L

View metadata, citation and similar papers at core.ac.uk brought to you byf/\i CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

SciVerse ScienceDirect ADVANCES IN
Mathematics

ELSEVIER Advances in Mathematics 243 (2013) 232-261 _—
www.elsevier.com/locate/aim

Orlov spectra as a filtered cohomology theory™

Ludmil Katzarkov®?, Gabriel Kerr®*

4 Department of Mathematics, University of Miami, Coral Gables, FL, 33146, USA
b Fakultiit fiir Mathematik, Universitit Wien, 1090 Wien, Austria

Received 7 November 2012; accepted 3 April 2013
Available online 23 May 2013

Communicated by Tony Pantev

Abstract

This paper presents a new approach to the dimension theory of triangulated categories by considering
invariants that arise in the pretriangulated setting.
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1. Introduction

In [17], Rouquier gave several results on the dimension theory of triangulated categories.
Following this paper, Orlov computed the dimension of the derived category of coherent sheaves
on an arbitrary smooth curve and found it to equal one in [16]. Orlov then advanced a more
general perspective on dimension theory by defining the spectrum of a triangulated category,
now called the Orlov spectrum, which includes the generation times of all strong generators.
The relevance of strong generators in triangulated categories and their connection to algebraic
geometry was thoroughly established in the seminal paper [3] by Bondal and Van den Bergh. As
the Orlov spectrum compares the generation times amongst all strong generators, it serves as a
more nuanced invariant than dimension.

In the important recent work [1] of Ballard, Favero and Katzarkov, gaps in the Orlov spectrum
were found to depend on the existence of algebraic cycles. To further this line of reasoning,
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they stated the following conjectures which link large gaps in the Orlov spectrum to birational
invariants.

Conjecture 1.1. Let X be a smooth algebraic variety. If (Ay, ..., Ay) is a semi-orthogonal
decomposition of T, then the length of any gap in D”(X) is at most the maximal Rouquier
dimension amongst the A;.

Conjecture 1.2. Let X be a smooth algebraic variety. If A is an admissible subcategory of
DP(X), then the length of any gap of A is at most the maximal length of any gap of DP(X).
Conversely, if A has a gap of length at least s, then so does D?(X).

These have many important corollaries connecting birational geometry to triangulated cate-
gories and their Orlov spectrum. We recall again from [1] two such results.

Corollary 1.3. Suppose Conjectures 1.1 and 1.2 hold. Let X and Y be birational smooth proper
varieties of dimension n. The category, D?(X), has a gap of length n or n — 1 if and only if
DP(Y) has a gap of the same length i.e. the gaps of length greater than n — 2 are a birational
invariant.

Corollary 1.4. Suppose Conjectures 1.1 and 1.2 hold. If X is a rational variety of dimension n,
then any gap in DP(X) has length at most n — 2.

Establishing a procedure for computing the Orlov spectrum of D?(X) would also allow us to
pursue, for example, the following.

Conjecture 1.5. Let X be a generic smooth four dimensional cubic. Then the gap of the spectra
of the derived category of this cubic is equal to two.

From the considerations above, this conjecture implies that generic smooth four dimensional
cubic is not rational, a standing question in algebraic geometry.

While the triangulated setting serves as an accessible model for homological invariants, it is
generally accepted that triangulated categories are inadequate for giving a natural characteriza-
tion of homotopy theory for derived categories. Instead of working in this setting, it is advisable
to lift to a pretriangulated category, or (0o, 1)-category framework, where several constructions
are more natural [15,7]. In this paper, we study the Orlov spectra of triangulated categories by
lifting to pretriangulated DG or A -categories.

When the category 7 is strongly generated by a compact object G, we upgrade several clas-
sical results in dimension theory of abelian categories to the pretriangulated setting and find that
the natural filtration given by the bar construction plays a determining role in the calculus of
dimension. Indeed, if G is such a generator, using a result of Lefevre-Hasegawa, we can regard
7T as the homotopy category of perfect modules over an Ao, algebra A = Hom™*(G, G). In
addition to being a DG category, the category of perfect A, modules over Ag is enhanced over
filtered chain complexes, where the filtration is obtained through the bar construction. This filtra-
tion descends to the triangulated level. The first main result, Theorem 3.12, in this paper is that
the generation time of a strong generator G equals the maximal length of this filtration.

Theorem 1.6. The generation time of G € T equals the supremum over all M, N € Ag-mod
of the lengths of Homa;-mod., (M, N) with respect to the filtration induced by the bar
construction.

As a result, we develop a filtered cohomology theory which yields the generation times that
occur in Orlov spectra. The lengths referred to in this theorem are those of the filtrations induced
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on the cohomology of the complexes, or the Ext groups, by the pretriangulated filtrations. In
practice, it is possible to compute these lengths by calculating their spectral sequences which
will converge under very mild assumptions.

