vn for an arbitrary element of T V . These spaces are bigraded, with one grading denoting
the length of a tensor product, and the other denoting the total degree. Our notation conventions
for these gradings will be

(T V )r,s =


[v1| · · · |vr ] :


|vi | = s


.

In many situations, we will be interested only in the length grading, in which case we use the
notation

(T V )n = ⊕
n
k=0(T V )k,• (T V )>n = ⊕k>n(T V )k,•.

The algebra map for T a V is the usual product and the coalgebra map ∆ : T cV → T cV
⊗K T cV is defined as

∆[v1| · · · |vn] =

n
i=0

[v1| · · · |vi ] ⊗ [vi+1| · · · |vn]

where the empty bracket [] denotes the identity in K.
The tensor coalgebra naturally lives in the category of coaugmented, counital, dg coalgebras

Cog′. The objects in this category consist of data (C, d, η, ϵ) where C is a coalgebra, d is a
degree 1, square zero, coalgebra derivation, η : C → K and ϵ : K → C are the counit and
coaugmentation satisfying ηϵ = 1K. However, this category is too large for our purposes and we
instead consider a subcategory Cog consisting of cocomplete objects. To define these objects,
take π : C → C = C/K to be the cokernel of ϵ. Consider the kernel Cn = ker(∆̃n) where

∆̃n
: C

∆n

−→ C⊗n π⊗n

−→ C
⊗n
.

Elements of Cn are called n-primitive and C1 is referred to as the coaugmentation ideal. They
form an increasing sequence

C0 ⊂ C1 ⊂ · · ·

called the canonical filtration.
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This defines a natural inclusion Cog′
→ (Cog′) f and we say that the augmented coalgebra C

is cocomplete if C = lim Cn . One easily observes that the tensor coalgebra is an object of Cog as

(T cV )n = (T V )n,•.

Moreover, the tensor coalgebra T cV is cofree in the category Cog (i.e. the tensor coalgebra
functor is right adjoint to the forgetful functor).

Now we recall the (coaugmented) bar functor

B : Algnu
∞ → Cog

which takes any non-unital A∞-algebra (A, µA) to B A = (T c(s A), bA, ηB A, ϵB A). The defi-
nitions of the counit and coaugmentation are clear. We define bA : T c(s A) → T c(s A) via its
restriction to (s A)⊗n as

bA|(s A)⊗n =

n
k=1


n−k
r=0

1⊗r
⊗ µk

A ⊗ 1⊗(n−r−k)


.

There are several variants of this construction, most importantly the ordinary bar construction
B A = (T (s A)>0, bA) which takes values in cocomplete coalgebras. We fix notation for the
inclusion to be

ιA : B A ↩→ B A. (2.5)

The differential is simply the restriction of the one defined in the coaugmented case. It is helpful
to understand B A when A is an ordinary algebra A. In this case, we see that B A is just the
augmented bar resolution for A (and hence, acyclic).

The bar construction of A inherits the increasing filtration

Bn A := ⊕i≤n(B A)i,• = (B A)n .

We refer to this, and the module variants to come, as the length filtration.

Remark 2.6. We note here that one advantage of the bar construction is the ease at which one can
discuss structures that are more difficult to define in the category Alg∞. One example of this is
the tensor product of two A∞-algebras A, A′ which has more than one fairly intricate definition.
In Cog we define the tensor product of B A⊗B A′ in the usual way. We then say that B ∈ Alg∞ is
quasi-isomorphic to the tensor product if B = A ⊗ A′ and B B is quasi-isomorphic to B A ⊗ B A′

in Cog f . See [14] for an article comparing various constructions of a natural quasi-isomorphism.

2.3. A∞ polymodules

We start this section with a general definition of a module over several A∞-algebras which
we call a polymodule. It is both useful and correct to think of a polymodule as a bimodule
with respect to the tensor product of several algebras or, even more simply, as a module over
the tensor product of algebras and their opposites. This is analogous to defining an (R, S)
bimodule as opposed to an R ⊗ Sop module. We take this approach at the outset to avoid some
of the cumbersome notation and uniqueness issues surrounding the tensor product of multiple
A∞-algebras. This is accomplished utilizing the bar construction and working in the category of
comodules where many structures are more accessible. The definitions and results in this section
are adaptations of those for modules and bimodules which can be found in [13]. We add the
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caveat that Lefèvre-Hasegawa uses the different term polymodules to define what we would call
a module.

For this section, we fix A∞-algebras A1, . . . , Ar and B1, . . . , Bs and write (a, b) for the data
(A1, . . . , Ar |B1, . . . , Bs). Let P be a graded vector space and write

B(a,b)P = B A1 ⊗ · · · ⊗ B Ar ⊗ P ⊗ B B1 ⊗ · · · ⊗ B Bs (2.6)

for the bar construction of P .
When (a, b) is fixed or understood from the context, we simply write BP . We make a note

that BP is naturally an object of Chl f where the lattice is Zr+s and the filtration is induced by
the length filtrations on the bar constructions. Given any γ ∈ Zr+s , we denote the γ filtered
piece of BP by Bγ P . Observe also that BP is a cofree left comodule over the coalgebras
B Ai and a cofree right comodule over coalgebras B Bi where ∆i,P : BP → B Ai ⊗ BP and
∆P, j : BP → BP ⊗ B B j are the comodule maps. These are defined by repeatedly applying
γ from Eq. (2.1) to permute the left factor of B Ai and right factor of B B j to the left and right
respectively, after having applied their comultiplications. We take,

∆P = ∆P,s ◦ · · · ◦ ∆P,1 ◦ ∆r,P ◦ · · · ◦ ∆1,P

as the polymodule comultiplication from BP to B A1 ⊗ · · · ⊗ B Ar ⊗ BP ⊗ B B1 ⊗ · · · ⊗ B Bs .
The differentials on each coalgebra tensor to define the differential d ′

P : BP → BP .

Definition 2.7. A non-unital (a, b) = (A1, . . . , Ar |B1, . . . , Bs) polymodule (P, µP ) is a graded
vector space P along with a degree 1 map

µP : B(a,b)P → P (2.7)

satisfying the equation

µP ◦ [(1B A1 ⊗ · · · ⊗ 1B Ar ⊗ µP ⊗ 1B B1 ⊗ · · · ⊗ 1B Bs ) ◦ ∆ + d ′

P ] = 0. (2.8)

We call the P a polymodule if µP satisfies the unital conditions for every i and j ,

µP ◦ (ϵB A1 ⊗ · · · ⊗ uB Ai ⊗ · · · ⊗ ϵB Ar ⊗ 1P ⊗ ϵB B1 ⊗ · · · ⊗ ϵB Br ) = 1P ,

µP ◦ (ϵB A1 ⊗ · · · ⊗ ϵB Ar ⊗ 1P ⊗ ϵB B1 ⊗ · · · ⊗ uB B j ⊗ · · · ⊗ ϵB Br ) = 1P ,

µP ◦ (ιA1 ⊗ · · · ⊗ uB Ai ⊗ · · · ⊗ ιAr ⊗ 1P ⊗ ιB1 ⊗ · · · ⊗ ιBr ) = 0,

µP ◦ (ιA1 ⊗ · · · ⊗ ιAr ⊗ 1P ⊗ ιB1 ⊗ · · · ⊗ uB B j ⊗ · · · ⊗ ιBr ) = 0,

where ϵ is the coaugmentation and ι the inclusion from Eq. (2.5).

A bimodule is a polymodule for which r = 1 = s. A left module is a bimodule for which
B1 = K and similarly, a right module is a bimodule for which A1 = K. A non-unital morphism
from the polymodule P to P ′ is defined as any gr map φ : BP → P ′. The collection of these
maps forms a complex Hom(a,b)-Modnu

∞
(P, P ′) with differential defined as

dφ = φ ◦ (1B A1 ⊗ · · · ⊗ 1B Ar ⊗ µP ⊗ 1B B1 ⊗ · · · ⊗ 1B Bs ) ◦ ∆P

+φ ◦ d ′

P − (−1)|φ|µP ′ ◦ (1B A1 ⊗ · · · ⊗ 1B Ar ⊗ φ ⊗ 1B B1 ⊗ · · · ⊗ 1B Bs ) ◦ ∆P .

