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Summary

The dramatic cell-shape changes necessary to form a multi-
cellular organism require cell-cell junctions to be both pli-

able and strong. The zonula occludens (ZO) subfamily of
membrane-associated guanylate kinases (MAGUKs) are

scaffolding molecules thought to regulate cell-cell adhesion
[1–3], but there is little known about their roles in vivo. To

elucidate the functional role of ZO proteins in a living em-
bryo, we have characterized the sole C. elegans ZO family

member, ZOO-1. ZOO-1 localizes with the cadherin-catenin
complex during development, and its junctional recruitment

requires the transmembrane proteins HMR-1/E-cadherin and
VAB-9/claudin, but surprisingly, not HMP-1/a-catenin or

HMP-2/b-catenin. zoo-1 knockdown results in lethality
during elongation, resulting in the rupture of epidermal

cell-cell junctions under stress and failure of epidermal
sheet sealing at the ventral midline. Consistent with a role

in recruiting actin to the junction in parallel to the cad-

herin-catenin complex, zoo-1 loss of function reduces the
dynamic recruitment of actin to junctions and enhances

the severity of actin filament defects in hypomorphic alleles
of hmp-1 and hmp-2. These results show that ZOO-1 cooper-

ates with the cadherin-catenin complex to dynamically regu-
late strong junctional anchorage to the actin cytoskeleton

during morphogenesis.

Results and Discussion

ZOO-1, the Sole Zonula Occludens Ortholog in C. elegans,

Localizes to Junctions during Morphogenesis
The C. elegans genome contains a single predicted ortholog of
the zonula occludens protein family, ORF Y105E8A.26, which
we have named zoo-1, for zonula occludens ortholog
(Figure S1 available online). We assayed ZOO-1 expression
via immunostaining (Figure 1; Figure S2); a zoo-1::gfp con-
struct shows identical localization (Movie S1). During morpho-
genesis, ZOO-1 becomes enriched at the borders of epidermal
cells (Figure 1A; Figures S2D–S2F); elongating embryos exhibit
the strongest junctional accumulation (Figures S2G and S2H).
ZOO-1 is also expressed in myoblasts and persists in mature
muscle cells (Figure S2G). In contrast, zoo-1::gfp driven by
an epithelial promoter shows no muscle-associated signal
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(data not shown); thus muscle-associated ZOO-1 signal is
due to expression specifically in muscle.

In cultured epithelial cells, ZO-1 initially associates with the
adherens junction (AJ) and segregates apically to the tight
junction as cells mature [4–7]. The apical junction in epidermal
cells of C. elegans has two subdomains with distinct multipro-
tein complexes, the cadherin-catenin and DLG-AJM com-
plexes [8], which can be partially resolved via light microscopy
in embryos [9]. Quantitative colocalization analysis shows
a high degree of overlap between ZOO-1, HMP-1/a-catenin,
and JAC-1/p120 catenin but not between ZOO-1 and the
DLG-1/AJM-1 complex (Figure S3).

ZOO-1 Recruitment to Junctions Is Dependent

on HMR-1/Cadherin and VAB-9/BCMP1 but Independent
of HMP-1/a-Catenin and HMP-2/b-Catenin

We next examined molecular requirements for ZOO-1 recruit-
ment. Unlike AJM-1, which depends on DLG-1/Discs large for
localization, ZOO-1 localizes properly in dlg-1(RNAi) embryos
(Figures 1D–1F). Previous work in tissue culture has sug-
gested that localization of vertebrate ZO-1 to the AJ may de-
pend on a-catenin [10, 11]. We tested this in vivo by immu-
nostaining hmp-1(zu278) null embryos for ZOO-1. However,
ZOO-1 junctional localization appears largely unaffected in
hmp-1 zygotic null (data not shown) embryos, as it does in
hmp-1(RNAi) (Figures 1G–1I) or hmp-2/b-catenin (RNAi) em-
bryos (data not shown), in which both maternal and zygotic
mRNA are removed [12, 13]. In contrast, hmr-1/E-cadherin
(RNAi) completely disrupts epidermal ZOO-1 localization (Fig-
ures 1J–1L), although localization in muscle is unaffected.
VAB-9/BCMP1 also localizes to the cadherin-catenin com-
plex in epidermal cells in C. elegans [9]; ZOO-1 expression
in vab-9(ju6) mutants is very similar to that in hmr-1(RNAi)
embryos (Figures 1M–1O). These results suggest that both
HMR-1 and VAB-9 are essential for recruiting ZOO-1 to the
apical junction, but that they act upstream of HMP-2 and
HMP-1.