Another filtration that occurs naturally from the bar construction is on the tensor product. This
filtration is especially useful as one may define change of base as a tensor product with an ap-
propriate bimodule. After establishing basic adjunction results in the next section, we generalize
the classical change of base formula for dimension to the A, algebra setting in Theorem 3.20.
A new multiplicative constant appears in this version which is related to the speed at which a
spectral sequence associated to the tensor product filtration converges.

Theorem 1.7. Let P be a (B, A)-bimodule and M a left A-module. Suppose the spectral se-

quence of P% AM degenerates at the (s + 1)-st page. If the convolution functor Pg, is faithful,
then

WIA(M) < WIA(P) + 5 - W15 (P&aM).

Here 1Ivl4 (M) plays the role of homological, or projective, dimension of a module M. If the
algebra A is formal, the constant s is 1 and we see the classical formula. If higher products are
relevant, one must modify the classical inequality.

2. A constructions

This section will review many definitions and constructions related to A, algebras and mod-
ules. The aim of our treatment is to approach this subject with a special emphasis on the filtrations
arising from the bar constructions. These filtrations are the main technical structure we use in the
dimension theory for pretriangulated categories.

After reviewing some standard definitions, we will give the definitions of filtered tensor prod-
uct, filtered internal Hom and duals in the category of As-bimodules. The mantra that all con-
structions in the A, setting are derived constructions will be continually reinforced. Moreover,
the above functors will land in the category of lattice filtered A,-modules, which preserves the
relevant data for a study of dimension. The ® — Hom adjunction, usually written in either the
abelian or derived setting, will be formed as an adjunction between filtered DG functors. The cat-
egorical formulation of this statement is that the category Alg is a biclosed bicategory enriched
over filtered cochain complexes. We will utilize this to update classical results on the relationship
between flat and projective dimensions for perfect modules.

2.1. Fundamental notions

We take a moment to lay out some basic notation and fix our sign conventions. All algebras
and vector spaces will be over a fixed field K and categories will be K-linear categories. Let
gr be the category of graded vector spaces over K and finite sums of homogeneous maps. We
take Ch to be the category of cochain complexes of vector spaces over K and finite sums of
homogeneous maps. We will identify Hom¢j, with the internal Hom whose differential of

f € Homf,,((C.dc), (C', dcr)
is the usual one, namely,
df = fodc — (—D*der o f.

Finally, we take K to be the category of chain complexes and cochain maps. In other words,
maps which are cocycles relative to d in Ch. For most of the paper, we will assume our chain
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complexes are Z-graded, but there will be examples of the (Z/27Z)-graded case. This should
cause no difficulty as the proofs will be independent of this choice.

We view Ch as a closed category with respect to the tensor product along with the Koszul
signrule yy w : V® W — W ® V given by:

ywaw(@w) = (=HPMy @ v, 2.1)

We will need to implement this sign convention when discussing tensor products of maps
as well. For this we follow the usual convention. Namely, given homogeneous maps f €
Hom;;r(Vl, Vo) g € Hoij,(Wl, W) then we define f ® g € Homg, (V1 ® Wi, V2 @ W)

via (f ® )(v @ w) = (=DM £ () ® g(w).
By a differential graded, or DG, category D we mean a category enriched in Ch. We let

h :D— ChP”

be the Yoneda functor given by hg(E’) = Homp(E’, E).

In categories gr, Ch and K, we have the shift functor s which sends V* to V**+ On mor-
phisms we have s(f) = (—=D!Y1 £. There is also a (degree 1) natural transformationo : [ — s
defined as o (v) = (—1)/"lv. One can utilize o to translate the signs occurring in various bar con-
structions given in this text and those in the ordinary desuspended case. In particular, given a map
f VO W®min Ch we define sg(f) : (sV)®" — (sW)®" tobe 6®" o f o (6~ 1)®". We
will often use this notation to write the equations defining various structures without mentioning
the elements of our algebras or modules. A nice account of the various choices and techniques
used in sign conventions can be found in [6].

Filtrations will occur throughout this paper and our initial approach will be rather general. We
partially order Z¥ for any k € N with the product order. A lattice filtered complex will consist
of the data V = (V, {Va}aezk) for some k € N, where V is an object in Ch and {Vy} ez is a
collection of subcomplexes partially ordered by inclusion. If k = 1, we simply call V filtered.
Given two lattice filtered complexes V = (V, {Vu}yezx) and W = (W, {Wpg}gez1), we define
the lattice filtered tensor product and internal hom as follows.

\Y% ® W = (V ® W, {Va ® Wﬁ}(a,ﬂ)EZk+1)
and
Hom (V, W) = (Hom (V, W), {Hom 4.5 (V, W)} pyczt+)

where Hom_q g (V, W) = {¢ : V. — W]|p(Vy) S Wg}. The category of lattice filtered com-
plexes and filtered complexes will be denoted Ch'/ and Ch/ respectively. We note that the above
constructions make Ch'/ a closed symmetric monoidal category.

Given a DG category D, we define the category D/ to have objects consisting of the data
E = (E,{Eq}qezt) where (hg(E'), {(hg,(E")}yezr) € Ch'Y for every object E € D. The
cochain complex of morphisms between D and E is simply Homp (D, E). Restricting to the case
of k = 1 yields the definition of D/ .

