CIRCUITS THROUGH SPECIFIED EDGES

Roland HÄGGKVIST
Institut Mittag-Leffler, Auravägen 17, 18262 Djursholm, Sweden
Carsten THOMASSEN

Mathematics Institute Bygn. 303, The Technical University of Denmark, DK-2800 Lyngby, Denmark

Received 1 October 1980
Revised 28 August 1981

Abstract

We prove a theorem implying the conjecture of Woodall [14] that, given any k independent edges in a $(k+1)$-connected graph, there is a circuit containing all of them. This implies the truth of a conjecture of Berge [1, p.214] and provides strong evidence to a conjecture of Lovász [8].

1. Introduction

A well-known result of Dirac [5] states that, given any k vertices in a k-connected graph, there is a circuit containing all of them. Bondy and Lovász [4] proved that the set of circuits through k specified vertices in a $(k+1)$-connected graph generates the cycle space of the graph and deduced that any $(k+1)$ connected non-bipartite graph contains an odd circuit through any k specified vertices as conjectured by Toft [12].

If L is a set of k independent edges in a k-connected graph G, k odd, such that $G-L$ is disconnected, then clearly G has no circuit containing all edges of L. Lovász [8] and, independently, Woodall [14] conjectured that, if k is even or $G-L$ is connected, then G has a circuit containing all edges of L. Woodail [14] also stated the 'reaker conjecture that any k independent edges in a $(k+1)$ connected graph are contained in a circuit of the graph and pointed out that this would imply the truth of a conjecture of Berge [1, p. 214]. As an important step towards a proof of his conjecture, Woodall [14] proved that, if L is a set of k edges in a $(k+1)$-connected graph G and $G-\{a, b\}$ has a circuit containing all edges of $L \backslash\{(a, b)\}$, where $(a, b) \in L$, then G has a circuit containing all edges of L, and he deduced immediately that, given any set L of k independent edges in a ($2 k-2$)-connected graph $G, k \geqslant 2$, there is a circuit containing all of them. Thomassen [11] proved that the same conclusion holds under the weaker condition that G is $\left[\frac{3}{2} k-\frac{1}{2}\right]$-connected and the referee has informed us that Peter \mathbb{L}. Erdös and Ervin Györi have shown that it is even sufficient to assume that the connectivity of G is at least $\frac{8}{7}(k+1)$.

The purpere of this paper is to derive the same conclusion under the weaker assumption that any two vertices which are incident with L are connected by $k+1$ internally disjoint paths. Ths proves the above conjecture of Wcodall also for infinite graphs. The proof involves a refinement of Woodall's Hopping Lemma, which was introduced in [13] and applied in [7, 13, 14].

2. Terminology

The terminology is the same as in [11] except that we denote two edges with no common end as independent. We shall consider mixed graphs, i.e. graphs such that some edges are directed. We regard a path in a graph or mixed graph to be oriented, i.e., we distinguish between the path $P: x_{1} x_{2} \cdots x_{m-1} x_{m}$ and its reverse path $x_{1 r} x_{m-1} \cdots x_{2} x_{1}$. If any directed edge which have an end on P is included in P, we say that P is admissible. If P is admissible and, in addition, all directed edges of P are of the form $\left(x_{i}, x_{i+1}\right)$ (resp. $\left(x_{i+1}, x_{i}\right)$), we say that P is a forward (resp. backward) frath.

3. Circuits through specified edges

The following lemma plays a crucial role in the proof.
Lemman 1. Let m and r be integers, $m \geqslant 1, r \geqslant 0$. Let G be a graph and L a set of at most r independent edges of G. If x and y are two vertices of G connected by $m+r$ internally disjoint puths and G^{\prime} is the mixed graph obtained from G by deleting all edges of L incident with x or y and directing all other edges of L, then G^{\prime} has m internally disjoint forward paths from x to y.

Proof (by induction on r). Let $P_{1}, P_{2}, \ldots, P_{m+r}$ be internally disjoint paths from x to y in G. If some edge e of L has an end in common with some $P_{i}, 1 \leqslant i \leqslant m+r$, and with no $P_{i}, j \neq i$, then we delete e and all intermediate vertices of P_{i} anc use the induction hypothesis. So we can assume that each edge of L joins distinct paths P_{i} and P_{i}. We form a new graph H whose e ges are L and whose vertices are obtained by identifying the intermediate vertices of each P_{i} into a vertex. If some component H^{\prime} of H has a circuit, we delete from G those edæcs of L and the intermediate vertices of those paths P_{i} which correspond to H^{\prime}, and the result follows by induction. So we can assume that H is a forest, in particular, there is an edge e of L having an end in a P_{i} such that P_{i} is incident with no other edge of L. We now delete e and all interior vertices of P_{i} and obtain, by the induction hypothesis, a collection of m internally disjoint forward paths from x to y. If one of these, say Q, contains the other end of e. we replace an appropriate segment of Q by e and a segment of P_{i} and the result follows.