(2.9)

A morphism φ ∈ Hom(a,b)-Mod∞
(P, P ′) is a non-unital morphism satisfying the unital condi-

tions

φ ◦ (1B A1 ⊗ · · · ⊗ uB Ai ⊗ · · · ⊗ 1B Ar ⊗ 1P ⊗ 1B B1 ⊗ · · · ⊗ 1B Br ) = 0,
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φ ◦ (1B A1 ⊗ · · · ⊗ 1B Ar ⊗ 1P ⊗ 1B B1 ⊗ · · · ⊗ uB B j ⊗ · · · ⊗ 1B Br ) = 0.

The fact that Hom(a,b)-Mod∞
(P, P ′) is indeed a subcomplex follows from the unital condition

on algebras and modules. A morphism φ ∈ Hom(a,b)-Mod∞
(P, P ′) is called strict if φ|B>0 P

= 0. A homomorphism is defined to be a cocycle in this complex. A homomorphism φ for
which φ|B0 P : P → P ′ is a quasi-isomorphism will be called a quasi-isomorphism. Given ψ ∈

Hom(a,b)-Mod∞
(P ′, P ′′) we define composition as

ψφ = ψ ◦ (1B A1 ⊗ · · · ⊗ 1B Ar ⊗ φ ⊗ 1B B1 ⊗ · · · ⊗ 1B Bs ) ◦ ∆P .

It is a straightforward, albeit tedious check to see that these definitions make (a, b) polymod-
ules into a DG category which we label (a, b)-Mod∞, or just Mod∞. We write H0(Mod∞)

(H∗(Mod∞)) for the zeroth (graded) cohomology category. The next proposition follows imme-
diately from Remark 2.6 and the naturality of γ . A rigorous proof is omitted but can be assembled
from results in [13].

Proposition 2.8. The category of filtered (a, b) = (A1, . . . , Ar |B1, . . . , Bs) polymodules is
quasi-equivalent to the category of filtered left A1 ⊗ · · · ⊗ Ar ⊗ Bop

1 ⊗ · · · ⊗ Bop
s -modules.

From this, or from a direct argument, one obtains the following corollary which will be applied
often implicitly.

Corollary 2.9. The category of filtered (A1, . . . , Ar |B1, . . . , Bs) polymodules is naturally
equivalent to the category of filtered (A1, . . . , Ar , Bop

1 , . . . , Bop
s |K) polymodules.

Following [4], we observe that Mod∞ is a pretriangulated category with sums and shifts
defined in the obvious way and the natural cone construction cone(φ) given in the usual way.
Namely, cone(φ) is the graded vector space P ⊕ s P ′ and its structure morphism is

µcone(φ) =


µP σ ◦ φ

0 µs P ′


.

Given (a, b) we let

U(a,b) = A1 ⊗ · · · ⊗ Ar ⊗ B1 ⊗ · · · ⊗ Bs

be the trivial polymodule whose structure map is induced by suspension, γ and the algebra
structure maps. A free polymodule is defined as a direct sum of copies of U(a,b) and a projective
polymodule as a direct summand of a free polymodule. A projective polymodule will be called
finitely generated if it is a submodule of a finite sum of copies of U(a,b).

Definition 2.10. The subcategory of perfect (a, b) polymodules is the category mod∞ of all
polymodules quasi-isomorphic to a module built by finitely many cones of finitely generated
projective polymodules.

The concept of a polymodule is derived from the more natural notion of a differential comod-
ule over several coalgebras in Cog. From this point of view, we have taken a backwards approach
by defining the polymodule first, as the structure maps and definitions of morphisms are more
transparent in the comodule setting. Nevertheless, we continue along our path full circle towards
a realization of this structure as the bar construction of a polymodule.

Given an (a, b) = (A1, . . . , Ar |B1, . . . , Bs) polymodule (P, µP ), we take the free comodule
B(a,b)P as its bar construction (note that this is not free as a DG comodule). We define its
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differential bP as

bP = (1B A1 ⊗ · · · ⊗ 1B Ar ⊗ µP ⊗ 1B B1 ⊗ · · · ⊗ 1B Bs ) ◦ ∆P + d ′

P .

Then it follows from the defining equation (2.8) that (B(a,b)P, bP ) is a left and right differential
comodule over the coalgebras B Ai and B B j respectively. We denote the DG category of such
DG comodules with comodule morphisms as (a, b)-cmod∞ or simply cmod∞.

Given a morphism φ ∈ Hom(a,b)-Mod∞
(P, P ′) we take bφ : BP → BP ′ to be the map

bφ = (1B A1 ⊗ · · · ⊗ 1B Ar ⊗φP ⊗ 1B B1 ⊗ · · · ⊗ 1B Bs ) ◦∆P . It then becomes an exercise that the
bar construction gives a full and faithful functor from Mod∞ to cmod∞ whose essential image
consists of free comodules.

For our purposes, this is not enough as we wish to keep track of the length filtration through-
out. The category (a, b)-cmod∞ has a natural embedding into ((a, b)-cmod∞)

l f given by the
primitive filtration. More concretely, given (i, j) = (i1, . . . , ir , j1, . . . , js) ∈ Zr+s we define

B(a,b)
(i,j) P = Bi1 A1 ⊗ · · · ⊗ Bir Ar ⊗ P ⊗ B j1 B1 ⊗ · · · ⊗ B js Bs .

This induces an embedding

B : (a, b)-Mod∞ → ((a, b)-cmod∞)
l f . (2.10)

The induced length filtration on polymodule morphisms is then given by

F (i,j)HomMod∞
(P, P ′) = {φ : φ|B(i,j)P = 0}. (2.11)

An advantage of the bar construction is the ease at which one sees the following proposition.

Proposition 2.11. The category (a, b)-Mod∞ is enriched over Zr+s-lattice filtered complexes.

In other words, morphism composition respects the total filtration on the tensor product. As
stated above, this follows immediately from the definition of comodule morphism in the category
cmod∞.

Remark 2.12. One should make certain not to confuse this enrichment with the notion that the
objects of (a, b)-Mod∞ are lattice filtered, as this only occurs if we resolve the polymodules.

2.4. Filtered constructions

In this section we define tensor products and inner homs of polymodules. To do this effec-
tively, it is helpful to have a picture in mind as well as the appropriate notation associated to
this picture. We will say s = (S+, S−, κ) is a labelled set if S+ and S− are finite sets and κ is
a function from S+

⊔ S− to the objects of Alg∞. We will write A ∈ s (or A ∈ s±) if there is
s ∈ S+

⊔ S− (or s ∈ S±) such that κ(s) = A. Given a labelled set s = (S+, S−, κ), we write
s∗ for the labelled set (S−, S+, κ). We take L to be the category of labelled sets with morphisms
that are injective maps respecting the labelling. Note that L is closed under finite direct limits.

Given a labelled set s = ({t+1 , . . . , t+r }, {t−1 , . . . , t−s }, κ) we take s-Mod∞ to denote the cate-
gory of (κ(t+1 ), . . . , κ(t

+
r )|κ(t

−

1 ), . . . , κ(t
−
s )) polymodules. We abbreviate the differential coal-

gebra

B[κ(t+1 )] ⊗ · · · ⊗ B[κ(t+r )] ⊗ B[κ(t−1 )] ⊗ · · · ⊗ B[κ(t−s )]

by B As. Any morphism i : s1 → s2 induces a forgetful functor i∗ : s2-Mod∞ → s1-Mod∞.
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By gluing data t = (s0, s1, s2, i1, i2, j1, j2), we mean a pushout diagram as below in L

s0 s∗

1

s2 s∗

1 ⊔s0 s2

i1

i2

j2

j1

and we abbreviate s1♯s0s2 for the labelled set [s1 − i1(s
∗

0)] ⊔ [s2 − i2(s0)].
Given gluing data t = (s0, s1, s2, i1, i2, j1, j2), we define the tensor product as a functor

∞

⊗s0 : s1-Mod∞ × s2-Mod∞ → (s1♯s0s2-Mod∞)
l f . (2.12)

As usual, this product is given by first passing through the bar construction, applying the cotensor
product and then recognizing the result as the bar construction of a polymodule. The details of
this are now given.