The total filtration functor Tot : Ch'Y — Ch/ is defined as

Tot (V, {Va}ank) = (V, {U|a|=n Va}nEZ)
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for k # 0 where |¢| = a; + - - - + a, for o = (ay, ..., ar). One needs to deal with k = 0 a bit
differently and define Tot (V, {Vo}) = (V, {V,}) with V;, = 0 for n < 0 and V,| = V; otherwise.

Now suppose V € Ch/ is a filtered complex. Letting Z,, be the subspace of cocycles in V,,,
we have that the cohomology

Zn
H*(V) = (H*(V), {H*(V)n = W} )
nJneZ

is then a filtered object in gr. We define the upper and lower length of the filtration as follows. If
Un H*(V) # H*(V) we take £, (V) = oo and if N, H*(V) # 0 then £_ (V) = —oco. Otherwise,
we define these lengths as

(V) = inf{n: H*(V), = H*(V)}  €_(V) = inf{n : H*(V), # 0}. 2.2)

By the length £(V) of V we will mean the maximum of |[£4 (V)| and |[£_(V)|. We extend these
definitions to V € Ch'/ by taking length of Tot(V).
Given a DG category D and an object E € D'/, we define the lengths of E as

4 (E) = sup{¢4(hg(E") : E' € D},
¢_(E) = inf(¢_(hg(E")) : E' € D},
¢(E) = sup{¢(hg(E)) : E' € D}.

Given two DG categories D, 15, aDG functor F : D — D/ and E € D, we take Zi(E) =
0+ (F(E)) and £F = sup{¢f(E) : E € D). One can consider £f as a generalization of the
cohomological dimension of a functor between abelian categories. Note that in the DG category
Ch the two notions of length are equal. In other words, the definition given by Eqs. (2.2) yield
the same quantities as the definition above using the Yoneda embedding 7 _.

A motivating example for the above definitions is the case where D and D are categories of
bounded below cochain complexes of injective objects in abelian categories D and D. Note that
these categories admit embeddings into their filtered versions by sending any complex E* to
(E*, {t2(E*)}pez) where 1, (E*)* = EX for k < n and zero otherwise. Assuming D and D have
enough injectives, any functor F : D — D has the (pre)derived DG functor RF : D — D and
after composition with the embedding above one has a DG functor F : D — DS 1t is then plain
to see that £/ equals the cohomological dimension of F.

2.2. Axo-algebras

One of the fundamental structures in our study is an Ayc-algebra.

Definition 2.1. A non-unital A.-algebra A is an object A € Ch and a collection of degree 1
maps py : (sA)®" — sA for n > 0 satisfying the relation

n [ n—k
Z [ Mr;‘—k+l o (1% ® M/; ® 1®(n—r—k>):| =0
k=0 Lr=0

r=

for every n.

We note that it is common to see the definition utilizing the desuspended maps sgl (u'y) which
involves more intricate signs.
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In this paper we will assume that our A;-algebras come equipped with a strict unit. We recall
that this means there exists a unit map u : K — A[1] where

Pl =1=—-uidAQu) (2.3)
wW'A%¥ @u@1®? "Dy =0 forn # 2. (2.4)

We will normally write e4 for u(1) (or e if the algebra is implicit).

If A is an Ay-algebra, we take AP to be the algebra with structure maps /ﬂjw, = /L’;‘ o o}
where oy : (s A)®k — (sA)®k reverses the ordering of the factors via the symmetric monoidal
transformation y in Eq. (2.1).

It is immediate that the cohomology H*(A) defined with respect to ,U,}A is a graded K-algebra
with multiplication induced by uf‘. However, the higher products determine more structure than
the cohomology algebra can express on its own. In order to see this we need to be able to compare
two different algebras. A homomorphism of A;-algebras is defined as follows.

Definition 2.2. If (A, u%) and (B, u7) are Ax-algebras then a collection of graded maps ¢" :
(sA)®" — sBforn > 1is an Axo-map if

n n—k
Z [Z ¢n—k+l ° (1®r ® IL],Z ® 1®(n—r—k))j|

k=1 Lr=1

=3 X e e--@e®)

j=1| it+-+ij=n

A strictly unital homomorphism is also required to preserve the unit as well as satisfying the
identities

¢r+s+l o (1®r ® u ® 1®§‘) — 0

for all r 4+ s > 0. The category of unital and non-unital A.-algebras will be denoted Algs, and
Algl! respectively.

When all maps ¢ = 0 except ¢!, we call {¢} strict. If there is an Apo-map €4 : A — K
we will call A augmented. Any augmented, strictly unital Ao, algebra is required to satisfy the
equation €4u = 1.

It is important to observe that [qbl] induces an algebra homomorphism H*(A) to H*(B) so
that cohomology is a functor from A -algebras to ordinary algebras. When the induced map [¢']
is an isomorphism, we call ¢* a quasi-isomorphism. The following proposition can be found in
any of the basic references given above.