Theorem 1. If L is a set of k independent edges in a graph G such that any two vertices incident with \mathcal{L} are connected by $k+1$ internally disjoint paths, then G has a circuit containing all edges of L.

Proof. If $e:=(x, y)$ is an edge of L, then by Lemma $1, G-e$ has a forward path from x to y with respect to any orientation of the edges of $L \backslash\{e\}$. So G contains a circuit C such that for each edge e of L, either e is contained in C or no end of e is on C. Put $L^{\prime}=C \cap L$ and $L^{\prime \prime}=L \backslash L^{\prime}$ and let $m=\left|L^{\prime}\right|$ and $r=\left|L^{\prime \prime}\right|$. We can assume $r>0$). We assign an orientation to each edge of $L^{\prime \prime}$ and we let (b, a) (oriented in that direction) be one of the edges of $L^{\prime \prime}$. Let Z be the set of vertices such that $G-(V(C) \cup\{b\})$ has a forward path from a to z and $G-(V(C) \cup\{a\})$ has a backward path from b to z. We assume that C is chosen such that m is maximum and, subject to that condition, $|Z|$ is minimum. If $X \subseteq V(C)$, we consider all maximal segments of $C-L^{\prime}$ connecting two vertices of X. Following [14], the union of the vertex sets of these segments is denoted $\mathrm{Cl}(X)$, the endvertices of the segments constitute $\operatorname{Fr}(X)$ and finally $\operatorname{Int}(X)=\mathrm{Cl}(X) \backslash \operatorname{Fr}(X)$. We define the sequence $A_{-1} \subseteq A_{0} \subseteq A_{1} \subseteq \cdots$ of subsets of $V(C)$ as follows: $A_{-1}=\emptyset$ and A_{0} is tae set of vertices z of C such that $G-b$ has a forward path from a to z having only z in common with C. For each $p \geqslant 1, A_{p}$ is the union of A_{p-1} and the set of vertices z such that G contains a forward path P from $\operatorname{Int}\left(A_{\mathrm{p}-1}\right)$ to z having only its ends in common with C. (Note that if P contains a or b it contains (b, a) and then z is even in A_{0}.) The sequence $\emptyset=B_{-1} \subseteq B_{0} \subseteq=$ $B_{1} \subseteq \cdots$ is defined analogously except that we consider backward paths instead of forward paths and B_{0} is the set of vertices of C which can be reached from b in $G-a$ by a backward path. Extending Woodail's proof [14] we consider the following statement:
$X(p, q)$: There exists a path $R_{p, q}$ in $G-\{a, b\}$ starting at a_{p} in A_{p} and terminating at b_{q} in B_{q} such that conditions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{4}\right)$ below are satisfied.
$\left(\mathrm{C}_{1}\right) R_{\mathrm{p}, \mathrm{q}}$ contains all edges of L^{\prime} and all vertices of $\operatorname{Int}\left(A_{p-1}\right) \cup \operatorname{Int}\left(B_{q-1}\right)$.
$\left(\mathrm{C}_{2}\right)$ If Q is a segment of $R_{p, a}$ from u to v say, having precisely u and v in common with C, then either Q is a forward path or a backward path or both (meaning that it contains no end of an edge of $L^{\prime \prime}$). If Q contains edges of $L^{\prime \prime}$ and is a forward path, then $u \notin B_{q}$ and $v \notin A_{p}$; if Q contains edges of $L^{\prime \prime}$ and is a backward path, then $u \notin A_{p}$ and $v \notin B_{q}$. Finally, if Q contains no edge of $L^{\prime \prime}$, then one of u and v is outside A_{p} and the other is outside B_{q}.
$\left(\mathrm{C}_{3}\right)$ If $y \in \operatorname{Int}(X) \cap R_{p, q}$, where $X-A_{p^{\prime}}, p^{\prime} \leqslant p-1$, or $X=\mathcal{E}_{q^{\prime}}, q^{\prime} \leqslant q-1$, and T denotes the segment of $C-L^{\prime}$ which starts and terminates at $\mathrm{Fr}(X)$ and contains y, then $R_{p, q}$ contains T (or the reverse of T).
$\left(\mathrm{C}_{4}\right)$ No vertex of $V(C) \backslash V\left(R_{\mathrm{p}, \mathrm{q}}\right)$ can be reached by a forward path from a in $j-\left(V\left(R_{p, q}\right) \cup\{b\}\right)$ or a backward path from b in $G-\left(V\left(R_{p, q}\right) \cup\{a\}\right)$.
We first prove that $X(p, q)$ holds for some p and q. For suppose this is not the case. Then we put $A=\bigcup_{i=0}^{\infty} A_{i}$ and $B=\bigcup_{i=0}^{\infty} B_{i}$ and we conclude that none of the m paths of $C-L^{\prime}$ intersects both A and B unless it contains precisely one vertex
from $A \cup B$. Assume w.l.o.g. that $|\operatorname{Fr}(A)| \leqslant|\operatorname{Fr}(B)|$. Then $|\operatorname{Fr}(A)| \leqslant m$ and C contains a vertex z which is incident with L and not in $\mathrm{Cl}(A)$. Now every forward path in $G-b$ from a to z intersects $\operatorname{Fr}(A)$. On the other hand $G-b$ has, by Lemina 1 and the assumption of Theorem 1 , a set of $m+1$ internally disjoint forward paths from a to z. This contradiction proves that $X(p, q)$ holds for some p and q.