Let P1, P2 be s1, s2 polymodules respectively. Then we let

P1
∞

⊗s0 P2 = P1 ⊗ B As0 ⊗ P2.

To simplify the definition of the structure map, we write ∆1 = ∆i∗1 (P1) and ∆2 = ∆i∗2 (P2) as
partial comultiplications. These are the comultiplications obtained when considering BP1 and
BP2 as comodules over B As0 . Then we see that there is an isomorphism of graded vector spaces:

α : Bs1♯s0s2(P1
∞

⊗s0 P2) → Bs1 P1�B As0
Bs2 P2

where �B As0
is the cotensor product (see, e.g. [9]). Recall that this is the kernel of

∆1 ⊗ 1 − 1 ⊗ ∆2 : Bs1 P1 ⊗ Bs2 P2 → Bs1 P1 ⊗ B As0 ⊗ Bs2 P2.

Restricting α to P1
∞

⊗s0 P2, it is defined as α(p1 ⊗ a ⊗ p2) = p1 ⊗ ∆B As0
(a) ⊗ p2 where, as

always, we implicitly use the symmetric monoidal map γ . It is extended to the bar construction
by tensoring with the remaining coalgebras. Utilizing α, one pulls back the differential from the

cotensor product to obtain a differential d on Bs1♯s0s2(P1
∞

⊗s0 P2). As this differential is a square
zero comodule coderivation, it is induced by its composition with the projection

π : Bs1♯s0s2(P1
∞

⊗s0 P2) → P1
∞

⊗s0 P2

and one obtains the A∞-module map µ
P1

∞

⊗s0 P2
= π ◦ d.

Given morphisms φi : Pi → P ′

i in si , we have that the cotensor product of the bar construc-
tions

bφ1�B As0
bφ2 : Bs1♯s0s2(P1

∞

⊗s0 P2) → Bs1♯s0s2(P ′

1

∞

⊗s0 P ′

2)

yields a natural map φ1
∞

⊗s0φ2 in s1♯s0s2-Mod∞. When considering P1
∞

⊗s0 as a functor, we take

φ2 to 1P1

∞

⊗s0φ2. Note that it follows from the definitions above and that of the cone that P1
∞

⊗s0

is an exact functor.
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Since the coalgebra B As0 is Z|s0|-filtered by the primitives of B A for A ∈ s0, we have that

P1
∞

⊗s0 P2 is lattice filtered by Z|s0|. We will preserve this filtration in the definition and write

P1 ⊗
[γ ]

s0 P2 = P1 ⊗


⊗A∈s+

0
Bki Aop


⊗


⊗B∈s−

0
Bl j B


⊗ P2

where γ = (k1, . . . , ka, l1, . . . , lb) ∈ Z|s0|. Thus, we have obtained the DG functor (2.12).
It will be useful to have notation for filtered quotients in this setting. For this, we write

P1 ⊙
γ
s0 P2 :=

P1
∞

⊗s0 P2

P1 ⊗
[γ ]

s0 P2

. (2.13)

As expected, the tensor product of a given polymodule with the diagonal polymodule yields a
quasi-equivalent polymodule. However, the filtration is added structure which will be exploited
later in the paper. For now, we simply define the natural quasi-equivalence and its inverse. Fix a
labelled set s = (S+, S−, κ), let 2s = s∗

⊔ s and t = (s, 2s, s, i1, i2, j1, j2) the natural gluing
data. We take Ds to be the diagonal 2s polymodule

⊗t∈S+∪S− κ(t).

The structure maps for Ds are simply the tensor products of the A∞ algebra maps composed with
the shift for the various labelling algebras. Then we define the natural equivalences

ξP : Ds

∞

⊗s P → P ϵP : P → Ds

∞

⊗s P. (2.14)

Here ξP is defined as the map induced by tensor multiplication m, the shift σ and the polymodule
multiplication map µP ,

ξP = µP ◦ (m ⊗ 1P ) ◦ (1B As
⊗ σ ⊗ 1B As

⊗ 1P ).

Letting uB As
: K → B As send 1 to es = ⊗t∈S+∪S− eB[κ(s)], we take

ϵP = σ−1
⊗ (es)⊗ 1B As

⊗ 1P .

Using the unital conditions, it is easy to verify that ξP and ϵP are quasi-inverse maps. As a
consequence, we obtain the following basic lemma which is instructive as to the bar construction
of a module.

Lemma 2.13. Suppose A is an A∞ algebra and denote A regarded as a right module over itself

as Ar . Let P be a left A module, then the vector space Ar
∞

⊗P is naturally quasi-isomorphic to
H∗(P).

Proof. Let s = (S+, S−, κ) be the labelled set with S+
= ∅, S−

= {t} and κ(t) = A. Then the
lemma follows from the basic observation that, by definition,

Ar ∞

⊗P = D2s

∞

⊗s P

as a complex. Using the natural equivalence in (2.14), latter is quasi-isomorphic to P which has
minimal model H∗(P). �

Combining this lemma with earlier remarks, we obtain the following important fact.
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Proposition 2.14. Let t = (s0, s1, s2, i1, i2, j1, j2) be gluing data such that the algebras la-

belled by s0 are compact. If Pi are perfect si polymodules then P1
∞

⊗s0 P2 is a perfect s1♯s0s2
polymodule.

Proof. The previous lemma implies that there is a quasi-isomorphism

φ : Us1

∞

⊗s0Us2

q.i.
−→ Us1♯s0s2 ⊗


⊗A∈s0 H∗(A)


.

By the compactness assumption, this implies that tensor products of finitely generated projective
polymodules are finitely generated projective polymodules. Together with the definition of

perfect modules and the fact that tensor product
∞

⊗s0 is exact, we have the result. �

To define the internal Hom, we again follow the approach for the tensor product and pass to
coalgebras and comodules. There is an additional notion needed here from classical homotopy
theory, that of a twisting cochain which we recall here. If C is a DG coalgebra and A a
DG algebra, a map ρ : C → A is called a twisting cochain if ∂ρ + ρ · ρ = 0 where
∂ρ = dAρ − (−1)|ρ|ρdC and ρ · ρ := m ◦ ρ ⊗ ρ ◦ ∆C where m is multiplication in A.

One of the central features of twisted cochains is that they allow one to define twisted tensor
products [5,13]. We take a moment to recall this construction for the case of a left module.

Definition 2.15. Given a dg coalgebra C , a dg algebra A, a dg C bicomodule M , a left dg A
module N and a twisting cochain ρ : C → A, the twisted tensor product M ⊗ρ N (or N ⊗ρ M)
is defined as the ordinary tensor product of vector spaces with chain map dM⊗1N +1M⊗dN +ρ∩

where

ρ ∩ = (1M ⊗ m N ) ◦ (1M ⊗ ρ ⊗ 1N ) ◦ (∆M ⊗ 1N ).

The result is a left (or right) C comodule.