Vertebrate ZO proteins directly interact with multiple claudin
family members [14, 15]. However, we could detect no effects
on junctional recruitment of ZOO-1 in clc-1/2 single or double
RNAi embryos nor epithelial permeability defects in zoo-1
loss-of-function embryos in a standard assay [16] (data not
shown). These data suggest that ZOO-1 is not an essential
component of the paracellular permeability pathway in C.
elegans.

zoo-1 Knockdown Results in Morphogenesis Defects
To examine consequences of loss of zoo-1 function, we ana-
lyzed two zoo-1 mutants, but both result in incomplete loss of
zoo-1 gene function (Supplemental Results). In order to
achieve more complete zoo-1 loss of function, we performed
RNAi in an RNAi hypersensitive background (rrf-3(pk1426);
[17]). zoo-1(RNAi);rrf-3 embryos have no detectable ZOO-1
expression as assessed via immunostaining (Figure S4), and
knockdown can be achieved via multiple different RNAs
that target zoo-1 (data not shown). rrf-3(pk1426) homozy-
gotes exhibit low levels of embryonic lethality (11.4% 6
6.3%, mean 6 SD, n = 272) prior to the initiation of epidermal
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morphogenesis, because of gastrulation failure (data not
shown). Although the penetrance of gastrulation defects in
double mutants is similar to rrf-3 single mutants, zoo-
1(RNAi) in an rrf-3(pk1426) background increased overall le-
thality to 33.2% 6 5.9% (n = 247) and yielded multiple mor-
phogenetic defects (Figure 2). zoo-1(RNAi);rrf-3 embryos
(Figures 2G–2I) properly complete ventral enclosure and initi-
ate elongation; however, the rate of elongation is markedly
slower than in wild-type (Figures 2A–2C; Movie S2) or rrf-3
(Figures 2D–2F; Movie S3) animals, and abnormal bulges de-
velop along the body (Figure 2I). Body wall muscle is func-
tional in arrested zoo-1;rrf-3 embryos, which continue to
twitch, and muscle morphology appears normal via phalloidin
staining (Figure S4H), suggesting that these defects are epi-
dermal in nature. 6% of zoo-1(RNAi);rrf-3 embryos exhibit
epidermal rupture during elongation (Figures 2J–2L; Movie
S4). The distribution and dynamics of HMP-1::GFP and
JAC-1::GFP are normal in living zoo-1(RNAi);rrf-3 embryos,
and we could not detect enhancement of morphogenetic de-
fects after ZOO-1 depletion in vab-9(ju6) null mutants (data
not shown). The simplest interpretation of these results is
that ZOO-1 acts downstream of VAB-9 to stabilize junctional
integrity.

That zoo-1(RNAi);rrf-3 embryos rupture suggests reduced
resistance of apical junctions to actomyosin-mediated con-
tractility. We therefore generated hypocontractile zoo-

Figure 1. ZOO-1 Junctional Recruitment Is

Dependent on HMR-1/E-Cadherin and VAB-9/

Claudin, but Not on HMP-2/b-Catenin or HMP-

1/a-Catenin

(A–L) Confocal images of elongating embryos

stained for ZOO-1 (green in [A], [D], [G], [J], [M]),

AJM-1 as a junctional marker (red in [B], [E], [H],

[K], [N]), and the merged image (C, F, I, L, O).