Proposition 2.3. Given a quasi-isomorphism ¢* : A — B there exists a quasi-isomorphism y* :
B — A for which [¢]] and [1//1] are inverse.

Some of the Ao-algebras discussed in this paper satisfy additional conditions.

Definition 2.4. (i) An A-algebra is formal if it is quasi-isomorphic to its cohomology algebra.
(i) An Axc-algebra is compact if its cohomology algebra is finite dimensional.

While it is rarely the case that an Aso-algebra is formal, there is an Ao-structure on its
cohomology, called the minimal model, which yields a quasi-isomorphic Ao-algebra. It is a
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well known fact that, for (A, u%), this is a uniquely defined Aoo-structure (H*(A), ii%y) with
ity =0 (here ;1124 = [“124] and the higher (i) are determined by a tree level expansion formula).
Let us state this as a proposition.

Proposition 2.5. For any Ax-algebra (A, %)) there is an Ax-algebra (H*(A), ii), uniquely
defined up to Axo-isomorphism, and a quasi-isomorphism ¢4 : A — H*(A). We call (H*(A),
it’y) a minimal model of (A, %).

It will be important to have at our disposal another equivalent definition, the algebra bar con-
struction, for which we closely follow [13,10]. First, given V € gr we denote the tensor algebra
and coalgebra by TV and TV respectively. As graded vector spaces, both are equal to

o
TV =P ven.
n=0
For space considerations, we will use bar notation and write [v]-- - |v,], or simply v, for v;

® - - - ® v, for an arbitrary element of 7 V. These spaces are bigraded, with one grading denoting
the length of a tensor product, and the other denoting the total degree. Our notation conventions
for these gradings will be

vy ={l- ol Yl =5

In many situations, we will be interested only in the length grading, in which case we use the
notation

(TV)y = ®f_o(TVE® (TV)oy = Spn(TV)F".

The algebra map for T4V is the usual product and the coalgebra map A : TV — TV
®k TCV is defined as

Afvil--Jval = Y [vil -+ [l @ [vis1] -+ va]
i=0

where the empty bracket [] denotes the identity in K.

The tensor coalgebra naturally lives in the category of coaugmented, counital, dg coalgebras
Cog'. The objects in this category consist of data (C, d, n, €) where C is a coalgebra, d is a
degree 1, square zero, coalgebra derivation, n : C — K and € : K — C are the counit and
coaugmentation satisfying ne = 1x. However, this category is too large for our purposes and we
instead consider a subcategory Cog consisting of cocomplete objects. To define these objects,
take 7 : C — C = C/K to be the cokernel of €. Consider the kernel C,, = ker(A") where

Ar.c A con % o
Elements of C,, are called n-primitive and C is referred to as the coaugmentation ideal. They
form an increasing sequence

CocCiC---

called the canonical filtration.
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This defines a natural inclusion Cog’ — (Cog’)f and we say that the augmented coalgebra C
is cocomplete if C = lim C,,. One easily observes that the tensor coalgebra is an object of Cog as

(TV)n = (TV)"".

Moreover, the tensor coalgebra T¢V is cofree in the category Cog (i.e. the tensor coalgebra
functor is right adjoint to the forgetful functor).
Now we recall the (coaugmented) bar functor

B: Algsy — Cog

which takes any non-unital Ay-algebra (A, ua) to BA = (T°(sA), ba, nBa, €84). The defi-
nitions of the counit and coaugmentation are clear. We define b4 : T¢(sA) — TC(sA) via its
restriction to (s A)®" as

n n—k
bA|(sA)®” — Z (Z 1 ® IU“I;X ® 1®(n—r—k)> )

k=1 \r=0

There are several variants of this construction, most importantly the ordinary bar construction
BA = (T(sA)-g, bs) which takes values in cocomplete coalgebras. We fix notation for the
inclusion to be

1A : BA — BA. (2.5)

The differential is simply the restriction of the one defined in the coaugmented case. It is helpful
to understand BA when A is an ordinary algebra A. In this case, we see that BA is just the
augmented bar resolution for A (and hence, acyclic).

The bar construction of A inherits the increasing filtration

By A = @i<n(BA)"* = (BA),.

We refer to this, and the module variants to come, as the length filtration.

Remark 2.6. We note here that one advantage of the bar construction is the ease at which one can
discuss structures that are more difficult to define in the category Alg... One example of this is
the tensor product of two Ao-algebras A, A’ which has more than one fairly intricate definition.
In Cog we define the tensor product of BA® BA’ in the usual way. We then say that B € Alg is
quasi-isomorphic to the tensor product if B = A ® A" and BB is quasi-isomorphic to BA ® BA’
in Cog/ . See [14] for an article comparing various constructions of a natural quasi-isomorphism.