We choose p and q such that $X(p, q)$ holds and such that $p+q$ is minimum under this restriction. Assume w.l.o.g. that $p \geqslant q \geqslant 0$. We shall prove that $p=q=$ 0 . For suppose $p>0$. Let $R_{p, q}$ and \hat{u}_{p} and b_{q} be as in the statement of $X(p, q)$. By the minimality of $p+q, a_{p} \in A_{p} \backslash /_{p-1}$ and $b_{q} \in B_{q} \backslash B_{q-1}$. Now G contains a forward path S from a vertex $y_{p-1}=n \operatorname{Int}\left(A_{p-1}\right)$ to a_{p} having only its ends in common with C. We claim that S has only its ends in common with $R_{p, q}$. For otherwise, S would intersect one of the segments Q of $R_{p, q}$ satisfying (C_{2}). We now go along S from y_{p-1} towards a_{p} and we stop at the first vertex in such a segment Q. We then go along Q towards an end d_{p}, say, of Q in C, and by $\left(C_{2}\right)$, we can do it in such a way that the resulting path from y_{p-1} to d_{p} is a forward path and such that d_{p} is not in A_{p}. But since y_{p-1} is in $\operatorname{Int}\left(A_{p-1}\right)$ we conclude that d_{p} is, in fact, in A_{p}.

This contradiction proves that S has only its ends in common with $R_{\mathrm{p}, \mathrm{q}}$ Let U denote the segment of A_{p-1} contained in $C-L^{\prime}$ and containing y_{p-1}. Then U or its reverse segment is a segment of $R_{p, q}$ and, since $X(p-1, q)$ does not hold, U does not intersect B_{q}. Let U^{\prime} denote the segment of U which forms the intersection of U with the segment of $R_{\mathrm{p}, \mathrm{q}}$ from a_{p} to $y_{\mathrm{p}-1}$ Let p^{\prime} be the smallest integer such th i $U^{\prime}-y_{p-1}$ intersects $A_{p^{\prime}}$ and let $a_{p^{\prime}}$ be the vertex such that no intermediate vertex on the segment of U^{\prime} from $a_{p^{\prime}}$ to y_{p-1} is contained in $A_{p^{\prime}}$. We now let $R_{p^{\prime}, q}$ denote the path obtained by forming the union of the reverse path of $R_{\mathrm{p}, \mathrm{q}}$ from a_{p} to a_{p}, the reverse path of S, and the segment of $R_{\mathrm{p}, \mathrm{q}}$ from y_{p-1} to b_{q}. It is now easy to see that $R_{p^{\prime}, q}$ satisfies $X\left(p^{\prime}, q\right)$. This contradiction shows that assertion $X(0,0)$ holds.