Wild-type (A–C), dlg-1(RNAi) (D–F), and hmp-

1(RNAi) (G–I) embryos display proper junctional

localization of ZOO-1, despite disruption of

AJM-1 localization in the case of dlg-1(RNAi)

(E). (J–L) hmr-1(RNAi) embryo exhibits abrogated

junctional ZOO-1 staining, though staining per-

sists in sarcomeres (J, arrow).

(M–O) vab-9(ju6) embryo lacks junctional ZOO-1

staining, though ZOO-1 localization in sarco-

meres in unaffected ([M], arrow).

Scale bar represents 10 mm.

1(RNAi);rrf-3 embryos by using simulta-
neous weak RNAi against let-502/Rho
kinase, and we enhanced contractility
by performing zoo-1(RNAi) in mel-
11(it26)/myosin phosphatase mutants,
in which myosin presumably remains
phosphorylated and hence abnormally
active [18]. let-502(RNAi) resulted in a re-
duction of rupture of zoo-1(RNAi);rrf-3
embryos from 12% to 4% (n = 66 and
116 embryos examined, respectively;
significantly different, p < 0.04, Fisher’s
exact test), whereas zoo-1(RNAi) knock-
down in mel-1(it26) homozygotes re-
sulted in the appearance of early rup-
tures prior to the 1.5-fold stage (n = 53
and 22 embryos examined for zoo-

1(RNAi);mel-11(it26) and mel-11(it26), respectively; Figures
2M–2O; Figure S5; significantly different from mel-11 alone,
p < 0.008). Based on these results, we conclude that ZOO-1
is especially important to provide mechanical stability to
epidermal junctions.

zoo-1 (RNAi) Reduces Junctional Actin Recruitment,

Leading to Perturbed Actin Filaments
We next visualized actin dynamics with an F-actin reporter ex-
pressed specifically in the epidermis, the actin-binding domain
of VAB-10 fused to GFP [19]. We observed a significant de-
crease in actin localized near cell-cell junctions. Actin in this re-
gion aligns into a robust cable parallel to cell-cell boundaries in
rrf-3 embryos (Figures 3A and 3C), whereas in zoo-1(RNAi);rrf-
3 embryos, junctional actin is less robust (Figures 3B and 3D).
Quantitative analysis (see Figure S6 for description) confirms
these observations: the ratio of junctional to cytoplasmic actin
in wild-type is 2.16 6 0.26 (mean 6 SD, n = 22 cells in 4 em-
bryos measured) versus 1.4 6 0.2 in zoo-1(RNAi);rrf-3 embryos
(n = 23 cells in 5 embryos; significantly different based on
a two-tailed Student’s t test, p < 0.01). During elongation, ac-
tomyosin contractile forces act along circumferential actin
bundles (CFBs), which attach at their ends to cell-cell junctions
and are thought to distribute the forces driving elongation. In
untreated embryos, CFBs are evenly spaced (Figure 3E). Strik-
ingly, in zoo-1 (RNAi) embryos, some CFBs cluster abnormally
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(Figure 3F), suggesting that ZOO-1 contributes to their anchor-
age.

Because some zoo-1(RNAi);rrf-3 embryos rupture during
elongation, we imaged F-actin during ventral enclosure, when
midline junctional connections are established. In contrast to
wild-type embryos, which accumulate robust junctional actin
at the ventral midline (Figure 3A; Movie S5), in zoo-1(RNAi);rrf-
3 embryos that display midline bulges near the end of enclo-
sure, we consistently found loss of accumulation of midline
junctional actin (Figure 3B; n = 6/6 embryos with midline defects
examined), or failure to establish a midline connection entirely
between one or more cells (Movies S6 and S7; n = 4/6 embryos
with midline junctional failure). Taken together, the abnormali-
ties in actin organization we observe in zoo-1 knockdown em-
bryos provide a mechanical explanation for observed defects
at the end of ventral enclosure and during elongation.