2.3. Aco polymodules

We start this section with a general definition of a module over several As-algebras which
we call a polymodule. It is both useful and correct to think of a polymodule as a bimodule
with respect to the tensor product of several algebras or, even more simply, as a module over
the tensor product of algebras and their opposites. This is analogous to defining an (R, S)
bimodule as opposed to an R ® S°? module. We take this approach at the outset to avoid some
of the cumbersome notation and uniqueness issues surrounding the tensor product of multiple
Axo-algebras. This is accomplished utilizing the bar construction and working in the category of
comodules where many structures are more accessible. The definitions and results in this section
are adaptations of those for modules and bimodules which can be found in [13]. We add the
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caveat that Lefevre-Hasegawa uses the different term polymodules to define what we would call
a module.

For this section, we fix Ax-algebras Ay, ..., A, and By, ..., By and write (a, b) for the data
(A1, ..., Ar|B1, ..., By). Let P be a graded vector space and write
BOYP =BA® - -QBA, Q PQBB ® - ® BB, (2.6)

for the bar construction of P.

When (a, b) is fixed or understood from the context, we simply write BP. We make a note
that BP is naturally an object of Ch'/ where the lattice is Z’+* and the filtration is induced by
the length filtrations on the bar constructions. Given any y € Z'*5, we denote the y filtered
piece of BP by B, P. Observe also that BP is a cofree left comodule over the coalgebras
BA; and a cofree right comodule over coalgebras BB; where A; p : BP — BA; ® BP and
Ap,j : BP — BP ® BB; are the comodule maps. These are defined by repeatedly applying
y from Eq. (2.1) to permute the left factor of BA; and right factor of BB; to the left and right
respectively, after having applied their comultiplications. We take,

Ap=Apso---0oApjoA,po---0Ap
as the polymodule comultiplication from BP to BA| ® --- ® BA, @ BP  BB; ® - - - ® BB;.
The differentials on each coalgebra tensor to define the differential dj, : BP — BP.

Definition 2.7. A non-unital (a, b) = (A, ..., As|B1, ..., By) polymodule (P, up) is a graded
vector space P along with a degree 1 map

up:B@Op 5 p 2.7)
satisfying the equation

ppol(lps, ® - ®@1ps, ® up ®1pp, @ --- ®15p,) 0 A+dp] = 0. 2.8)
We call the P a polymodule if u p satisfies the unital conditions for every i and j,

upo(epa, @ - Qups, @---Q€ps, Olp Qepp @---Vepp,) = 1p,

pwpo(€pa, @ - Qepa, @lp ®epp @+ Qupp; Q-+ Qepp,) =1p,

upo(ta @ - - Qups @ - Qis, QlpQip ®---®1tp) =0,

upo(a @ - ®ta, 1p®ip Q@ - Qupp, @---Qup,) =0,
where € is the coaugmentation and ¢ the inclusion from Eq. (2.5).

A bimodule is a polymodule for which r = 1 = s. A left module is a bimodule for which
B = K and similarly, a right module is a bimodule for which A; = K. A non-unital morphism
from the polymodule P to P’ is defined as any gr map ¢ : BP — P’. The collection of these
maps forms a complex Hom(q p)-poam (P, P’) with differential defined as

dp =¢o(Ips, @ - ®@1ps, Qup®1pp @ --®@15p,) 0 Ap
+podp — (=D%upro(lps @+ ®1ps, ®9 ®1pp ® - ® 1gs,) 0 Ap.
2.9

A morphism ¢ € Hom, p)-pod,, (P, P') is a non-unital morphism satisfying the unital condi-
tions

po(lga, ® - ®ups, ® - ®1ps, ®1p®1pp @+ ®15p) =0,
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¢po(lps, ®: - ®1ps, ®1p@1pp ® - Qupp; -+ Q1pp) =0.

The fact that Homq p)-pm0d,, (P, P’) is indeed a subcomplex follows from the unital condition
on algebras and modules. A morphism ¢ € Hom(q u)-mod., (P, P’) is called strict if ¢|p_,p
= 0. A homomorphism is defined to be a cocycle in this complex. A homomorphism ¢ for
which ¢|g,p : P — P’ is a quasi-isomorphism will be called a quasi-isomorphism. Given ¥ €
Hom(q p)-mod., (P’, P”) we define composition as

Yop=vo(lpgs @ - ®1ps, ®PR®15p, ®---®15p,) 0 Ap.

It is a straightforward, albeit tedious check to see that these definitions make (a, b) polymod-
ules into a DG category which we label (a, b)-Mod o, or just Mod .. We write H%(Mod )
(H*(Mod )) for the zeroth (graded) cohomology category. The next proposition follows imme-
diately from Remark 2.6 and the naturality of y. A rigorous proof is omitted but can be assembled
from results in [13].

Proposition 2.8. The category of filtered (a,b) = (A1,...,As|B1, ..., By) polymodules is
quasi-equivalent to the category of filtered left A1 @ --- Q@ A, ® B;)p ® - - ® By’ -modules.

From this, or from a direct argument, one obtains the following corollary which will be applied
often implicitly.

