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Abstract

We give a decision method for the Positivity Problem for second order recurrent sequences: it is decidable whether or not a
recurrent sequence defined by un = aun−1 + bun−2 has only nonnegative terms.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In general, a (homogeneous) linear recurrence equation over integers has the form

un = a1un−1 + a2un−2 + · · · + akun−k , (1)

for n�k, where a1, a2, . . . , ak ∈ Z are integer constants. The linear recurrence equation (1) defines a unique integer
sequence (un)

∞
n=0 after the first k initial terms u0, u1, . . . , uk−1 are given. A sequence (un)

∞
n=0 is said to be recurrent

if it is defined by a linear recurrence equation. The integer k in (1) is called the order of the recurrence and also of the
defined recurrent sequence.

In the following we are mainly interested in second order recurrent sequences, i.e., those defined by a linear recurrence
equation (1) in the form

un = aun−1 + bun−2 (2)

for constants a, b ∈ Z. The Fibonacci numbers form probably the most well known recurrent sequence of second order.
The linear recurrence equation defining these numbers is un = un−1 + un−2 and the initial terms are u0 = u1 = 1.

We shall consider the following problem of recurrent sequences.

Positivity Problem. Let a linear recurrence equation (1) be given together with the initial terms ui for i = 0, 1, . . . ,

k − 1. Is the recurrent sequence (un)
∞
n=0 nonnegative, i.e., does it hold that un �0 for all n?
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If in the above k = 2, then the problem is referred to as the second order Positivity Problem. We shall show that this
problem has an algorithmic solution, that is, the second order Positivity Problem is decidable.

The proof uses only elementary techniques of the complex numbers.

As an example, consider the recurrent sequence (un)
∞
n=0, where

un = 9un−1 − 21un−2

with u0 = 1 and u1 = 14. The first negative member of this sequence is u17 = −344 532 183 345 while the maximum
value before u17 is as high as u15 = 17 954 992 251.

The Positivity Problem is also well known for matrices, and it is through matrix theory that it has many connections to
other fields of mathematics; see, for instance, [7,8]. Indeed, let M ∈ Zk×k be a k×k integer matrix and v=(1, 0, . . . , 0)

and u = (0, . . . , 0, 1) two vectors in Zk . It is straightforward to show that the sequence (un)
∞
n=0 defined by

un = vMnuT

is a recurrent sequence of order k. Therefore it follows from our main theorem that it is also decidable whether or
not the right upper-corner entries (Mn)1,2 are nonnegative for all powers of a given 2 × 2 integer matrix M. This
connection between matrices and recurrent sequences works also in the other direction, but then the dimension of the
matrix may grow. Indeed, for any recurrent sequence (un)

∞
n=0 of order k, there exists a matrix M ∈ Z(k+1)×(k+1) such

that un = (Mn)1,k+1 for all n�1.
Before going into more details of the proof, we mention shortly some other related questions on recurrent sequences.

In Skolem’s Problem it is required to determine whether or not a given recurrent sequence (un)
∞
n=0 has a zero: un = 0

for some n�0. It is known, but highly nontrivial to prove, that Skolem’s Problem is decidable for recurrent sequences
of order 5 or less; see [4]. It is also known that if the Positivity Problem is decidable for all orders k�1, then also
Skolem’s Problem is decidable in the general case. Indeed, this follows from the fact that if (un)

∞
n=0 is recurrent, then

so is (u2
n − 1)∞n=0; for the details of the construction of (u2

n − 1)∞n=0 we refer to [2]. On the other hand, it is decidable
whether or not a linear recurrence equation (of any order) produces infinitely many zeros; see [1].

Finally, we also mention an old open problem for 2 × 2 integer matrices. In the Mortality Problem a finite set
M1, M2, . . . , Mk of 2 × 2 integer matrices is given, and the task is to determine whether or not Mi1Mi2 , . . . , Min = 0
for some product of these matrices. It is not known whether this problem is decidable; see [9]. However, if we increase
the size of the matrices to 3, then the problem becomes undecidable. This result is due to Paterson [6]; see also [3].

We end this section with the well known result giving the solutions of a linear recurrence equation of second order;
for the general case, see cf. [5, Theorem 3.1.1]. We denote as usual by z the complex conjugate of complex number z.

Lemma 1. Let

un = aun−1 + bun−2 (3)

be a linear recurrence equation with a, b �= 0, and let p(x) = x2 − ax − b be its characteristic polynomial with
discriminant D = a2 + 4b.

(1) If D > 0, then un = A�n
1 + B�n

2, where �1 �= �2 are the real roots of p(x), A = u1−u0�2√
D

and B = u0�1−u1√
D

.

(2) If D = 0, then un = (A + Bn)�n, where � = a/2 is the double root of p(x), A = u0, and B = 2u1−u0a
a

.

(3) If D < 0, then un = A�n + A�n, where � and � are the complex roots of p(x), and A is as in Case 1.

Proof. To determine A and B in Case 1, the system of equations{
u0 = A + B

u1 = A�1 + B�2

can be solved by Cramer’s rule, since its determinant −√
D is nonzero. The solutions are as in the statement. It is then

a simple task to show by induction on n that the claimed solution indeed satisfies the recurrence. The same conclusion
holds for Case 3, where, in addition, B = A, since in this case

√
D is a pure imaginary number.
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In Case 2 we have b = −a2/4 and the system of equations becomes
{

u0 = A

u1 = A� + B�

Since a �= 0, the determinant (which is now equal to �) is again nonzero and Cramer’s rule applies. The solutions of
the system are as stated, and it is again easy to verify that the recurrence is satisfied by these solutions. �

The expression of the terms un in the three cases of Lemma 1 is usually called the solution of the recurrent sequence
(un)

∞
n=0. Note that the roots are nonzero, since b �= 0.