The case of right module and bimodule is analogous.
Now, let s = s′

⊔s′′ in L and i : s′
→ s, j : s′′

→ s the inclusion maps. Given a s polymodule
P , we define a map

ρ j : B As′ → Homs′′-Mod∞
( j∗(P), j∗(P))

as [ρ j (c)](a ⊗ p ⊗ b) = µP (c ⊗ a ⊗ p ⊗ b) where a ⊗ p ⊗ b ∈ Bs′′

P . It follows from Eqs.
(2.8) and (2.9) that ρ j is a twisting cochain from the DG coalgebra B As′ to the DG algebra
Homs′′-Mod∞

( j∗(P), j∗(P)).
Suppose t = (s0, s1, s2, i1, i2, j1, j2) is gluing data and P1, P2 are s∗

1, s2 polymodules re-
spectively. Then, as a graded vector space, we define Homs0(P1, P2) as Homs0-Mod∞

(i∗1 (P1)

, i∗2 (P2)). The structure map

µHoms0 (P1,P2) : Bs∗

1♯s0s2 Homs0(P1, P2) → Homs0(P1, P2)

is set to equal the differential on the twisted tensor product composed with the projection π :

Bs∗

1♯s0s2 Homs0(P1, P2) → Homs0(P1, P2), where the former is induced by the isomorphism

Bs∗

1♯s0s2 Homs0(P1, P2) = B As2−i2(s0)⊗ρi2
Homs0(P1, P2)⊗ρi1

B As1−i1(s0).

Again we keep track of the lattice filtration so that Homs0(P1, P2) is a Z|s0| filtered polymodule.
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As in the case of the tensor product, for any s polymodule P , the diagonal polymodule Ds

plays the role of a unit for Homt(Ds, P). Again we define the natural transformations

χP : Homs(Ds, P) → P υP : P → Homs(Ds, P).

Where χP (a ⊗ φ ⊗ b) = (−1)|φ||a|φ(a ⊗ uB As(1) ⊗ b) and υP is the strict map sending p to the
morphism φp defined as φp(a ⊗ q ⊗ b) = µP (a ⊗ q+

⊗ p ⊗ q−
⊗ b) where q± is the tensor

factor of q in Ds± .

2.5. Filtered adjunction

In this section we observe the classic adjunction between tensor product and internal Hom
for polymodules. This leads to elementary, but powerful, observations on dual A∞-modules. We
will be concerned with preserving the lattice filtrations naturally throughout.

To state the theorem, we need to specify the gluing data between three categories of polymod-
ules. Assume si are labelled sets for i = 1, 2, 3. We say that the data r = (t12, t23, t31) form a
gluing cycle if ti j are the gluing data

t12 = (s12, s1, s2, i12, i ′12, j12, j ′12),

t23 = (s23, s
∗

2, s3, i23, i ′23, j23, j ′23),

t31 = (s31, s3, s
∗

1, i31, i ′31, j31, j ′31),

and im(ikl) is disjoint from im(i ′mk). A gluing cycle can be represented graphically as a directed
graph with three vertices. Vertices v1, v2 have incoming and outgoing edges s∓

i and v3 has in-
coming and outgoing edges s±

3 . Those edges that connect vertices vi and v j form the labelled set
si j . This is depicted in Fig. 1.

We take sr to be the labelled set (s1♯s12s2)
∗♯s23⊔s31s3, i.e. sr consists of the half edges in

Fig. 1. With this notation, we can prove the following classic adjunction:

Theorem 2.16. Given a gluing cycle r and polymodules Pi ∈ si -Mod∞, there is a natural
isomorphism Φ in (sr-Mod∞)

l f ,

Φ : Homs31⊔s23(P1
∞

⊗s12 P2, P3) → Homs31⊔s12(P1,Homs23(P2, P3)). (2.15)

Proof. This is simply an exercise in the definitions of the last section and the observation that
gr l f is a closed category. Recall that closed means that there is an internal Hom and tensor

with the usual adjunction. Letting ⋆ = Homs31⊔s23(P1
∞

⊗s12 P2, P3) we have the following natural
isomorphisms of Z|s31|+|s12|+|s23| filtered graded vector spaces

⋆ = Hom(s31⊔s23)-Mod∞
(P1

∞

⊗s12 P2, P3)

= Homgr (B As31 ⊗ P1 ⊗ B As12 ⊗ P2 ⊗ B As23 , P3)

≃ Homgr (B As31 ⊗ P1 ⊗ B As12 ,Homgr (P2 ⊗ B As23 , P3)),

= Homs31⊔s12(P1,Homs23(P2, P3)).

The first equality follows from the definition A∞-morphism, the second from the closedness
of gr l f and the third from the definitions of internal Hom and A∞-morphism. To complete
the proof, one must show that the isomorphisms above respect the differentials, which follows
immediately from the definitions. �
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Fig. 1. The gluing cycle r.

The same proof gives a natural equivalence

Φl
: Homs31⊔s23(P1

∞

⊗s12 P2, P3) → Homs32⊔s23(P2,Homs13(P1, P3)),

making the bicategory of A∞-algebras and bimodules into a biclosed bicategory (see [12]). We
apply this theorem to a simple gluing cycle to obtain the following corollary.

Corollary 2.17. Suppose A ∈ Alg∞ and P ∈ A-Mod∞. Then:

ℓ
∞

⊗A P
≤ ℓHom A(P, ). (2.16)

Proof. Here we take s1 = s∗

2 to be the labelled set S−
= {A} and S+

= ∅ while s3 is just the
empty labelled set. We take P1 = Q to be any A module and P2 = P , P3 = K. Then the filtered
adjunction (2.15) reads

HomK(Q
∞

⊗A P,K) ≃ Hom A(P,HomK(Q,K)).

By universal coefficients, the left hand side has length equal to ℓ(Q
∞

⊗A P). The right hand side
has length ℓ(Hom A(P,HomK(Q,K))). As the Q is arbitrary, we have then that the supremum

ℓ
∞

⊗A P is less than or equal to the supremum ℓHom A(P, ) verifying the claim. �

For formal algebras concentrated in degree zero, the above corollary is the elementary fact that
flat dimension is less than or equal to projective dimension. We note that for arbitrary (formal
and non-formal) algebras A, it is not the case that all left modules are quasi-isomorphic to
HomK(Q,K) for some Q, so just as in the formal setting, this inequality can be strict. We
will observe conditions for which this inequality is an equality below.

The dual P∨ of an s polymodule P is the s∗ polymodule HomK(P,K). We start with an
elementary lemma for perfect polymodules over compact algebras.

Proposition 2.18. Suppose s labels compact algebras. Then
∨

: s-mod∞ → s∗-mod∞

is an equivalence of categories and there is a natural isomorphism Θ : I → (I ∨)∨.



248 L. Katzarkov, G. Kerr / Advances in Mathematics 243 (2013) 232–261

Proof. We prove this for the case of s labelling a single compact algebra A as the general case
is the same. Every perfect A module P has a finite dimensional minimal model Pmin defined
uniquely up to isomorphism. Thus there is the usual graded vector space natural isomorphism
Θgr : Pmin → (P∨

min)
∨ defined in the usual way [Θgr (p)](l) = (−1)|l||p|l(p). It is imme-

diate from the definition of internal hom that Θ := Θgr is indeed a strict A-module homo-
morphism. �

To generalize this proposition, we fix gluing data t between s∗

1 and s2. The following proposi-
tion, which was observed early in homological algebra, is stated below in terms of polymodules.

Proposition 2.19. Suppose Pi is a si polymodule and P2 is a perfect s2 polymodule. If the
algebras labelled by s2 − i2(s0) are compact, then there is a natural filtered quasi-equivalence

P∨

1

∞

⊗s0 P2 ≃ Homs0(P2, P1)
∨.

Proof. First we define a morphism Ψ : P∨

1

∞

⊗s0 P2 → Homs0(P2, P1)
∨ of filtered s∗

1♯s0s2 poly-
modules by

[Ψ(a ⊗ φ ⊗ b ⊗ p ⊗ c)](ψ)

= (−1)|ψ |(|p|+|b|+|c|)+|φ||a|φ(µHoms0 (P2,P1)(a ⊗ ψ ⊗ c)(b ⊗ p)).

It is plain to see that Ψ preserves the lattice filtrations and that Ψ is a natural transformation.
Now we check to see that Ψ is a quasi-isomorphism for P2 = Us2 . Write s′

2 for s2 − i2(s0)

and note that Us2 = Us0 ⊗ Us′

2
. By choosing minimal models for the algebras labelled by s′

2 we
may assume Us′

2
is a finite dimensional vector space over K. This gives

P∨

1

∞

⊗s0Us2 = (P∨

1

∞

⊗s0Us0)⊗ Us′

2
.