Corollary 2.9. The category of filtered (A, ..., A;|B1,..., By) polymodules is naturally
equivalent to the category of filtered (A1, ..., A, BTP, ..., B{”|K) polymodules.

Following [4], we observe that Mod, is a pretriangulated category with sums and shifts
defined in the obvious way and the natural cone construction cone(¢) given in the usual way.
Namely, cone(¢) is the graded vector space P @ s P’ and its structure morphism is

_|mp oo0d
Mcone(¢p) = 0 s P’ .

Given (a, b) we let
Uwn =410 - ®A, B Q- Q By

be the trivial polymodule whose structure map is induced by suspension, y and the algebra
structure maps. A free polymodule is defined as a direct sum of copies of U, ) and a projective
polymodule as a direct summand of a free polymodule. A projective polymodule will be called
finitely generated if it is a submodule of a finite sum of copies of Uq p).

Definition 2.10. The subcategory of perfect (a, b) polymodules is the category mods, of all
polymodules quasi-isomorphic to a module built by finitely many cones of finitely generated
projective polymodules.

The concept of a polymodule is derived from the more natural notion of a differential comod-
ule over several coalgebras in Cog. From this point of view, we have taken a backwards approach
by defining the polymodule first, as the structure maps and definitions of morphisms are more
transparent in the comodule setting. Nevertheless, we continue along our path full circle towards
a realization of this structure as the bar construction of a polymodule.

Given an (a, b) = (A1, ..., As| By, ..., By) polymodule (P, i p), we take the free comodule
B®Y P as its bar construction (note that this is not free as a DG comodule). We define its
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differential bp as
bp=(1ps, ® - ®1ps, Qup1pp ® - ®1pp) o Ap +dp.

Then it follows from the defining equation (2.8) that (B>® P, bp) is a left and right differential
comodule over the coalgebras BA; and BB; respectively. We denote the DG category of such
DG comodules with comodule morphisms as (a, b)-cmod « or simply cmod .

Given a morphism ¢ € Hom(q p)-mod., (P, P') we take by : BP — BP’ to be the map
by =(1ps, ® - ®lps, @pp @15, ® - ®1gp, ) o Ap. It then becomes an exercise that the
bar construction gives a full and faithful functor from Mod to cmod~, whose essential image
consists of free comodules.

For our purposes, this is not enough as we wish to keep track of the length filtration through-
out. The category (a, b)-cmod~ has a natural embedding into ((a, b)-cmod )" given by the
primitive filtration. More concretely, given (i, j) = (i1, ..., ir, j1,..., js) € Z'™ we define

BSYP =B,A1® - ®5,A,® P QBB ® - ® B, B,.
This induces an embedding

B: (a,b)-Mods — ((a, b)-cmodaso) . (2.10)

The induced length filtration on polymodule morphisms is then given by

f(i’j)HomModoo(Pv P/) ={¢: ¢|B(i,j)P =0} (2.11)

An advantage of the bar construction is the ease at which one sees the following proposition.

Proposition 2.11. The category (a, b)-Mod s, is enriched over Z!' ™5 -lattice filtered complexes.

In other words, morphism composition respects the total filtration on the tensor product. As
stated above, this follows immediately from the definition of comodule morphism in the category
cmod .

Remark 2.12. One should make certain not to confuse this enrichment with the notion that the
objects of (a, b)-Mod « are lattice filtered, as this only occurs if we resolve the polymodules.

2.4. Filtered constructions

In this section we define tensor products and inner homs of polymodules. To do this effec-
tively, it is helpful to have a picture in mind as well as the appropriate notation associated to
this picture. We will say s = (S*, S7, k) is a labelled set if ST and S~ are finite sets and « is
a function from S* L1 S~ to the objects of Algs,. We will write A € 5 (or A € sT) if there is
s € STUS™ (ors € ST) such that k(s) = A. Given a labelled set s = (ST, S™, «), we write
s* for the labelled set (S™, ST, k). We take L to be the category of labelled sets with morphisms
that are injective maps respecting the labelling. Note that £ is closed under finite direct limits.

Given a labelled set s = ({tl+, R tr+}, {t, ..., 1}, k) we take 5-Mod « to denote the cate-
gory of (k (tfr ) AP fc(tr+ MNic(t), ..., k(t;)) polymodules. We abbreviate the differential coal-
gebra

Bik(tH1® -+ @ Bk ()] @ Blx (1)1 ® - - @ Bl (t;)]

by BAs. Any morphism i : §; — s7 induces a forgetful functor i* : s5-Mod s — 51-Mod .
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By gluing data t = (s, s1, 52, i1, i2, j1, j2), We mean a pushout diagram as below in £

i1 "

50—>51

|

. »

12 1
.

§2 --- - 8] Us, 52

J2

and we abbreviate 51 {552 for the labelled set [s1 — i1 (s()] U [s2 — i2(s0)].
Given gluing data t = (sg, 51, 52, i1, i2, j1, j2), we define the tensor product as a functor

By 1 51-Modss X 53-Modoo — (51tsg52-Mod o) . (2.12)

As usual, this product is given by first passing through the bar construction, applying the cotensor
product and then recognizing the result as the bar construction of a polymodule. The details of
this are now given.