2. Solving the Positivity Problem

We begin with the easiest cases not covered by Lemma 1, and which, actually, corresponds to the Positivity Problem
of the first order recurrence. Indeed, the Positivity Problem can be solved for first order recurrent sequences in a trivial
way, since then un = anu0 for any n�0, and (un)

∞
n=0 is nonnegative if and only if a�0 and u0 �0.

Lemma 2. If a = 0 or b = 0 in (3), then the Positivity Problem can be effectively solved.

Proof. If b=0, then un =an−1u1 for all n�1, and thus the sequence is nonnegative if and only if u0, u1 �0 and a�0.
If a = 0, i.e., un = bun−2, then we divide (un)

∞
n=0 into two sequences, namely

un =
{

bmu0 if n = 2m,

bmu1 if n = 2m + 1.

Hence the sequence is nonnegative if and only if u0, u1 �0 and b�0. �

We now turn to the cases of Lemma 1: we assume that a �= 0 and b �= 0 in the following. In Case 1 the asymptotic
behaviour of the sequence (un)

∞
n=0 is essentially determined by the characteristic root with the maximum absolute

value. Notice first that, in the terms of Lemma 1, p(x) = x2 + (�1 + �2)x + �1�2, i.e.,

a = �1 + �2 and b = �1�2. (4)

Lemma 3. Assume that, for all n�0, un = A�n
1 + B�n

2, where �1 �= �2 are real and nonzero, and A, B ∈ R. Then the
Positivity Problem of (un)

∞
n=0 can be effectively solved.

Proof. By (4), |�1| �= |�2|, since the roots are supposed to be real, and a �= 0. Assume that |�1| > |�2|. Now un =�n
1�n,

where

�n = A + B

(
�2

�1

)n

(5)

with |�2
�1

| < 1. If A = 0 = B, then the problem is trivial. Therefore, assume that AB �= 0. We have then two cases
according to the sign of �1.

If �1 < 0, then un �0 if and only if, for each n, �n =0 or its sign equals the sign of �n
1. Since limn→∞(�2

�1
)n =0, there

can be only one index n with �n = 0, and the sequence (5) alternates in sign only if A = 0, �2 > 0 and B �= 0. Since
�2
�1

< 0, necessarily B > 0. Therefore, in this case, the sequence (un)
∞
n=0 is nonnegative if and only if �2 > 0, A= 0 and

B > 0.
If �1 > 0, then the sequence (un)

∞
n=0 is nonnegative if and only if �n �0 for all n. If B=0, then (un)

∞
n=0 is nonnegative

when A�0; otherwise �n �0 is equivalent to
(

�2

�1

)n

� −A

B
. (6)
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We have two cases according to whether �2 > 0 or not. First, if �2 > 0, then (6) is satisfied if and only if −A
B

�0, since

(�2
�1

)n tends to zero. In the second case, where �2 < 0, again (�2
�1

)n tends to zero, but with alternating signs. Now it is
easy to see that (un)

∞
n=0 is nonnegative, i.e., (6) holds for all n�0, if and only if (6) holds for n = 1. Indeed, in this

case (�2
�1

)n �(�2
�1

) for all n�0.
Clearly, each of the above cases provides a method for deciding the nonnegativity of the sequence (un)

∞
n=0. �

Next we consider the Positivity Problem for Case 2 of Lemma 1.

Lemma 4. Assume that un = (A + Bn)�n for all n�0. Then the Positivity Problem of the sequence (un)
∞
n=0 can be

effectively solved.

Proof. If B = 0, then (un)
∞
n=0 is nonnegative if and only if A�0 and ��0. We assume thus that B �= 0. Note that

the sign of A + Bn can change only once when n grows. Therefore, if � < 0, then (un)
∞
n=0 cannot be nonnegative. On

the other hand, if � > 0, then (un)
∞
n=0 is nonnegative if and only if A + Bn�0 for all n�0, which is equivalent to the

condition n� −A
B

, and thus to the condition −A
B

�0. �

There remains the case of two complex roots, i.e., Case 3. For a complex number �, we use the representation
� = |�|ei�, where � ∈ [−�, �) is the phase of �.

Assume that

un = A�n + A�n,

for all n�0, and let � = |�|ei� and A = |A|ei� for some �, � ∈ [−�, �). Then

un = |A|ei�(|�|ei�)n + |A|e−i�(|�|e−i�)n

= |A||�|n(ei(�+n�) + e−i(�+n�))

= 2|A||�|n cos(� + n�). (7)

We need only to study the sign of cos(� + n�) in order to solve the Positivity Problem. Note that in Case 3 the root �
in not real and hence � /∈ {−�, 0}.

Lemma 5. If un = A�n + A�n for n�0 and � /∈ R, then (un)
∞
n=0 has negative elements.

Proof. By the above considerations, we need only to consider the signs of cos(� + n�) in (7). Now �, � ∈ [−�, �)

with � /∈ {−�, 0}. Assume contrary to the claim that un �0 for all n, i.e., cos(� + n�)�0 for all n�0, which implies
that for each n�0,

� + n� ∈ [−�/2 + k2�, �/2 + k2�],
for some k ∈ Z. However, we must have � ∈ [−�/2, �/2], and then |�| < � implies that also � + � ∈ [−�/2, �/2].
Therefore inductively we obtain that � + n� ∈ [−�/2, �/2] for all n�0. But � �= 0 implies limn→∞|� + n�| = ∞; a
contradiction. Therefore, we must have un < 0 for some n. �

For our algorithm, Lemma 5 yields that for Case 3 the answer for Positivity Problem is always negative.
From the previous lemmas, our main theorem follows:

Theorem 1. The Positivity Problem is decidable for second order recurrent sequences.
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