Consider a path $R_{0,0}$ from a_{0} in A_{0} to b_{0} in B_{0} such that $X(0,0)$ holds. Let T_{a} (resp. T_{b}) be a forward (resp. backward) path from a (resp. b) to a_{0} (resp. b_{0}) in $G-b$ (resp. $G-a$) having only a_{0} (resp. b_{0}) in common with C. Since $R_{0,0}$ satisfies condition $\left(\mathrm{C}_{2}\right), T_{a}$ (resp. T_{b}) has only a_{0} (resp. b_{0}) in common with $\boldsymbol{R}_{0,0}$. If T_{a} and T_{b} are disjoint, we get a circuit C^{\prime} cont ining all those edges of L that have an end on C^{\prime} and containing $L^{\prime} \cup\{(b, a)\}$, a contradiction to the maximality of m. So assume $T_{a} \cap T_{b} \neq \emptyset$. W'e now walk along the reverse path of T_{b} from b_{0} and we stop when we meet the first vertex z on T_{s} and we then follow T_{a} from z to a_{0}. In this way we extend $R_{0,0}$ to a circuit $C^{\prime \prime}$ containing L^{\prime} and no end of an edge $L^{\prime \prime}$ (by the maximality of m). We now consider $C^{\prime \prime}$ instead of C. Since $R_{0,0}$ satisfies condition $\left(\mathrm{C}_{4}\right)$, the set of vertices that can be reached from a by a forward path in $G-\left(V\left(C^{\prime \prime}\right) \cup\{b\}\right)$ and by a backward path trom b in $G-\left(V\left(C^{\prime \prime}\right) \cup\{a\}\right) \cup$ is a subset of $Z \backslash\{z\}$. But this contradicts the minimality of $|Z|$ and the proof is complete.

As a corollary of the proof of Theorem 1 we get the following extension of i\%oodall's result [14].

Corcllary 1. Let L be a set of k independent edges of a graph G and suppose C is an L-admissible cycle of G, i.e. for each edge e of L, C contains e if C contains an end of 2 . If $C \cap L \neq \emptyset$ and $(a, b) \in L \backslash E(C)$ such that a (resp. b) is connected to each venci incident with $L \cap E(C)$ by $k+i$ internally disjoint paths, then G has an admissible circuit containing $(L \cap E(C)) \cup\{(a, b)\}$.

In the proof of Theorem 1 it is assumed that G is finite. However, any infinite araph satisfying the assumption of Theorem 1 contains a finite subgraph with the same property so Theorem 1 extends to infinite graphs.

4. A research problem

G being a graph, $\alpha(G)$ denotes the maximum number of independent vertices of G. The afore-mentioned conjecture of Berge [1, p. 214] can be formulated as follows:
 total length at most k can be exteaded into a Gamilonion cirouir.

As pointed out by Woodall [14$]$ it is easy to reduce Theorem 2 to the following statement: If G is a $(\alpha(G)+k)$-connected graph, then any set of k independent edges of G is contained in a circuit. This statement is clearly a consequence of Theorem 1. We offer a stronger conjecture:

Conjecture 1. If G is an $\alpha(G)$-connected graph and L is a set of independent edges of G such that $G-L$ is connected, than G has a circuit containing all edges of L.

If true, Conjecture 1 combined with a result of Bondy [3] would imply the following recent result of K . Berman (private communication):

Theorem 3. If G is a graph with n vertices such that the degree sum of any two non-adjacent vertice; is at least $n+1$, then any set L of independent edges is contained in a circuit of G.

This result was conjectured by Häggkvist [6] who verified it in the case where L is a 1 -factor. The case where L has only one edge was treated by Ore [10].

References

[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[2] J.-C. Bermond, Hamiltonian graphs, in: L.W. Beineke and R.J. Wilson, eds. Selected Topics in Graph Theory (Academic Press, New York, 1978) 127-167.
[3] J.A. Bondy, A remark on two sufficient conditions for Harnilton cycles, Discrete Math. 22 (1978) 191-193.
[4] J.A. Bondy and L. Lovász, Cycles through specified vertices of a graph, Combinatorica 1 (1981) 117-140.
[5] G.A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960) 61-85.
[6] R. Häggkvist, On F-Hamiltonian graphs, in: J.A. Bondy and U.S.R. Murty, eds. Graph Theory and Related Topics (Academic Press, New York, 1979) 219-231.
[7] B. Jackson, Hamilton cycles in regular 2-connected graphs, J. Combin. Theory (B) 29 (1980) 27-46.
[8] L. Lovász, Problem 5, Period. Math. Hungar. 4 (1974) 82.
[9] W. Mader, Connectivity and edge-connectivity in finite graphs, in: B. Bollobas, ed. Surveys in Comtinatorics, London Math. Soc. Lecture Note Ser. 38 (1979) 66-95.
[10] O. Ore, Hamilton connected graphs, J. Math. Pures Appl. 42 (1963) 21-27.
[11] C. Thomassen, Note on circuits containing specified edges, J. Combin. Theory (B) 2.2 (1977) 297-280.
[12] B. Toft, Problem 11, in: M. Fiedler, ed. Recent Advances in Graph Theory, Proc. Symp. Prague 19:4 (Academia Praha, 1975) 544.
[13] D.R. Woodall, The binding number of a graph and its Anderson number, J. Combin. Theory (B) 15 (19\%3) 225-255.
[14] D.R. Woodall, Circuits containing specified edges, J. Combin. Theory (B) 22 (1977) 274-278.