Let Py, P> be s1, s polymodules respectively. Then we let

)
P1QsyPr = P1 @ BAs, @ P».

To simplify the definition of the structure map, we write A; = Ai;x( py and Ay = A,;( py) as
partial comultiplications. These are the comultiplications obtained when considering B P; and
B P, as comodules over BA,,. Then we see that there is an isomorphism of graded vector spaces:

o : BY0% P18y, Py) — B P, B Py
where (g Asy is the cotensor product (see, e.g. [9]). Recall that this is the kernel of

AI®1—-1® 4, :B P @B2P, - B P ®BA50 QB2 P,.

o0
Restricting o to P1®s, P2, it is defined as a(p1 ® a @ p2) = p1 ® ABAsO (a) ® p> where, as
always, we implicitly use the symmetric monoidal map y. It is extended to the bar construction
by tensoring with the remaining coalgebras. Utilizing ¢, one pulls back the differential from the

o
cotensor product to obtain a differential d on B® 185092 (P, ®s, P2). As this differential is a square
zero comodule coderivation, it is induced by its composition with the projection

Sj 5 o o
7 BP0 (P1®g, P2) — P1®sy P2
and one obtains the Aso-module map &« =mod.
P1®s, P2

Given morphisms ¢; : P; — Pi’ in 5;, we have that the cotensor product of the bar construc-
tions

oo oo
by, DBAso by, : Bsﬂsoaz(Pl ®s P2) — B51:‘L5052(p1/®50 Pz/)

o0 o0
yields a natural map ¢ ®g,$2 in §11l5,52-M 0d . When considering P;®s,- as a functor, we take

o o0
¢ to 1 p, ®s,¢2. Note that it follows from the definitions above and that of the cone that P;®,-
is an exact functor.
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Since the coalgebra BA,, is 7'%l_filtered by the primitives of BA for A € s(, we have that

P %EO P; is lattice filtered by Z!®0!. We will preserve this filtration in the definition and write
P&l Py = P @ (®4co BuA”) @ (@peqy By B) © P2

where y = (k1, ..., kg, l1,...,1p) € 719! Thus, we have obtained the DG functor (2.12).
It will be useful to have notation for filtered quotients in this setting. For this, we write

o0
P1®s, P2

P O.J;O P = .
Py ®2§] P,

(2.13)

As expected, the tensor product of a given polymodule with the diagonal polymodule yields a
quasi-equivalent polymodule. However, the filtration is added structure which will be exploited
later in the paper. For now, we simply define the natural quasi-equivalence and its inverse. Fix a
labelled set 5 = (S*, S™, k), let 25 = s* Us and t = (s, 26, 5, i1, i2, j1, jo) the natural gluing
data. We take D; to be the diagonal 2s polymodule

®res+us- K (1).

The structure maps for D4 are simply the tensor products of the A, algebra maps composed with
the shift for the various labelling algebras. Then we define the natural equivalences

o o
Ep :Ds®sP — P ep: P —> D;®;P. (2.14)

Here &p is defined as the map induced by tensor multiplication m, the shift o and the polymodule
multiplication map pup,

§p=ppo(m®Ilp)o(lps, ®o ® 1ps, ®1p).
Letting upy, : K — BA; send 1 to e5 = ®;cs+us— eB[x(s)]» WE take
€p = Uél(es) ® 1a, ® Lp.

Using the unital conditions, it is easy to verify that £p and €p are quasi-inverse maps. As a
consequence, we obtain the following basic lemma which is instructive as to the bar construction
of a module.

Lemma 2.13. Suppose A is an A algebra and denote A regarded as a right module over itself

o
as A”. Let P be a left A module, then the vector space A" ® P is naturally quasi-isomorphic to
H*(P).

Proof. Let s = (ST, S™, k) be the labelled set with ST = ¥, S~ = {t} and «(t) = A. Then the
lemma follows from the basic observation that, by definition,

AP = Dre®
= 25®5P

as a complex. Using the natural equivalence in (2.14), latter is quasi-isomorphic to P which has
minimal model H*(P). O

Combining this lemma with earlier remarks, we obtain the following important fact.
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Proposition 2.14. Let t = (s, 51, 52,11, i2, j1, j2) be gluing data such that the algebras la-

o
belled by sy are compact. If P; are perfect s; polymodules then P\®s, P> is a perfect 515,52
polymodule.

Proof. The previous lemma implies that there is a quasi-isomorphism

00 q.i. .
o Us| ®50U52 —> Us|ﬁ5052 ® (®Aeso H (A)) .

By the compactness assumption, this implies that tensor products of finitely generated projective
polymodules are finitely generated projective polymodules. Together with the definition of

o
perfect modules and the fact that tensor product _®s, - is exact, we have the result. [

To define the internal Hom, we again follow the approach for the tensor product and pass to
coalgebras and comodules. There is an additional notion needed here from classical homotopy
theory, that of a twisting cochain which we recall here. If C is a DG coalgebra and A a
DG algebra, amap p : C — A is called a twisting cochain if dp + p - p = 0 where
dp =dap — (—D)"lpdcand p - p :=m o p ® p o Ac where m is multiplication in A.