While on the other side we obtain

Homs0(Us2 , P1)
∨

= Homs0(Us0 , P1)
∨

⊗ (U∨

s′

2
)∨,

= Homs0(Us0 , P1)
∨

⊗ Us′

2
,

where the last equality follows from the compactness assumption. It is easy to see that Ψ fac-
tors through this tensor decomposition of Us2 , so we may cancel the Us′

2
factor and show the

equivalence on the Us0 factor.
For this, observe that the tensor product and internal Hom with P2 = Us0 yields the same

complex as P2 = Ds0 we restrict ξ to obtain the quasi-commutative diagram in Fig. 2.

By exactness of P∨

1

∞

⊗s0 and Homs0( , P1)
∨ and naturality of Ψ , we have that Ψ induces

a quasi-isomorphism on perfect s2 polymodules. As was observed above, Ψ respects filtrations
which yields the claim. �

As a corollary, we have the following important fact

Corollary 2.20. Suppose A ∈ Alg∞ and P ∈ A-mod∞. Then

ℓHom(P, )
= ℓ

∞

⊗ P .

This equality motivates the following definition.
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Fig. 2. Quasi-commutative diagram.

Definition 2.21. For P ∈ A-mod∞ we define the length of P to be

ℓ(P) := ℓHom(P, )
= ℓ

∞

⊗ P ,

and define the global length of A-mod∞ to be the supremum

ℓ(A-mod∞) := sup{ℓ(P) : P ∈ A-mod∞}.

3. Dimensions of A∞ categories

In this section we lift many of the definitions and theorems of the dimension theory for
triangulated categories to the pretriangulated setting. After recalling some definitions and results
on triangulated and pretriangulated categories from [1,13,16,17], we prove our first main theorem
that equates filtered length of internal homs with the generation time of a given object. We follow
this with a proof of the base change formula for A∞-algebras.

3.1. Generators in triangulated categories

We take a moment to recall some definitions and notation from [17]. Given a triangulated
category C and a subcategory I , we define ⟨I ⟩ to be the smallest full subcategory of C closed
under direct summands, finite direct sums and shifts. Given two subcategories I1, I2 ⊂ T , we
define I1 ∗ I2 to be the category of objects N such that there exists a distinguished triangle

M1 → N → M2 →

in T with M1 ∈ I1 and M2 ∈ I2. We take I1 � I2 := ⟨I1 ∗ I2⟩. It follows from the octahedral
axiom that � is an associative operation, so the category I �d is well defined. With this notation
in hand, the following definitions can be stated.

Definition 3.1. Let T ⊆ C.

(i) I generates T if given N ∈ T with HomT (M[i], N ) = 0 for all M ∈ I and all i ∈ Z, then
N = 0.

(ii) I is a d-step generator of T if T = I �d .
(iii) T is finitely generated if there exists G ∈ T which generates T . In this case we call G a

generator for T .
(iv) T is strongly finitely generated if there exists M ∈ T which is a d-step generator.

We utilize the above definitions to define level and dimension as follows.

Definition 3.2. If G generates T and M ∈ T we say the level of M with respect to G is

lvlG(M) = min


d : M ∈


G�(d−1)
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Fig. 3. Quivers of generators for Db(P1).

and the generation time of G is

t (G) = min


d : T =


G�(d−1)


= max {lvlG(M) : M ∈ T } .

The dimension of a category T with generators is defined to be the smallest generation time.
The Orlov spectrum of T is the set of all generation times.

The central theme of this paper is to enhance the above definitions into the language of DG and
A∞-categories. Thus we will assume our category T is always a subcategory of the homotopy
category H0(A) for some pretriangulated A∞-category A. If T is an algebraic triangulated
category, this is implied by a theorem of Lefèvre-Hasegawa which we site below. Recall that
a triangulated category is algebraic if it is the stable category of a k-linear Frobenius category
(see [11]). First we fix notation and, in a triangulated category T , write Hom∗

T (M, N ) for the
algebra ⊕n∈Z HomT (M, N [n]).

Theorem 3.3 (7.6.0.4, [13]). If T is an algebraic triangulated category which is strongly
generated by an object G, then there is an A∞ structure on AG := Hom∗

T (G,G) such that
the Yoneda functor evaluated at G from T to H0(AG-mod∞) is a triangulated equivalence.

We say that a pretriangulated A∞-subcategory B (strongly) generates if H0(B) does in
H0(A). We also use the same language and notation as above for level, generation time and
dimension.

Before proceeding with this discussion, we take a moment to illustrate this theorem with some
examples.

Example 3.4. For Pn , Beilinson showed [2] that ⟨O,O(1), . . .O(n)⟩ forms a full exceptional
collection for Db(Pn). Taking G = ⊕

n
i=0 O(i) then gives a generator. From grading considera-

tions, the endomorphism algebra AG has no higher products so Db(Pn) ≃ H0(AG-mod∞). In
the case of n = 1, AG is the path algebra of the Kronecker quiver illustrated in Fig. 3.

Exceptional collections in the dimension theory of triangulated categories were studied in [1].
In general, one can mutate an exceptional collection to obtain a new exceptional collection
and thereby a new generator. Below we examine a generator which does not arise from such
mutations and in fact is not defined as the direct sum of objects in an exceptional collection.

Example 3.5. Let n = 1 in the previous example and let G ′
= O ⊕ O p where p ∈ P1 is any

point. The algebra AG ′ is the quiver algebra with relations given in the middle of Fig. 3 where
deg(a) = 1 = deg(c) and deg(b) = 0 and ba = c. Here, the grading does not preclude the
existence of higher products, but it is not hard to exhibit a quasi-isomorphism from this algebra
to the DG algebra endomorphism algebra of the mutated objects in AG-mod∞. Again we obtain
the isomorphism Db(P1) ≃ H0(AG ′ -mod∞) from coherent sheaves to graded modules over the
graded algebra AG ′ .

Example 3.6. Another studied example is the category of matrix factorizations for the function
fn : C → C via fn(z) = zn , or equivalently the derived category of singularities Db

sg( f −1
n (0)).
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It was observed in [1] that every non-zero object of M F(C[[z]], fn) is a strong generator and
that the generator 

C C

∈ M F(C[[z]], fn)

zn−1

z

which is equivalent to O0 ∈ Db
sg( f −1

n (0)) had maximal generation time. Also, in [8], the com-
putation of a minimal model for AG as a Z/2Z graded A∞-algebra was performed and found
to equal AG = k[θ ]/(θ2) where deg(θ) = 1 and all higher products vanish except µn(θ, θ,

. . . , θ) = 1. Again, we have Db
sg( f −1

n (0)) ≃ H0(AG-mod∞).

Now, starting with an A∞ pretriangulated category A, let G ∈ A be a generator and AG =

Hom∗(G,G) its A∞ endomorphism algebra. We define the A∞-functor evG : A → AG-Mod∞

via

evG(B) = Hom∗(G, B).

The map T 1 on morphisms is composition and T k is defined using higher multiplication. Clearly,
evG factors through the Yoneda embedding and can be thought of as evaluation of Yoneda at the
point G. From Theorem 3.3, if G is a strong generator, we have that evG is an equivalence with
AG-mod∞. In particular, given any two objects, M, N ∈ A, the associated map

H∗evG : H∗(Hom∗(M, N )) → H∗(Hom∗(evG M, evG N )) (3.1)

is an isomorphism. In a moment, we will examine the right hand side of Eq. (3.1).
Were we to have started out in the triangulated setting, we could have defined the functor

evG : H∗A → H∗(AG)-mod. It is well known that the natural functor Φ : H∗(AG-mod∞) →

H∗(AG)-mod is not an equivalence of categories. However, all of these categories and functors
fit into the diagram of categories below.