zoo-1 (RNAi) Enhances the Lethality of hmp-1/a-Catenin
and hmp-2/b-Catenin Hypomorphs

Connecting the actin cytoskeleton to cell-cell junctions is a role
traditionally assigned to the cadherin-catenin complex [20].
Because ZOO-1 recruitment is independent of both a- and b-
catenin, we hypothesized that ZOO-1 recruits actin to the junc-
tion in a parallel pathway. To test this hypothesis, we examined
the combined effects of zoo-1 (RNAi) and weak loss of function
for b-catenin and a-catenin, by using hmp-2 (qm39) ([21]; M.
Costa, personal communication) and hmp-1(fe4) [22],

Figure 2. Loss of zoo-1 Function Causes Embry-

onic Lethality

Nomarski images of representative embryos un-

dergoing elongation are shown. t = 0 correlates

with 90 min after ventral enclosure.

(A–C) Wild-type embryo.

(D–F) rrf-3(pk1426) embryo.

(G–I) zoo-1(RNAi);rrf-3(pk1426) embryo exhibit-

ing failed elongation with pronounced body-

shape defects.

(J–L) zoo-1(RNAi);rrf-3(pk1426) embryo that has

ruptured from the posterior region. Note the

delayed elongation of the zoo-1(RNAi);rrf-

3(pk1426) embryos relative to wild-type.

(M–O) zoo-1(RNAi);mel-11(it26) embryo. Note the

ventral rupture ([N], arrow).

Scale bar represents 10 mm.

respectively. hmp-2(qm39) displays 6% 6
1.2% (n = 832) embryonic and early larval
lethality at 20�C (Table 1). In hmp-
2(qm39);zoo-1(RNAi) embryos, lethality
is significantly enhanced to 60% 6
4.6% (n = 508) and mutants exhibit de-
layed development (Table 1). Unlike
wild-type embryos (Figure 4A), progeny
of hmp-1(fe4) hermaphrodites show pro-
nounced elongation defects (Figure 4B;
Movie S8) and exhibit 77.5% 6 7.9% (n =
844) embryonic and early larval lethality
(Table 1; [22]). Phalloidin staining of hmp-
1(fe4) embryos confirms that the spatial
arrangement of CFBs is occasionally per-
turbed ([27]; Figure 4E). zoo-1(RNAi) in
hmp-1(fe4) mutants enhances overall
lethality to 99.6% 6 1.8% (n = 818) and
causes nearly all embryos to exhibit the

Humpback phenotype (Figure 4D; Movie S9). Approximately
half of zoo-(RNAi);hmp-1(fe4) mutants ultimately rupture at
various positions along the body axis (Figure 4C; Movie S10).

zoo-1 loss of function also exacerbates the cytoskeletal de-
fects observed in hmp-1(fe4) embryos: CFBs often cluster, re-
sulting in inappropriately thick bundles (Figure 4F) similar to
hmp-1 null mutants and the most severe hmp-1(fe4) embryos
[12, 22], suggesting that ZOO-1 and the cadherin complex act
in parallel to stabilize actin at epidermal junctions. Loss of
UNC-34/Ena also synergizes with hmp-1(fe4), but unlike ZOO-
1, UNC-34 is correctly localized in hmr-1 mutant backgrounds
[23]. We found no evidence for synergistic lethality between
zoo-1 and the null allele, unc-34(gm104) (data not shown).

In conclusion, we have provided in vivo analysis of ZOO-1/
ZO-1 in C. elegans, and we show that ZOO-1 acts at junctions
along with core AJ proteins during epithelial morphogenesis.
Recent studies in Drosophila have implicated ZO-1/Pyd at
AJs, based on defects in cell rearrangement during tracheal
morphogenesis in pyd mutants [24]. However, these same
studies have also implicated pyd in nuclear functions. Because
it lacks the nuclear localization sequence found in other ZO-1
orthologs, ZOO-1 provides a ‘‘natural experiment’’ that can
identify exclusively non-nuclear roles for ZO-1 proteins.