One of the central features of twisted cochains is that they allow one to define twisted tensor
products [5,13]. We take a moment to recall this construction for the case of a left module.

Definition 2.15. Given a dg coalgebra C, a dg algebra A, a dg C bicomodule M, a left dg A
module N and a twisting cochain p : C — A, the twisted tensor product M ® , N (or N ® , M)
is defined as the ordinary tensor product of vector spaces with chain map dy ® 1 y+1®dy+pMN_
where

pN_=Uy@my)o(ly @ p®1Iy)o(Ay ® 1y).
The result is a left (or right) C comodule.

The case of right module and bimodule is analogous.
Now, lets = s’Us” in Landi : s’ — s, j : s — s the inclusion maps. Given a s polymodule
P, we define a map

pj : BAy — Homg  poa,, (j*(P), j*(P))

as [0;(©]@® p®b) = up(c®a® p®b) wherea® p ®b € B P. It follows from Egs.
(2.8) and (2.9) that p; is a twisting cochain from the DG coalgebra BAy to the DG algebra
Homg_p104,, (J*(P), j*(P)).

Suppose t = (s, 51, 52,11, 12, j1, j2) is gluing data and P;, P, are 5’{,52 polymodules re-
spectively. Then, as a graded vector space, we define Homg, (P, P2) as Homg,-pr0d. (i T(Pl)
, i3 (P2)). The structure map

WHomg, (P, Py) B*1%0%2 Homg, (P, P2) — Homs,(P1, Pa)

is set to equal the differential on the twisted tensor product composed with the projection 7 :
leﬁsoﬁzHomSO(Pl, Py) — Homyg,(P1, Pp), where the former is induced by the isomorphism

BEIuSO&QHomso(Pls P)) = BAﬁz—iz(s()) ®p,-2 Homso(Plv P) ®p,-1 BAsl—i1(50)~

Again we keep track of the lattice filtration so that Homg, (P, P») is a 7! filtered polymodule.
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As in the case of the tensor product, for any s polymodule P, the diagonal polymodule Ds
plays the role of a unit for Hom¢(Ds, P). Again we define the natural transformations

xp : Homs(Dg, P) — P vp : P - Homs(Ds, P).

Where xp(a® ¢ @ b) = (=)l (a @ upa, (1) ® b) and vp is the strict map sending p to the
morphism ¢, defined as ¢,(a @ q®b) = up(a®q" ® p ® ¢~ ® b) where g™ is the tensor
factor of g in Dg=.

2.5. Filtered adjunction

In this section we observe the classic adjunction between tensor product and internal Hom
for polymodules. This leads to elementary, but powerful, observations on dual A-modules. We
will be concerned with preserving the lattice filtrations naturally throughout.

To state the theorem, we need to specify the gluing data between three categories of polymod-
ules. Assume s; are labelled sets for i = 1, 2, 3. We say that the data v = ({2, {23, t31) form a
gluing cycle if t;; are the gluing data

tio = (812, 81, 52, (12, i1, J125 J12),

t23 = (823, 83, 83, 123, i93, 23, Ji23),

t31 = (831,83, 57, i31, i51, J31, J31)s
and im(iz;) is disjoint from im(i; , ). A gluing cycle can be represented graphically as a directed
graph with three vertices. Vertices vy, vy have incoming and outgoing edges 5? and v3 has in-
coming and outgoing edges 5;:_ Those edges that connect vertices v; and v; form the labelled set
5;j. This is depicted in Fig. 1.

We take s; to be the labelled set (s1fs,,52)"fls,;,053153, .. s; consists of the half edges in
Fig. 1. With this notation, we can prove the following classic adjunction:

Theorem 2.16. Given a gluing cycle v and polymodules P; € s;-Modwo, there is a natural
isomorphism @ in (se-Mod o),

o0
P H0m531u523(Pl®512P27 P3) - H0m531u512(P1, H0m523(P2, P3)) (215)

Proof. This is simply an exercise in the definitions of the last section and the observation that
gr'f is a closed category. Recall that closed means that there is an internal Hom and tensor

o
with the usual adjunction. Letting x = Homs;, sy, (P1®s,, P2, P3) we have the following natural
isomorphisms of Zs311Fls121+1s231 filtered graded vector spaces

* = HOM(sy,Layy)-Mod (P1 85y, P2, P3)
= Homgr(BA531 QPR BA5]2 QPR BA523a P3)
>~ Homyg, (BAs;; ® P| ® BAs,,, Homy, (P> ® BAsy;, P3)),
= Homg, s, (P, Homsy, (P2, P3)).
The first equality follows from the definition As-morphism, the second from the closedness
of gr'/ and the third from the definitions of internal Hom and A.o-morphism. To complete

the proof, one must show that the is