A H∗(A)

AG-mod∞ H∗(AG-mod∞)

H∗(AG)-mod

H∗

H∗

≃evG ≃H∗evG

evG

Φ

The kernel (i.e. all morphisms sent to zero) of evG is defined to be the G-ghost ideal. We write
this ideal as GG and its n-th power to be G n

G . The following lemma will be fundamental for what
follows and can be found in [1].

Lemma 3.7 (The Ghost Lemma). If T is an algebraic triangulated category with strong gener-
ator G such that AG is compact. Then M ∈


G�(d)


and M ∉


G�(d−1)


if and only if there exists

an N ∈ T such that G d
GHom∗(M, N ) ≠ 0.



252 L. Katzarkov, G. Kerr / Advances in Mathematics 243 (2013) 232–261

An important conceptual point about this perspective is that, by choosing a generating object
G, the homotopy category of A has been enhanced to a filtered category. This is not an invariant
of the A∞-category A, nor is it an invariant of the triangulated category H∗A. It is an additional
structure introduced by the choice of generator which provides homological information relative
to G.

3.2. Ghosts and length

We will now establish the link between generation time and filtration length. The following
lemma is straightforward, but we supply a proof to establish some notation.

Lemma 3.8. In A-Mod∞ we have ℓ(UA) = 0.

Before we begin the proof, we set up the more general comodule notation and define a weaker
class of maps Mapk

C (P, P ′) between two DG comodules of a coalgebra C . First, given a DG
coalgebra C ∈ Cog and DG comodule P , we have a canonical filtration on P given by

P[k] := ker(∆
k
P ).

The analogue of the length filtration in (2.11) for DG comodules is then

F i Hom(P, P ′) = {φ : φ(P[k]) ⊆ P[k−i]}.

This induces a filtration F• on the cohomology of Hom(P, P ′). We will often abuse notation
and write φ ∈ Fk to indicate that the cohomology class [φ] ∈ Fk . In the context of the DG
category of A-modules Mod∞ for some A∞ algebra A, it follows from the definition that the
length filtration in (2.11) equals that of the F • filtration on the bar constructions

F •HomMod∞
(M, N ) = F •Hom(BM,BN ).

This filtration is on morphisms in the pretriangulated category Mod∞, while the filtration F•

is on morphisms H∗(HomMod∞
(M, N )) or H0(HomMod∞

(M, N )) in the derived category
H∗(Mod∞) or H0(Mod∞) respectively.

For any map of comodules f : P → P ′, we take

[∆, f ] := ∆P ′ f − (1C ⊗ f )∆P

and note that

[∆, f g] = (1C ′ ⊗ f ⊗ 1C )[∆, g] + [∆, f ]g.

For k ≥ 0, define

Mapk
C (P, P ′) =


f : image([∆, f ]) ⊂ C ⊗ P ′

[k]


.

It is immediate that the vector spaces Map•

C (P, P ′) form an increasing filtration. These classes
of maps will be useful when defining homotopies. Indeed, they naturally appear in the cobar
complex of morphisms from the cobar of P to the cobar of P ′ satisfying filtration properties on
their differential in that complex. A straightforward generalization Mapk,l

C0,C1
(P, P ′) of the above

definition to (C0,C1) bicomodules P and P ′ will also be used. We leave the elementary proof of
the following properties to the reader.
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Lemma 3.9. (i) If f ∈ Mapk
C (P, P ′), g ∈ F i Hom(P ′, P ′′) with k ≤ i , then g f ∈ F i−k

Hom(P, P ′′).
(ii) If f ∈ Mapk

C (P, P ′) then f (P[n]) ⊆ P ′

[n+k]
.

(iii) If f ∈ Mapk
C (P, P ′), g ∈ Mapi

C (P
′, P ′′) then g f ∈ Mapk+i

C (P, P ′′).
(iv) If f ∈ Mapk

C (P, P ′) then ∂ f ∈ Mapk
C (P, P ′).

Utilizing these properties, we proceed with the proof of Lemma 3.8.

Proof (Proof of Lemma 3.8). To prove the lemma, we define a homotopy contraction

h A : BUA → BUA

as


∞

m=1 1⊗m
⊗ η where η is the insertion of the identity. More concretely,

h A([a1| · · · |am]) = (−1)|a1|+···+|am |
[a1| · · · |am |e]

where |ai | is the degree of ai in A[1]. A quick computation shows that indeed

h AbA + bAh A = 1

so that h A is a vector space contracting homotopy of BUA.
Note that h A is not a B A-comodule morphism of BUA (otherwise, the entire category

A-Mod∞ would be zero). Indeed, we have, for any a ∈ BUA,

(∆h A − (1 ⊗ h A)∆)(a) = (−1)|a|a ⊗ [e]

This implies that h A ∈ Map1
B A(BUA,BUA). By Lemma 3.9, we have that if φ ∈ F 1

HomMod∞
(UA,M) then bφ ◦ h A ∈ Map0

B A(BUA,BUA) is a comodule morphism. Thus, if
φ ∈ F 1HomMod∞

(A,M) is a homomorphism, then ∂(bφh A) = bφ∂h A = bφ implying that
it is a boundary and therefore F1Hom(UA,M) = 0. �

Applying this lemma yields the following corollary.

Corollary 3.10. For any A∞-algebra A, G A = F1.

Proof. Clearly, if φ : M → N is in F 1, then φ∗ : HomMod∞
(A,M) → F 1Hom(A, N ) so

[φ]∗ = 0. Conversely, using the homotopy retract above, one sees that there exists a map

HomMod∞
(A, K ) → HomMod∞

(A, K )/F 1HomMod∞
(A, K )

which is natural with respect to K ∈ Mod∞. This induces a natural inclusion

Hom(A, K ) ↩→ Hommod(H(A), H(K )),

≃ H(K ).

Thus if [φ]∗ = 0 then [φ0
] = 0 implying [φ] ∈ F1Hom(M, N ). �

Indebted to the compatibility of the length filtration with composition, we also easily obtain.

Corollary 3.11. For all r we have Gr
A ⊆ Fr .

The following theorem asserts that this inclusion is an equality.

Theorem 3.12. For any A∞-algebra A, Gr
A = Fr .
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Proof. We start this proof by writing down two homotopies of the diagonal (A, A)-bimodule

h±

diag : BA → BA

where

h+

diag([a|a|a′
]) = (−1)|a|+|a|

[[a|a]|e|a′
]

h−

diag([a|a|a′
]) = (−1)|a|

[a|e|[a|a′
]].

While these maps fail to be bicomodule morphisms, it is the case that h+

diag ∈ Map1,0
B A,B A

(DA,DA) and h−

diag ∈ Map0,1
B A,B A(DA,DA). Indeed, we have

[∆, h+

diag]([a|a|a′
]) = [a|a] ⊗ [e] ⊗ [a′

]

and

[∆, h−

diag]([a|a|a′
]) = [a] ⊗ [e] ⊗ [a|a′

].

Furthermore, letting τ± be the translation maps

τ+(a|a|[a′

1| · · · |a
′
m]) = (−1)1+|a|+|a|

[[a|a]|a′

1|[a
′

2| · · · |a
′
m]],

τ−([a1| · · · |an]|a|[a′
]) = (−1)1+|a1|+···+|an−1|[[a1| · · · |an−1]|an|[a|a′

]],

our homotopies bound to

∂h±

diag = 1 − τ±.

Thus τ− ∈ Map0,1
B A,B A(DA,DA) by part (iv) of Lemma 3.9. More generally, we have

∂

h±

diag(1 + τ± + τ 2
± + · · · + τ k−1

± )


= 1 − τ k
±.