In ZO-1/ZO-2/ZO-3 knockdown cells in culture, AJ matura-
tion is delayed [25]. In contrast, we do not find a delay in re-
cruitment of core AJ components in zoo-1 knockdown em-
bryos in vivo. It is possible that the extremely rapid kinetics
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of junction formation in model invertebrates (minutes, as op-
posed to many hours in vertebrates) accounts for this differ-
ence, as has been previously suggested [22]. However,
dynamic imaging of actin in living embryos after zoo-1 knock-
down revealed dramatic effects on actin recruitment at matur-
ing junctions, which may be analogous to defects observed in
the transition from ‘‘spot-like’’ to ‘‘belt-like’’ AJs in cultured
cells after ZO protein depletion [25, 26]. Although ZO-1 directly
binds actin [11, 27], the lack of sequence conservation in this
region of ZOO-1 does not immediately suggest that ZOO-1
does so. Unfortunately, the dominant lethality of zoo-1 trans-
genes has thus far precluded unambiguous structure-function
analysis to address this issue.

C. elegans embryos undergoing epidermal morphogenesis
do not require HMP-1/a-catenin or HMP-2/b-catenin for junc-
tional recruitment of ZOO-1. In contrast, ZOO-1 recruitment
does depend on HMR-1/E-cadherin and VAB-9/BCMP1. Be-
cause HMR-1 is required for proper junctional localization of
VAB-9 [9], the simplest explanation for these localization re-
sults is HMR-1/VAB-9//ZOO-1. Because there are very
few cytoplasmic residues in VAB-9 that could engage in direct
binding to ZOO-1, we think it unlikely that the interaction be-
tween the two proteins is direct. Instead, another protein pre-
sumably recruits ZOO-1 to AJs. Future studies that character-
ize the binding affinities of ZOO-1 at epidermal junctions

Figure 3. Loss of zoo-1 Function Disrupts Actin Accumulation at Cell-Cell

Junctions

(A and B) Ventral views of a wild-type (A) and zoo-1(RNAi);rrf-3 (B) embryo at

the end of ventral enclosure expressing a gfp-tagged fragment of vab-10

that binds F-actin in epidermal cells [19]. In the wild-type embryo, two pairs

of anterior cells have accumulated dense actin at the midline ([A], arrows),

whereas only small actin puncta ([B], left arrow) or detached actin filaments

([B], right arrow) remain at the same position in the zoo-1(RNAi);rrf-3 embryo

([B], arrows).

(C) Robust actin cables are visible at cell-cell borders in epidermal cells in

a comma stage embryo (arrows).

(D) Actin is less evenly distributed at junctions in epidermal cells of comma

stage zoo-1 knockdown embryos (arrows).

(E and F) Embryos at the two-fold stage of elongation stained for F-actin.

(E) Wild-type embryo.

(F) zoo-1(RNAi) embryo. Note the abnormal clustering of circumferential ac-

tin filament bundles in the zoo-1(RNAi) embryo (arrow).

Scale bars represent 5 mm.
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should clarify the role of this highly conserved protein during
morphogenesis.

Supplemental Data

Supplemental Data include Supplemental Results, Supplemental Experi-

mental Procedures, six figures, and ten movies and can be found with this

article online at http://www.current-biology.com/cgi/content/full/18/17/

1333/DC1/.

Acknowledgments

We thank members of the Hardin lab for helpful discussion, Chris Lockwood

for sharing unpublished data on mel-11(it26), and M. Costa for sharing

unpublished results regarding hmp-2(qm39). Reagents were generously

provided by Y. Kohara (cDNAs), L. Segalat (strain containing zoo-

1(cxTi8317)), the International C. elegans Knockout Consortium (strain con-

taining zoo-1(gk404)), and M. Labouesse (strain containing vab-

10::ABD::gfp). Some C. elegans strains were obtained from the C. elegans

Genetics Stock Center, which is funded by a grant from the NIH National

Center for Research Support. This work was supported by NIH grant

GM058038 to J.H. R.Z.-B. was supported by NIH postdoctoral training grant

GM078747 and by a grant from the Machaiah Foundation.