We observe that, from the fact that Map0,•(DA,DA) is an increasing filtration, and by part (iii)
of Lemma 3.9,

σ−

k := h±

diag(1 + τ± + τ 2
± + · · · + τ k−1

± ) ∈ Map0,k
(B A,B A)(BDA,BDA). (3.2)

Finally, we note that for any l, as a map in Ch the translation map satisfies

τ k
−(B(k,l)DA) = 0. (3.3)

We now use induction to prove our theorem. It suffices to show that if φ ∈ F r HomMod∞

(M, N ), then there exists a module K and homomorphisms π : M → K , ψ : K → N such that
π ∈ F1, ψ ∈ Fr−1 and φ = ψ ◦ π . Recall from Eq. (2.13) for an (A|A) bimodule P1 and a left
A module P2, the module P1 ⊙k P2 is defined as the quotient

P1
∞

⊗P2

P1 ⊗[k] P2
.

We consider the diagram in Fig. 4 which is commutative up to homotopy. The map ϵl,M was
defined in Eq. (2.14) and is a quasi-isomorphism. In particular, a simple examination of the map
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Fig. 4. Diagram factoring φ.

shows that
DA

∞

⊗M,


DA ⊗
[n−1] M


n∈Z


has length 0 as a filtered module. We note that the proof of Lemma 3.19 is independent of the

results of this section and apply it here. Taking p = 0, N = DA
∞

⊗M , Nt = DA ⊗
[t] M and

n = 0, Lemma 3.19 implies that π ∈ F1.
On the other hand, as ψ is the restriction of ξl,M ◦ (1 ⊗ φ), we can write it out concretely. It

is a strict map whose restriction to A ⊗ A[1]
⊗n

⊗ M is

ψ0
n ([a|a1| · · · |an|m]) =

n
i=0

(−1)|a1|+···+|ai |µi+1
N ([a|a1| · · · |ai |φ

n−i ([ai | · · · |an|m])])

for n > 1. As φ ∈ Fr , we see in particular that ψ0
n = 0 for n ≤ r . Thus ψ factors as a

composition

A ⊙1 M
π

−→ A ⊙r M
ψ̃

−→ N

where ψ̃ is a strict homomorphism. Utilizing equation (3.2), a direct calculation shows that
σr−1 ⊗ 1M : BDA ⊗K BM → BDA ⊗K BM restricts to a well defined A∞-module morphism

σ−

r−1 ⊙1 1M : A ⊙1 M → A ⊙r M.

Composing with ψ̃ and applying the differential gives

∂[(−1)|ψ |ψ̃ ◦ (σ−

r−1 ⊙1 1M )] = ψ̃ ◦ ((∂σ−

r−1)⊙1 1M )

= ψ̃ ◦ ((1A − τ r−1
− )⊙1 1M )

= ψ̃ ◦ (1A ⊙1 1M )− ψ̃ ◦ (τ r−1
− ⊙1 1M )

= ψ̃ ◦ π − ψ̃ ◦ (τ r−1
− ⊙1 1M )

= ψ − ψ̃ ◦ (τ r−1
− ⊙1 1M ).

Thus ψ is cohomologous to ψ̃ ◦ (τ r−1
− ⊙1 1M ). Yet, by Eq. (3.3) we have that

(τ r−1
− ⊙1 1M )


B(r−1,0)DA ⊗K BM


= 0

and since ψ̃ is strict, this implies that

ψ̃ ◦ (τ r−1
− ⊙1 1M )


B(r−1,0)DA ⊗K BM


= 0.

Thus, ψ ≃ ψ̃ ◦ (τ r
− ⊙1 1M ) ∈ Fr−1. �
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Combining this theorem with the Ghost Lemma of the previous section, we have the following
homological criteria for generation time.

Corollary 3.13. Given an A∞-algebra A, the generation time of an A∞-module UA in
H0(A-Mod∞) is the global length ℓ(A-mod∞).

Coupling this to the theory of enhanced triangulated categories, we also obtain the corollary
below.

Corollary 3.14. If A is a pretriangulated A∞-category and G ∈ A is a generator, then
t (G) = ℓ(AG-Mod∞).

More refined statements on the level lvlG(M) of an object with respect to a given generator
G are also of use. We write the result in the A∞-module category as opposed to concentrating
on the AG-module case.

Corollary 3.15. If M is an A-module then lvlA(M) = ℓ(M).

Example 3.16. As was mentioned at the end of Section 2.1, when AG is an ordinary algebra,
the global length of ℓ(AG-Mod∞) is precisely its homological dimension. For the cases of
the Beilinson exceptional collection ⟨O, . . . ,O(n)⟩, one may use Beilinson’s resolution of the
diagonal to see that this dimension is n.

Example 3.17. For the generator O ⊕ O p of P1, we again have formality, but AG ′ is now a
graded algebra. Viewing G ′ as a quiver with relations whose vertices correspond to O and O p,
one observes that the graded simple modules S1 and S2 arise from considering the idempotents
at the vertices while the graded projective modules P1, P2 from considering all arrows mapping
out of each vertex. The projective resolutions below for the simple objects give the homological
dimension of AG ′ as 2.

· · · 0 → P1 → P2 → P1 → S1 → 0

· · · 0 → P1 → P2 → S2 → 0.

The final example explores a case where higher products have a significant effect on genera-
tion time.

Example 3.18. From Example 3.6, we recalled that M F(C[[z]], zn) had a generator G with
AG = k[θ ]/(θ2) with a single higher product µn(θ, . . . θ) = 1. To describe H0(AG-mod∞),
we examine the A∞-relation for the products of a minimal AG-module M . First, we recall that
M is Z/2Z graded and the usual A∞-module map µr

M : Ar
G ⊗ M → M is degree r + 1 (due

to the desuspension of AG). Since we assume M is unital, µr
M is completely determined by

µr
M ([θ | · · · |θ |m]). Writing Lr = µr

M ([θ | · · · |θ | ]) ∈ Hom1
gr (M,M), we may condense µM

into a power series L =


∞

r=1 Lr ur
∈ Hom1

gr (M,M) ⊗ C[[u]]. It is not hard to see that the
A∞-relation on µr

M translates into the equality

L · L = 1M · un .

Decomposing M into its graded summands M = M0 ⊕ M1, we may split Lr = L0
r ⊕ L1

r where
L0

r : M0 → M1 and L1
r : M1 → M0. Summing, we write Li

=


∞

r=1 L i
r ur and after tensoring
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M with C[[u]] we then have

M0 ⊗ C[[u]] M1 ⊗ C[[u]]

L0

L1

with L0L1
= un

= L1L0. This returns us full circle to the setting of matrix factorizations, but
with the added presence of the length filtration. Indeed, as above, given another AG module
(N , L̃) we may write any morphism φ : M → N as a power series T =


∞

r=0 Tr ur
∈

Hom∗
gr (M, N )⊗ C[[u]] where Tr (m) = φ([θ | · · · |θ |m]). The differential on Hom∗

mod∞
(M, N )

is the usual matrix factorization differential dT = L̃T − (−1)|T |TL. It is obvious from this
representation that φ ∈ F kHommod∞

(M, N ) if and only if deg(T) ≥ k.
For 1 ≤ m ≤ ⌊

n
2 ⌋, and define Mm to be the module corresponding to

C[[u]] C[[u]]

um

un−m

These make up the irreducible modules. One can show that the maximal filtered homomorphism
between any two such modules is attained by φ : Mm → Mm , for m = ⌊

n
2 ⌋, and φ corresponding

to T = um−1. This implies the generation time of G is deg(T) = ⌊
n
2 ⌋ − 1 in agreement with

results in [1].

The last example raises interesting questions on which filtrations arise as length filtrations on
the category of matrix factorizations. In the above example, we obtained the m-adic filtration on
matrices by considering the generator R/m where R = C[[u]] and m = (u). It is natural then to
hope that a similar phenomena occurs in general. In particular, take W ∈ C[[x1, . . . , xn]] = R
to have an isolated singularity at 0, I ▹ R an ideal and G ∈ M F(R,W ) is the generator
corresponding to R/I ∈ Db

sg(W
−1(0)). Given M, N ∈ M F(R,W ), we conjecture that the

length filtration on Hom(M, N ) equals the I -adic filtration. One obstruction to proving this
as we did for the case of zn is that the application of the homological perturbation lemma to
the Yoneda algebra of R/I involves very complicated computations. However, it is not hard to
observe that the I -adic filtration refines the ghost filtration.