Received: January 29, 2008

Revised: July 16, 2008

Accepted: July 17, 2008

Published online: August 21, 2008

References

1. Funke, L., Dakoji, S., and Bredt, D.S. (2005). Membrane-associated gua-

nylate kinases regulate adhesion and plasticity at cell junctions. Annu.

Rev. Biochem. 74, 219–245.

2. Shin, K., Fogg, V.C., and Margolis, B. (2006). Tight junctions and cell po-

larity. Annu. Rev. Cell Dev. Biol. 22, 207–235.

3. Yap, A.S., Crampton, M.S., and Hardin, J. (2007). Making and breaking

contacts: The cellular biology of cadherin regulation. Curr. Opin. Cell

Biol. 19, 508–514.

4. Fesenko, I., Kurth, T., Sheth, B., Fleming, T.P., Citi, S., and Hausen, P.

(2000). Tight junction biogenesis in the early Xenopus embryo. Mech.

Dev. 96, 51–65.

5. Rajasekaran, A.K., Hojo, M., Huima, T., and Rodriguez-Boulan, E. (1996).

Catenins and zonula occludens-1 form a complex during early stages in

the assembly of tight junctions. J. Cell Biol. 132, 451–463.

6. Sheth, B., Fontaine, J.J., Ponza, E., McCallum, A., Page, A., Citi, S.,

Louvard, D., Zahraoui, A., and Fleming, T.P. (2000). Differentiation of

the epithelial apical junctional complex during mouse preimplantation

development: A role for rab13 in the early maturation of the tight junc-

tion. Mech. Dev. 97, 93–104.

7. Yonemura, S., Itoh, M., Nagafuchi, A., and Tsukita, S. (1995). Cell-to-cell

adherens junction formation and actin filament organization: Similarities

and differences between non-polarized fibroblasts and polarized epi-

thelial cells. J. Cell Sci. 108, 127–142.

8. Cox, E.A., and Hardin, J. (2004). Sticky worms: Adhesion complexes in

C. elegans. J. Cell Sci. 117, 1885–1897.

Table 1. zoo-1 Lethality in rrf-3, hmp-1(fe4), and hmp-2(qm39)

Genotype % Lethality SD (na)

rrf-3(pk1426) 11.4 66.3 (272)

zoo-1(RNAi);rrf-3(pk1426) 33.2 65.9 (247)

hmp-1(fe4) 77.5 67.9 (844)

zoo-1(RNAi);hmp-1(fe4) 99.6 61.8 (818)

zoo-1(cxTi8317);hmp-

1(fe4)

99.8 60.6 (1114)

hmp-2(qm39) 6 61.2 (832)

zoo-1(RNAi);hmp-

2(qm39)

60 64.6 (508)

a Number of embryos counted. Numbers are the sum of at least three sepa-

rate experiments for each genotype.

http://www.current-biology.com/cgi/content/full/18/17/1333/DC1/
http://www.current-biology.com/cgi/content/full/18/17/1333/DC1/


Figure 4. zoo-1(RNAi) Enhances the Elongation
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(A–C) Nomarski images at 90 min time intervals of

representative embryos undergoing elongation.

(A) Wild-type embryo.

(B) hmp-1(fe4) embryo with visible body-shape

defects.

(C) zoo-1(RNAi);hmp-1(fe4) embryo that has rup-

tured from the ventral surface (arrow).

(D) Distribution of embryonic lethal phenotypes

of hmp-1(fe4) and zoo-1(RNAi);hmp-1(fe4)

animals.

(E and F) Representative confocal images of

F-actin staining in a hmp-1(fe4) (E) and zoo-

1(RNAi);hmp-1(fe4) (F) embryo. The organization

of circumferential actin filaments is consistently

and markedly disrupted in zoo-1(RNAi);hmp-

1(fe4) embryos.

Scale bar represents 10 mm.
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