3.3. Change of base formula

In this subsection we generalize the classical change of base formula for dimension to the case
of dimensions of A∞-algebras. We see that a new multiplicative factor appears in this formula
that measures the formality of the algebras involved.

We start by obtaining a general lemma on filtered A∞-modules. To simplify the exposition
and some proofs, we will work with modules as opposed to polymodules. Suppose M is an
A-module and (N ,G∗) ∈ (A-mod∞)

f is a filtered A-module of finite filtration length and
φ ∈ HomA-Mod∞

(M, N ) is any map. We wish to obtain a finite approximation of φ relative
to both the internal filtration on N and the filtration on HomA-Mod∞

(M, N ). A surprising
parameter that emerges in this pursuit is the degeneration time of the spectral sequence associated
to (N ,G∗). For the following lemma, assume G−1 N = 0 ≠ G 0 N , let Nt = N/G t N and
πt : N → Nt be the projection.
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Fig. 5. Diagram factoring (πn)∗.

Lemma 3.19. Suppose the spectral sequence associated to (N ,G∗) degenerates on the (s + 1)-
page and ℓ(N ) = n. Then for every p there exists a lift γ such that the following diagram
commutes up to homotopy

HomA-Mod∞
(M, N ) HomA-Mod∞

(M, Nn+sp)

F p+1HomA-Mod∞
(M, Nn+sp)

(πn+sp+1)∗

γ
inc

Before proving this lemma, let us set up some basic notation. Take

(BM)q := A[1]
⊗q

⊗ M ⊂ BM

and define

ρq : F qHomMod∞
(M, N ) → HomCh((BM)q , N ) = HomCh(A[1]

⊗q
⊗ M, N )

to be the restriction map. Here, the right hand side is the complex of morphisms from ((BM)q ,
bM |(BM)q ) to (N , µ1

N ). It is worthwhile to note that ρq is a map of cochain complexes (i.e. dρq =

0 in Ch).
Let us also introduce the general “strictification” map

σq : HomCh(A[1]
⊗q

⊗ M, N ) → HomMod∞
(M, N ).

This is the map σq(φ) = {φk
} where

φk
=


φ ifk = q
0 otherwise.

We note that this is not in general a cochain complex map. Nevertheless, it is clear that, for
every q,

ρq ◦ σq = 1. (3.4)

Proof. We start by proving the following claim.

Claim. With the assumptions of the lemma, for every q, the map (πn)∗ has a lift αq which
commutes up to homotopy in Fig. 5.

We first observe that since G−1 N = 0 ≠ G 0 N and ℓ(N ) = n the map πn : N → Nn is
contractible. Thus, restricting to (BM)q , the induced map on chain complexes

(π̃n)∗ : Hom∗

Ch(A[1]
⊗q

⊗ M, N ) → Hom∗

Ch(A[1]
⊗q

⊗ M, Nn)
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is also contractible. Here the differential associated to A[1]
⊗q

⊗ M is the restriction of bM . We
use the notation of π̃n above in order to distinguish it from the map in the claim, but both are
obtained through composition and the equation

ρq ◦ (πn)∗ = (π̃n)∗ ◦ ρq (3.5)

holds. Let

τ : Hom∗

Ch(A[1]
⊗q

⊗ M, N ) → Hom∗−1
Ch (A[1]

⊗q
⊗ M, Nn)

be a cochain bounding (π̃n)∗ (i.e. (π̃n)∗ = dτ in Ch) and take

αq(φ) = [(πn)∗ − d(σq ◦ τ ◦ ρq)](φ).

Observe that, for every φ, this is a cocycle by virtue of (πn)∗ being a cochain map and the
fact that d f is a cochain map for any f in Ch. It is equally obvious that the diagram in Fig. 5
then commutes up to homotopy. So the only point left to prove for the claim is that any module
homomorphism φ ∈ HomMod∞

(M, N ) has image in F q+1HomMod∞
(M, Nn). This is true iff

ρq(αq(φ)) = 0. Since ρq is a chain map, we have ρq(dg) = d(ρq(g)), and by Eqs. (3.4), (3.5)

ρq(αq(φ)) = ρq([(πn)∗ − d(σq ◦ τ ◦ ρq)](φ))

= ρq ◦ (πn)∗(φ)− ρq [d(σq ◦ τ ◦ ρq)(φ)]

= (π̃n)∗ ◦ ρq(φ)− d[(ρq ◦ σq ◦ τ ◦ ρq)(φ)]

= (π̃n)∗ ◦ ρq(φ)− d[(τ ◦ ρq)(φ)]

= (π̃n)∗ ◦ ρq(φ)− (dτ) ◦ ρq(φ)

= (π̃n)∗ ◦ ρq(φ)− (π̃n)∗ ◦ ρq(φ)

= 0.

One now uses the claim to prove the lemma by observing that if (C∗,G) is any filtered chain
complex whose length is r and whose spectral sequence converges at the (p + 1)-th page, then
ℓ(C/Gr C,G) ≤ p. This argument relies on simply unravelling the definition of the spectral
sequence associated to a filtration. We recall that the page Eq

k = Zq
k /Bq

k is the subquotient of
G kC/G k−1C where

Zq
k = {[c] : c ∈ G kC, dc ∈ G k−qC}

and

Bq
k = {[dc] : c ∈ G k+q−1C, dc ∈ G kC}.

Note then that Er+q
k is the same as Ẽq

k for q > p where the later is the spectral sequence for
(C/Gr C,G∗−r ). In particular, Ẽq

k = 0 for all q > p implying the length ℓ(C/Gr C,G) ≤ p. To
finish the proof, just inductively apply the claim above and this observation with (N ,G∗). �

The following theorem is a result of 3.19.

Theorem 3.20. Let P be a (B, A)-bimodule and M a left A-module. Suppose the spectral

sequence of P
∞

⊗A M degenerates at the (s+1)-st page. If the convolution functor P
∞

⊗ is faithful,
then

lvlA(M) ≤ lvlA(P)+ s · lvlB(P
∞

⊗A M)
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Proof. Assume that this is not the case. Then there exists a nonzero morphism f ∈ Fr Hom∗

(M, N ) with r > lvlA P∨
+ s · lvlB(P

∞

⊗A M). Then by definition, 1P
∞

⊗ f is zero on P ⊗
[r−1] M

implying 1P
∞

⊗ f = ψ ◦ πr = π∗
r (ψ) where

πr : P
∞

⊗M → P ⊙r M.

Now, by assumption, the spectral sequence associated to P
∞

⊗A M degenerates at (s + 1) and by
2.20,

ℓ(P
∞

⊗A M) ≤ ℓ(P∨) = lvlA(P).

Letting n = lvlA P , the following lifting problem is solvable for all p by Lemma 3.19.

HomMod∞
(P

∞

⊗ M, P
∞

⊗ M) HomMod∞
(P

∞

⊗ M, P ⊙n+sp+1 M)

F p+1HomMod∞
(P

∞

⊗ M, P ⊙n+sp+1 M)

(πn+sp+1)∗

γ
inc

In particular, if p = lvlB(P
∞

⊗A M) we have that πn+sp+1 ≃ 0. This implies that for all

t ≥ n + sp + 1 = lvlA P∨
+ s · lvlB(P

∞

⊗A M)

we must have πt ≃ 0 so that πr ≃ 0 and therefore 1P
∞

⊗ f ≃ 0. This contradicts the assumption

that P
∞

⊗ is faithful. �

We observe that in the case of formal algebras with formal modules, this theorem reproduces
the classical change of base theorem in the dimension theory of rings. In more generality, it is
possible to relate the constant s with matric Massey products of the algebra A and module M .
This quantifies a lack of formality and ties it directly to the Orlov spectrum of a category.
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[13] K. Lefèvre-Hasegawa, Sur les A∞-catégories, Ph.D. Thesis, Université Denis Diderot Paris 7, November 2003.
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